基于截断核范数的低秩判别嵌入法的图像降维方法及图像识别方法

    公开(公告)号:CN111832391B

    公开(公告)日:2023-05-26

    申请号:CN202010460308.X

    申请日:2020-05-27

    Abstract: 本发明公开了一种基于截断核范数的低秩判别嵌入法的图像降维方法及图像识别方法,目的在于,发掘出隐藏在高维图像信息中的低维几何描述,本发明以张量判别嵌入法(TLRDE)为基础,首先使用截断核范数(Truncated Nuclear Norm)来代替常用的核范数(Nuclear Norm)去更好地逼近矩阵的秩,使得提取出来的图像低维特征更为精确,然后通过对正则项的变形,利用人脸自带的标签信息使得该方法能够在有监督学习的情况下学习出具有判别能力的图像低维特征。本发明在图像特征提取方面性能具有明显的优势,在使用相同的图像分类方法下,通过本发明进行特征提取后的图像,具有更高的识别率。

    基于截断核范数的低秩判别嵌入法的图像降维方法及图像识别方法

    公开(公告)号:CN111832391A

    公开(公告)日:2020-10-27

    申请号:CN202010460308.X

    申请日:2020-05-27

    Abstract: 本发明公开了一种基于截断核范数的低秩判别嵌入法的图像降维方法及图像识别方法,目的在于,发掘出隐藏在高维图像信息中的低维几何描述,本发明以张量判别嵌入法(TLRDE)为基础,首先使用截断核范数(Truncated Nuclear Norm)来代替常用的核范数(Nuclear Norm)去更好地逼近矩阵的秩,使得提取出来的图像低维特征更为精确,然后通过对正则项的变形,利用人脸自带的标签信息使得该方法能够在有监督学习的情况下学习出具有判别能力的图像低维特征。本发明在图像特征提取方面性能具有明显的优势,在使用相同的图像分类方法下,通过本发明进行特征提取后的图像,具有更高的识别率。

Patent Agency Ranking