-
公开(公告)号:CN111028277B
公开(公告)日:2023-01-10
申请号:CN201911256966.0
申请日:2019-12-10
Applicant: 中国电子科技集团公司第五十四研究所 , 哈尔滨工程大学
IPC: G06T7/33
Abstract: 本发明公开了遥感图像配准技术领域的基于伪孪生卷积神经网络的SAR和光学遥感图像配准方法,先对特征图像块的采集和匹配,再进行异常点去除和最终配准,采用了最大化正样本和难负样本之间的特征距离的策略,并且定义了新的损失函数对网络进行训练,伪孪生网络的两个分支通过卷积运算连接,得到两个输入图像块之间的相似性得分;本发明通过提出了伪孪生卷积神经网络体系结构,使得伪孪生网络的左分支和右分支能够分别输入不同大小的光学和SAR遥感图像,能够解决在极高分辨率下光学和SAR遥感图像中识别相应图像块的任务。
-
公开(公告)号:CN113838107B
公开(公告)日:2023-12-22
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06T7/33 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/75 , G06V10/82 , G06N3/0464 , G06N3/044 , G06N3/0455 , G06N3/0475 , G06N3/094
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN113838107A
公开(公告)日:2021-12-24
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN113838064A
公开(公告)日:2021-12-24
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-
公开(公告)号:CN112562702A
公开(公告)日:2021-03-26
申请号:CN202011374653.8
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/003 , G10L25/18 , G10L25/24
Abstract: 本发明提供一种基于循环帧序列的门控循环单元网络的语音超分辨率方法,包括如下步骤:(1)对原始语音信号进行预处理;(2)提出构建CFS‑GRU模型;(3)完成基于循环帧序列网络的语音超分辨率。本发明基于GRU搭建的循环结构模型,直接将语音信号序列作为输入,很大程度上减小了计算代价,并且相比于传统方法有着较好的超分辨率效果;相比于LSTM,GRU模型有着较少的模型参数,通过GRU搭建的CFS‑GRU模型能够更快的训练和收敛。使用SegSNRLoss作为损失函数训练的CFS‑GRU模型能够更快的收敛,并且能够使输出帧序列有着较高的信噪比,提高超分辨率语音信号的质量。
-
公开(公告)号:CN113838064B
公开(公告)日:2023-12-22
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06V10/26 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06V20/70 , G06T7/33 , G06N3/0464 , G06N3/047 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06N3/048
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-
公开(公告)号:CN112562702B
公开(公告)日:2022-12-13
申请号:CN202011374653.8
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/003 , G10L25/18 , G10L25/24
Abstract: 本发明提供一种基于循环帧序列的门控循环单元网络的语音超分辨率方法,包括如下步骤:(1)对原始语音信号进行预处理;(2)提出构建CFS‑GRU模型;(3)完成基于循环帧序列网络的语音超分辨率。本发明基于GRU搭建的循环结构模型,直接将语音信号序列作为输入,很大程度上减小了计算代价,并且相比于传统方法有着较好的超分辨率效果;相比于LSTM,GRU模型有着较少的模型参数,通过GRU搭建的CFS‑GRU模型能够更快的训练和收敛。使用SegSNRLoss作为损失函数训练的CFS‑GRU模型能够更快的收敛,并且能够使输出帧序列有着较高的信噪比,提高超分辨率语音信号的质量。
-
公开(公告)号:CN113269691B
公开(公告)日:2022-10-21
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06T5/00 , G06N3/04 , G06N3/08 , G06V10/774
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
公开(公告)号:CN112562707A
公开(公告)日:2021-03-26
申请号:CN202011376572.1
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/02 , G10L21/0208
Abstract: 本发明提供一种单信道目标语音增强方法,包括如下步骤:步骤一:语音信号的预处理与特征转换,引入时间潜在域信息,将时序波形信息通过深度学习框架拓展映射到对应潜在空间域的过程及其逆向变换;步骤二:基于生成信号权重的目标函数;步骤三:引入时序TCN网络模型;本发明网络能实现从混合源语音到目标语音信号的端到端处理,网络的增强性能优秀,能良好还原目标语音信号,同时提升了数据处理的并行处理能力,并能通过自身的数据增广丰富样本集,提升模型性能。
-
公开(公告)号:CN112562706A
公开(公告)日:2021-03-26
申请号:CN202011376556.2
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/02 , G10L21/0208 , G10L25/03
Abstract: 本发明提供一种基于时间潜在域特定说话人信息的目标语音提取方法,包括时间潜在域特征转换模型、目标说话人特征信息指导器与增强提取模块;待处理的复杂声学环境语音信息经过时间潜在域特征转换模型的处理将映射到潜在空间的特征矩阵,此特征矩阵将分别进入目标说话人特征信息指导器与增强提取模块;在目标说话人特征信息指导器中,特征矩阵将被判定为与某一特定的目标说话人潜在特征具有相关性,或者不包含目标说话人特征。本发明能实现从复杂声学环境语音信号到特定目标语音信号的端到端处理,能高效提取出针对特定任务的目标说话人信息,而不受其他干扰信号的影响,保障了模型传递给后续任务的特定目标语音信号具备极高的语音质量与可感知性。
-
-
-
-
-
-
-
-
-