-
公开(公告)号:CN101894097B
公开(公告)日:2012-07-04
申请号:CN201010235062.2
申请日:2010-07-23
Applicant: 哈尔滨工业大学
IPC: G06F17/14
Abstract: 卡尔曼滤波与经验模态分解有机结合的机动目标跟踪方法,涉及机动目标滤波跟踪领域,解决了无法克服EMD方法中的“边界效应”及强机动目标卡尔曼滤波的发散问题。该方法为:一、获得当前采样时刻的量测数据序列,利用卡尔曼预测方程,获得下一时刻的系统状态预测数据,将其与当前序列组合;二、在组合序列中插值生成滤波序列;三、利用EMD方法对滤波序列进行分解,剔除包含噪声的IMF,获得当前滤波值;四、将该滤波值作为当前滤波结果显示;五、将该滤波值作为系统当前状态的后验估计,在下一时刻结合量测数据及卡尔曼方程组,获得计算参数,然后返回一,将下一时刻作为当前时刻,实现机动目标的跟踪。本发明可用于机动目标滤波跟踪领域。
-
公开(公告)号:CN101894097A
公开(公告)日:2010-11-24
申请号:CN201010235062.2
申请日:2010-07-23
Applicant: 哈尔滨工业大学
IPC: G06F17/14
Abstract: 卡尔曼滤波与经验模态分解有机结合的机动目标跟踪方法,涉及机动目标滤波跟踪领域,解决了无法克服EMD方法中的“边界效应”及强机动目标卡尔曼滤波的发散问题。该方法为:一、获得当前采样时刻的量测数据序列,利用卡尔曼预测方程,获得下一时刻的系统状态预测数据,将其与当前序列组合;二、在组合序列中插值生成滤波序列;三、利用EMD方法对滤波序列进行分解,剔除包含噪声的IMF,获得当前滤波值;四、将该滤波值作为当前滤波结果显示;五、将该滤波值作为系统当前状态的后验估计,在下一时刻结合量测数据及卡尔曼方程组,获得计算参数,然后返回一,将下一时刻作为当前时刻,实现机动目标的跟踪。本发明可用于机动目标滤波跟踪领域。
-