五轴联动超精密机床
    1.
    发明授权

    公开(公告)号:CN102909610B

    公开(公告)日:2014-12-17

    申请号:CN201210429045.1

    申请日:2012-11-01

    Abstract: 五轴联动超精密机床,它涉及一种五轴联动机床。本发明为了解决传统超精密机床存在的功能单一;加工对象形状简单,难以满足复杂微细结构表面和微小元件加工的要求等问题。机床床身上装有X轴导轨和Z轴导轨,X轴导轨上滑动连接有X轴溜板,Z轴导轨上连接有Z轴溜板;X轴溜板上沿竖直方向安装有立柱,立柱的竖直方向滑动连接有Y轴中溜板,Y轴中溜板前固定连接有Y轴前溜板;Y轴前溜板上沿水平方向固定安装有C轴,C轴上安装有真空吸盘,Z轴溜上沿竖直方向安装有B轴;X轴、Y轴、Z轴为液体静压导轨支撑,B轴和C轴采用气体静压支撑,B轴上安装夹具装置及刀具;C轴采用第一光栅和第二光栅来实现双反馈控制。本发明用于加工微细结构表面与微小元件。

    一种基于频域误差分配的超精密飞切机床精度设计方法

    公开(公告)号:CN102862238B

    公开(公告)日:2014-12-03

    申请号:CN201210344292.1

    申请日:2012-09-18

    Abstract: 一种基于频域误差分配的超精密飞切机床精度设计方法,它涉及一种超精密加工机床精度设计方法,以解决现有超精密飞切机床的设计,没有考虑工件表面的频域误差要求,工件的加工质量和可靠性较差,应用于大型光学系统中适应性差的问题,所述设计方法的主要步骤为:步骤一、确定刀具和工件耦合条件下的动态波动估计模型;步骤二、得到刀尖处的频域误差分布;步骤三、分析产生飞切机床误差的误差单元;步骤六、确定所述的各个误差单元的频域误差组合原则;步骤四、确定各个误差单元在频域内相对于刀尖处的误差敏感度系数;步骤五、确定在一定空间频率区间内所述的各个误差单元的频域误差分布。本发明用于超精密飞切机床精度设计。

    单点金刚石铣削法加工大尺寸光学元件的表面波纹度控制方法

    公开(公告)号:CN102837367B

    公开(公告)日:2014-10-29

    申请号:CN201210361416.7

    申请日:2012-09-25

    Abstract: 单点金刚石铣削法加工大尺寸光学元件的表面波纹度控制方法,属于大尺寸脆性光学元件超精密加工领域,本发明为解决现有的SPDT法在加工大尺寸光学元件时波纹度误差、频域评价指标PSD1难以保证的问题。本发明该方法包括:一:粗加工;二:获取纵向条纹的空间周期T;三:判断加工机床的刚度,刚度过低,执行四;刚度过高,执行五;四:增大横梁与调平垫体之间的平均压力,然后执行六;五:减小横梁与调平垫体之间的平均压力或接触刚度,然后执行六;六:二次超精密加工,七:重新检测PSD1值,八:判断PSD1≤15nm2·mm是否成立;不成立,返回二;成立,完成单点金刚石铣削法加工大尺寸光学元件U的波纹度误差及频域指标PSD1的控制。

    基于参数化设计的液体静压主轴制作方法

    公开(公告)号:CN102880766B

    公开(公告)日:2014-09-17

    申请号:CN201210397339.0

    申请日:2012-10-18

    Abstract: 基于参数化设计的液体静压主轴制作方法,属于液体静压主轴技术领域。它解决了现有液体静压主轴制作效率低,并且其计算过程中对主轴切削稳定性的预测与实际结果相差较大的问题。首先建立液体静压主轴的参数化有限元模型;预设置液体静压主轴的结构参数的初始值;对液体静压主轴的静压轴承承载特性进行数值模拟,获得液体静压主轴静压轴承的轴承刚度矩阵及轴承温升;计算获得液体静压主轴的动态参数和具有涡动效应的主轴动态特性;再得到主轴的临界切削厚度;当上述结果满足主轴制作要求,则通过人机交互界面输出上述数据,实现液体静压主轴的制作。本发明用于制作液体静压主轴。

    一种基于频域误差分配的超精密飞切机床精度设计方法

    公开(公告)号:CN102862238A

    公开(公告)日:2013-01-09

    申请号:CN201210344292.1

    申请日:2012-09-18

    Abstract: 一种基于频域误差分配的超精密飞切机床精度设计方法,它涉及一种超精密加工机床精度设计方法,以解决现有超精密飞切机床的设计,没有考虑工件表面的频域误差要求,工件的加工质量和可靠性较差,应用于大型光学系统中适应性差的问题,所述设计方法的主要步骤为:步骤一、确定刀具和工件耦合条件下的动态波动估计模型;步骤二、得到刀尖处的频域误差分布;步骤三、分析产生飞切机床误差的误差单元;步骤六、确定所述的各个误差单元的频域误差组合原则;步骤四、确定各个误差单元在频域内相对于刀尖处的误差敏感度系数;步骤五、确定在一定空间频率区间内所述的各个误差单元的频域误差分布。本发明用于超精密飞切机床精度设计。

    单点金刚石铣削法加工大尺寸光学元件的表面波纹度控制方法

    公开(公告)号:CN102837367A

    公开(公告)日:2012-12-26

    申请号:CN201210361416.7

    申请日:2012-09-25

    Abstract: 单点金刚石铣削法加工大尺寸光学元件的表面波纹度控制方法,属于大尺寸脆性光学元件超精密加工领域,本发明为解决现有的SPDT法在加工大尺寸光学元件时波纹度误差、频域评价指标PSD1难以保证的问题。本发明该方法包括:一:粗加工;二:获取纵向条纹的空间周期T;三:判断加工机床的刚度,刚度过低,执行四;刚度过高,执行五;四:增大横梁与调平垫体之间的平均压力,然后执行六;五:减小横梁与调平垫体之间的平均压力或接触刚度,然后执行六;六:二次超精密加工,七:重新检测PSD1值,八:判断PSD1≤15nm2·mm是否成立;不成立,返回二;成立,完成单点金刚石铣削法加工大尺寸光学元件U的波纹度误差及频域指标PSD1的控制。

    一种超精密机床的垂直运动轴系

    公开(公告)号:CN102909596B

    公开(公告)日:2014-11-19

    申请号:CN201210429004.2

    申请日:2012-11-01

    Abstract: 一种超精密机床的垂直运动轴系,它涉及一种机床的垂直运动轴系。本发明为了解决传统垂直运动轴系难以适用于面向复杂微细结构加工的超精密机床的问题。两个立柱并列设置在X轴溜板上,垂直运动轴中溜板滑动连接在两个立柱之间,垂直运动轴中溜板的前侧安装有垂直运动轴前溜板,后侧安装有垂直运动轴后溜板,气体静压主轴和主轴电机座装在贯穿圆孔内,气体静压主轴的后端与主轴电机座内的主轴电机连接,横梁安装在两个立柱的上端面上,丝杠轴承座装在中心孔上,丝杠轴承座上装有力矩电机,滚珠丝杠的下端与置于横梁下方的丝杠螺母座相连接,滚珠丝杠的上端与力矩电机连接,垂直运动轴中溜板与X轴溜板之间连接有卸荷气缸。本发明用于超精密机床中。

    五轴联动超精密机床
    8.
    发明公开

    公开(公告)号:CN102909610A

    公开(公告)日:2013-02-06

    申请号:CN201210429045.1

    申请日:2012-11-01

    Abstract: 五轴联动超精密机床,它涉及一种五轴联动机床。本发明为了解决传统超精密机床存在的功能单一;加工对象形状简单,难以满足复杂微细结构表面和微小元件加工的要求等问题。机床床身上装有X轴导轨和Z轴导轨,X轴导轨上滑动连接有X轴溜板,Z轴导轨上连接有Z轴溜板;X轴溜板上沿竖直方向安装有立柱,立柱的竖直方向滑动连接有Y轴中溜板,Y轴中溜板前固定连接有Y轴前溜板;Y轴前溜板上沿水平方向固定安装有C轴,C轴上安装有真空吸盘,Z轴溜上沿竖直方向安装有B轴;X轴、Y轴、Z轴为液体静压导轨支撑,B轴和C轴采用气体静压支撑,B轴上安装夹具装置及刀具;C轴采用第一光栅和第二光栅来实现双反馈控制。本发明用于加工微细结构表面与微小元件。

    一种超精密机床的垂直运动轴系

    公开(公告)号:CN102909596A

    公开(公告)日:2013-02-06

    申请号:CN201210429004.2

    申请日:2012-11-01

    Abstract: 一种超精密机床的垂直运动轴系,它涉及一种机床的垂直运动轴系。本发明为了解决传统垂直运动轴系难以适用于面向复杂微细结构加工的超精密机床的问题。两个立柱并列设置在X轴溜板上,垂直运动轴中溜板滑动连接在两个立柱之间,垂直运动轴中溜板的前侧安装有垂直运动轴前溜板,后侧安装有垂直运动轴后溜板,气体静压主轴和主轴电机座装在贯穿圆孔内,气体静压主轴的后端与主轴电机座内的主轴电机连接,横梁安装在两个立柱的上端面上,丝杠轴承座装在中心孔上,丝杠轴承座上装有力矩电机,滚珠丝杠的下端与置于横梁下方的丝杠螺母座相连接,滚珠丝杠的上端与力矩电机连接,垂直运动轴中溜板与X轴溜板之间连接有卸荷气缸。本发明用于超精密机床中。

    基于参数化设计的液体静压主轴制作方法

    公开(公告)号:CN102880766A

    公开(公告)日:2013-01-16

    申请号:CN201210397339.0

    申请日:2012-10-18

    Abstract: 基于参数化设计的液体静压主轴制作方法,属于液体静压主轴技术领域。它解决了现有液体静压主轴制作效率低,并且其计算过程中对主轴切削稳定性的预测与实际结果相差较大的问题。首先建立液体静压主轴的参数化有限元模型;预设置液体静压主轴的结构参数的初始值;对液体静压主轴的静压轴承承载特性进行数值模拟,获得液体静压主轴静压轴承的轴承刚度矩阵及轴承温升;计算获得液体静压主轴的动态参数和具有涡动效应的主轴动态特性;再得到主轴的临界切削厚度;当上述结果满足主轴制作要求,则通过人机交互界面输出上述数据,实现液体静压主轴的制作。本发明用于制作液体静压主轴。

Patent Agency Ranking