-
公开(公告)号:CN117923912A
公开(公告)日:2024-04-26
申请号:CN202410087563.2
申请日:2024-01-22
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/622 , C04B35/626 , C04B35/645 , C04B35/65
Abstract: 一种两步混粉结合反应烧结制备高强韧超高温复相高熵陶瓷的方法,它属于陶瓷材料技术领域。本发明的目的是要突破过渡金属和陶瓷粉体难以混合均匀的技术难题。方法:一、制备复合粉体;二、将充分混合的复合粉体置于模具中,再放入放电等离子烧结炉内进行烧结,得到高强韧超高温复相高熵陶瓷。本发明制备的高强韧复相高熵陶瓷的晶粒尺寸更加细小,同时强度和韧性均得到显著提升,室温下材料的硬度可达28~35GPa,弹性模量可达560GPa,三点弯曲强度可达600~800MPa,断裂韧性可达6~7MPa·m1/2。本发明可获得一种高强韧超高温复相高熵陶瓷。
-
公开(公告)号:CN117923911A
公开(公告)日:2024-04-26
申请号:CN202410087555.8
申请日:2024-01-22
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/622 , C04B35/645 , C04B35/65
Abstract: 一种制备高强超硬硼化物‑碳化物复杂成分陶瓷的方法和应用,它属于陶瓷材料技术领域。本发明旨在通过过渡金属、硼粉和碳粉直接混合制备宽成分范围的高强超硬的硼化物‑碳化物复杂成分陶瓷。方法:一、制备复合粉体;二、将充分混合的复合粉体置于模具中,再放入放电等离子烧结炉内进行烧结,得到高强超硬硼化物‑碳化物复杂成分陶瓷。本发明制备的高强超硬硼化物‑碳化物复杂成分陶瓷的晶粒尺寸更加细小,同时强度和硬度均得到显著提升。室温硬度为32~36GPa,三点弯曲强度为600~800MPa,断裂韧性为6~7MPa·m1/2。本发明可获得一种高强超硬硼化物‑碳化物复杂成分陶瓷。
-
公开(公告)号:CN114315359B
公开(公告)日:2022-09-06
申请号:CN202210004384.9
申请日:2022-01-04
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622 , C04B35/64 , C04B35/645
Abstract: 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用,它属于陶瓷材料技术领域,具体涉及一种制备高强韧复相高熵陶瓷的方法和应用。方法:一、制备复合粉体;二、固溶耦合,得到高强韧复相高熵陶瓷。一种高强韧复相高熵陶瓷在超高温和切削刀具领域的应用。本发明中多种二硼化物和碳化物在烧结过程中发生固溶耦合,大大促进了传质过程,制备复相陶瓷的致密度均大于97.2%;本发明制备的高强韧复相高熵陶瓷的晶粒尺寸更加细小,同时强度和韧性均得到显著提升,断裂韧性可达5.8MPa·m1/2。本发明可获得一种高强韧复相高熵陶瓷。
-
公开(公告)号:CN114315359A
公开(公告)日:2022-04-12
申请号:CN202210004384.9
申请日:2022-01-04
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622 , C04B35/64 , C04B35/645
Abstract: 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用,它属于陶瓷材料技术领域,具体涉及一种制备高强韧复相高熵陶瓷的方法和应用。方法:一、制备复合粉体;二、固溶耦合,得到高强韧复相高熵陶瓷。一种高强韧复相高熵陶瓷在超高温和切削刀具领域的应用。本发明中多种二硼化物和碳化物在烧结过程中发生固溶耦合,大大促进了传质过程,制备复相陶瓷的致密度均大于97.2%;本发明制备的高强韧复相高熵陶瓷的晶粒尺寸更加细小,同时强度和韧性均得到显著提升,断裂韧性可达5.8MPa·m1/2。本发明可获得一种高强韧复相高熵陶瓷。
-
-
-