-
公开(公告)号:CN118523937A
公开(公告)日:2024-08-20
申请号:CN202410645345.6
申请日:2024-05-23
Applicant: 南京邮电大学
IPC: H04L9/40 , G06F16/215
Abstract: 本发明公开了一种基于历史置信度和攻破概率的拟态异步裁决方法,涉及网络安全技术领域,设计了一致数据计算模块、可信度计算模块和裁决判定模块等来实现拟态防御中的裁决方法,首先一致数据计算模块接受各个执行体输出的结果并对数据分类,形成多个一致数据集,然后裁决判定模块判断是否存在可信度达判定阈值的一致数据集,并输出该一致数据集的平均值作为最终结果,最后通过可信度计算模块对执行体集中的异构体进行可信度更新,清洗下线低于阈值的异构体,再从等待队列中选取新的异构体加入执行体集。本方法不仅可以减少脆弱的执行体输出结果对裁决的影响,还缩短了裁决输出的平均等待时间,从而多方面提高电力系统的运行效率。
-
公开(公告)号:CN119557440A
公开(公告)日:2025-03-04
申请号:CN202411609087.2
申请日:2024-11-12
Applicant: 国网江苏省电力有限公司泰州供电分公司 , 国网江苏省电力有限公司淮安供电分公司 , 南京邮电大学 , 国网江苏省电力有限公司
IPC: G06F16/35 , G06F18/214 , G06F18/2431 , G06F18/21 , G06N3/0464 , G06N3/0442
Abstract: 本发明公开了一种基于神经网络的多标签文本分类方法及装置,包括:采集多标签文本数据形成训练样本;对所述训练样本进行词嵌入和标签嵌入,分别获得词向量和标签向量;建立初始的CNN‑BiLSTM‑ATTENTION神经网络模型,CNN‑BiLSTM‑ATTENTION神经网络模型包括CNN层、BiLSTM层以及ATTENTION层;对CNN‑BiLSTM‑ATTENTION神经网络模型进行训练直到所述CNN‑BiLSTM‑ATTENTION神经网络模型收敛;接收待分类的文本数据并输入至收敛后的CNN‑BiLSTM‑ATTENTION神经网络模型,输出分类结果;该方法适用于多维标签向量分类的场景。
-