虚拟网络环境下一种基于深度学习的网络故障诊断方法

    公开(公告)号:CN106603293A

    公开(公告)日:2017-04-26

    申请号:CN201611184602.2

    申请日:2016-12-20

    CPC classification number: H04L41/06 H04L41/145 H04L43/0823

    Abstract: 本发明公开了网络虚拟化环境下一种基于深度学习的网络故障诊断方法,将虚拟网络划分为物理网络和虚拟网络,结合网络故障发生特点,考虑时间影响因素,网络拓扑连接特性和虚拟网络‑物理网络映射关系,以故障严重等级概率综合衡量网络故障;将具有影响度的网络特征参数作为模型学习资源,关注网络历史数据的变化趋势和故障标签的对应关系,基于深度学习的视角,建立网络虚拟化环境下多故障等级概率的网络故障诊断模型对网络参数进行训练。在训练过程中调整故障预测模型,最后利用优化调整的深度学习网络,实现网络虚拟化环境下的故障诊断。本发明可以对网络虚拟化环境下的网络参数进行深入分析,因此,在对网络故障预测的时候具有更高的准确性。

Patent Agency Ranking