-
公开(公告)号:CN110689171A
公开(公告)日:2020-01-14
申请号:CN201910837861.8
申请日:2019-09-05
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于E-LSTM的汽轮机健康状态预测方法。收集来自传感器的汽轮机运行数据,并进行预处理;将预处理好的数据喂到LSTM网络中,进行多次迭代训练;将训练好的多个模型参数输入到遗传算法中作为初始种群,运行遗传算法,选择效果最优模型参数;使用更多的汽轮机运营数据对最优模型进行泛化性能验证;根据最优模型参数,对测试数据集进行预测,并评估模型误差。本发明能提高模型预测的准确度并避免过拟合,能实现多元线性回归预测,使得预测模型对真实数据具有更好的拟合效果,可以极大降低人力监测的误差、提高故障诊断效率,对故障的发生做到先知先觉。可以广泛应用于各个火力和核能发电厂甚至于舰船的汽轮机的状态管理。
-
公开(公告)号:CN110569963A
公开(公告)日:2019-12-13
申请号:CN201910743277.6
申请日:2019-08-13
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及信息技术领域,特别涉及一种防止数据信息丢失的DGRU神经网络及其预测方法。本发明中的DGRU神经网络由输入层、输出层和隐含层组成,隐含层由DGRU神经元构成;所述的DGRU神经元由同一时刻的两个标准GRU单元连接构成;本发明方法包括:获取历史数据集并进行预处理;利用预处理后的数据集训练DGRU神经网络,建立预测模型;获取当前失效数据,进行数据归一化处理后输入预测模型中,得到预测结果三个部分。本发明克服了传统GRU神经网络的缺点,对GRU神经网络进行改进,提出一种能增强模型记忆力,防止信息丢失的DGRU神经网络,并应用DGRU神经网路建立预测模型,与传统GRU神经网络相比,可以提高模型的预测精度。
-