-
公开(公告)号:CN112508060A
公开(公告)日:2021-03-16
申请号:CN202011298247.8
申请日:2020-11-18
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明涉及一种基于图卷积神经网络的滑坡体状态判断方法及系统,利用包括降雨量、地表位移、深部位移、土壤含水率、次声在内的多种类型监测数据,综合判断滑坡体状态。本发明方法主要包括特征提取、特征融合与特征分类三部分,在特征提取中,将五种类型检测数据经过预处理后,分别输入到不同的图卷积神经网络中进行训练,得到五组对应的特征向量;在特征融合中,将特征提取输出的五组特征向量进行融合,得到可以表征滑坡体整体状态的特征向量,在特征分类中,根据特征融合输出的整体特征向量计算出该滑坡体处于每种状态下的概率,进而给出滑坡体的状态判断。本发明所述方法能准确、快速地判断出滑坡体的状态。
-
公开(公告)号:CN112508060B
公开(公告)日:2023-08-08
申请号:CN202011298247.8
申请日:2020-11-18
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F18/24 , G06F18/214 , G06F18/25 , G06N3/0464 , G01D21/02
Abstract: 本发明涉及一种基于图卷积神经网络的滑坡体状态判断方法及系统,利用包括降雨量、地表位移、深部位移、土壤含水率、次声在内的多种类型监测数据,综合判断滑坡体状态。本发明方法主要包括特征提取、特征融合与特征分类三部分,在特征提取中,将五种类型检测数据经过预处理后,分别输入到不同的图卷积神经网络中进行训练,得到五组对应的特征向量;在特征融合中,将特征提取输出的五组特征向量进行融合,得到可以表征滑坡体整体状态的特征向量,在特征分类中,根据特征融合输出的整体特征向量计算出该滑坡体处于每种状态下的概率,进而给出滑坡体的状态判断。本发明所述方法能准确、快速地判断出滑坡体的状态。
-