一种基于情感增强的语音大语言模型翻译强化方法

    公开(公告)号:CN119378574A

    公开(公告)日:2025-01-28

    申请号:CN202411408324.9

    申请日:2024-10-10

    Abstract: 一种基于情感增强的语音大语言模型翻译强化方法,涉及人工智能领域。解决现有技术中缺少如何高效地将语音模态信息融入到现有的大语言模型中,使其完成端到端的语音自动翻译任务。所述方法包括:收集包含多种情感表达的语音与文本对的多语言数据集,并进行预处理,构成原文语音与文本和译文语音与文本的多语言语料对;将多语言语料对的语音部分输入到语音大语言模型中,令语音大语言模型对其进行翻译;使用情感契合度打分模型对步骤2中的翻译结果进行评估,判断翻译结果中的语音情感与原文语音与文本的多语言语料对中的情感是否一致;使用打分模型为同一问题的不同结果进行打分,根据分数从高到低排序进行DPO算法,更新语音大语言模型的参数。

    一种基于上下文期望的无监督词汇级翻译质量评估方法和系统

    公开(公告)号:CN117556834A

    公开(公告)日:2024-02-13

    申请号:CN202311338861.6

    申请日:2023-10-16

    Abstract: 一种基于上下文期望的无监督词汇级翻译质量评估方法和系统,涉及无监督词汇级翻译质量评估领域。解决现有词汇级别QE需要依赖大规模的标注数据,且机器翻译质量评估不准确的问题。所述方法包括:将待评估语句输入至多语言模型中,对所述多语言模型译文端的某一词汇进行遮盖;将所述待评估语句的上下文信息和被遮掩的译文输入至多语言模型,根据所述多语言模型预测被遮掩的词;利用条件概率处理被遮掩词中每个子词间的关系,获取每个子词的生成概率;根据所述生成概率作为评分进行词汇级机器翻译质量评估。本发明应用于机器翻译领域。

Patent Agency Ranking