-
公开(公告)号:CN109857867A
公开(公告)日:2019-06-07
申请号:CN201910056795.0
申请日:2019-01-22
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明公开了一种基于循环神经网络的激活函数参数化改进方法,包括步骤:步骤一,以长短期记忆网络为基础,构建双向长短期记忆网络Bi-LSTM;步骤二,将Bi-LSTM网络中各个隐藏层串联,在网络中最后一层隐藏层之后加入平均池化层,在平均池化层之后连接一个归一指数化函数层,建立密集连接的双向长短期记忆网络DC-Bi-LSTM;步骤三,运用参数化Sigmoid激活函数,在数据集上进行训练,记录密集连接的双向长短期记忆网络对句子分类的精确度,得到最佳精确度对应的参数化激活函数。本发明通过参数化激活函数模块,使得S型激活函数的非饱和区域得到扩展,同时避免函数的导数过小,防止梯度消失现象的发生。
-
公开(公告)号:CN113298861A
公开(公告)日:2021-08-24
申请号:CN202110556630.7
申请日:2021-05-21
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于ASPP‑CycleGAN的深度估计系统及其算法,构建ASPP‑CycleGAN模型,ASPP‑CycleGAN模型中包括两个生成对抗网络;两个生成对抗网络均包括生成器和判别器;生成器引用空洞卷积的空间金字塔,判别器采用多层全域卷积结构。在生成器的编码器和解码器之间添加基于空洞卷积的空间金字塔结构,用来提取多尺度信息;且在提取多尺度信息的同时避免了过多下采样层,有效减少了模型参数计算量并很好的保留了特征的细节信息。
-
公开(公告)号:CN113298861B
公开(公告)日:2022-09-16
申请号:CN202110556630.7
申请日:2021-05-21
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于ASPP‑CycleGAN的深度估计系统及其算法,构建ASPP‑CycleGAN模型,ASPP‑CycleGAN模型中包括两个生成对抗网络;两个生成对抗网络均包括生成器和判别器;生成器引用空洞卷积的空间金字塔,判别器采用多层全域卷积结构。在生成器的编码器和解码器之间添加基于空洞卷积的空间金字塔结构,用来提取多尺度信息;且在提取多尺度信息的同时避免了过多下采样层,有效减少了模型参数计算量并很好的保留了特征的细节信息。
-
-