-
公开(公告)号:CN102176701A
公开(公告)日:2011-09-07
申请号:CN201110040672.1
申请日:2011-02-18
Applicant: 哈尔滨工业大学
Abstract: 一种基于主动学习的网络数据异常检测方法,它涉及基于支持向量机的检测方法。它解决了现有在网络数据的异常检测方法中支持向量机中所存在的训练样本多、复杂度高、难以有良好分类特性的问题。步骤如下:一、在未标注样本中选择C个点作为候选聚类中心,将候选未标注样本集A进行迭代优化聚类运算,选取叠代聚类结果中的代表性样本构建训练样本集B;二、支持向量机在训练样本集B上训练得到训练超平面;三、根据样本选择准则从候选未标注样本集A中选择最能提升分类性能的样本,标注类别后加入训练样本集B中;四、支持向量机在更新后的训练样本集B上重新训练;五、若检测精度达到设定值,则结束,否返回三。将该算法应用于异常检测研究中可以有效降低复杂度。