-
公开(公告)号:CN114390057B
公开(公告)日:2024-04-05
申请号:CN202210038074.9
申请日:2022-01-13
Applicant: 南昌工程学院
IPC: H04L67/1001 , H04L47/12 , G06N20/00 , G06N7/01
Abstract: 本发明公开了一种MEC环境下基于强化学习的多接口自适应数据卸载方法,包括以下步骤:将多个用户设备、边缘基站、服务器数据传输策略构成的环境,建模为一个有限状态的马尔科夫决策模型;基于马尔科夫决策模型构建奖励函数,使用多智能体深度强化学习算法对神经网络进行训练,获得最优决策动作,确定数据卸载的传输方式。强化学习可以实现无模型的状态到动作的高维映射关系的自学习,发明中基于强化学习获得多接口自适应数据卸载方法,有效的缓解服务器端的压力,提升网络资源利用率,达到缓解网络拥堵、降低端到端时延以及减少数据卸载传输能耗的目标。
-
公开(公告)号:CN114390057A
公开(公告)日:2022-04-22
申请号:CN202210038074.9
申请日:2022-01-13
Applicant: 南昌工程学院
IPC: H04L67/1001 , H04L47/12 , G06N20/00 , G06N7/00
Abstract: 本发明公开了一种MEC环境下基于强化学习的多接口自适应数据卸载方法,包括以下步骤:将多个用户设备、边缘基站、服务器数据传输策略构成的环境,建模为一个有限状态的马尔科夫决策模型;基于马尔科夫决策模型构建奖励函数,使用多智能体深度强化学习算法对神经网络进行训练,获得最优决策动作,确定数据卸载的传输方式。强化学习可以实现无模型的状态到动作的高维映射关系的自学习,发明中基于强化学习获得多接口自适应数据卸载方法,有效的缓解服务器端的压力,提升网络资源利用率,达到缓解网络拥堵、降低端到端时延以及减少数据卸载传输能耗的目标。
-