-
公开(公告)号:CN113568043B
公开(公告)日:2022-05-24
申请号:CN202110837608.X
申请日:2021-07-23
Applicant: 哈尔滨工业大学
Abstract: 基于深度卷积神经网络的三阶段震相拾取方法,它为了解决目前震相拾取方法依赖于初始时窗选取、无法直接应用于连续地震动记录的问题。拾取方法:建立第一阶段的数据集;二、建立第一阶段的时窗检测网络,包括9层卷积层和1层全连接层;三、时窗检测网络训练;四、提取包含P波的时窗;五、建立第二阶段的数据集;六、建立第二阶段的P波震相拾取网络;七、P波震相拾取网络训练;八、P波到时预测;九、提取包含S波的时窗;十、建立第三阶段的数据集;十一、建立第三阶段的S波震相拾取网络;十二、S波震相拾取网络训练;十三、S波到时预测。本发明采用三阶段的方式,在每个阶段内单独训练深度卷积网络模型,提高了震相拾取的精度。
-
公开(公告)号:CN113568043A
公开(公告)日:2021-10-29
申请号:CN202110837608.X
申请日:2021-07-23
Applicant: 哈尔滨工业大学
Abstract: 基于深度卷积神经网络的三阶段震相拾取方法,它为了解决目前震相拾取方法依赖于初始时窗选取、无法直接应用于连续地震动记录的问题。拾取方法:建立第一阶段的数据集;二、建立第一阶段的时窗检测网络,包括9层卷积层和1层全连接层;三、时窗检测网络训练;四、提取包含P波的时窗;五、建立第二阶段的数据集;六、建立第二阶段的P波震相拾取网络;七、P波震相拾取网络训练;八、P波到时预测;九、提取包含S波的时窗;十、建立第三阶段的数据集;十一、建立第三阶段的S波震相拾取网络;十二、S波震相拾取网络训练;十三、S波到时预测。本发明采用三阶段的方式,在每个阶段内单独训练深度卷积网络模型,提高了震相拾取的精度。
-