-
公开(公告)号:CN118428413A
公开(公告)日:2024-08-02
申请号:CN202410876209.8
申请日:2024-07-02
Applicant: 南京信息工程大学
IPC: G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/766 , G06V10/80 , G06V10/82 , G06V10/40
Abstract: 本发明公开一种用于估算地表水含量的深度学习模型及应用,属于GNSS‑R微波遥感技术领域;模型包括:上下文模块、Swin Transformer编码器、解码器以及Head模块;所述上下文模块从输入数据中提取浅层特征,编码器能理解图像的全局结构和局部细节,捕获遥感任务所需的空间关系,提取图像的底层特征;解码器整合编码器提取的底层特征获得特征图;Head模块将通过上下文模块提取的浅层特征与从所述特征图逐渐整合的层级式特征融合;利用GNSS‑R数据对水体的高敏感性进行回归估计,并结合地形因素、植被信息、土壤湿度和经纬度数据,最终生成地表水含量估算结果。
-
公开(公告)号:CN118429725B
公开(公告)日:2024-09-24
申请号:CN202410864544.6
申请日:2024-07-01
Applicant: 南京信息工程大学
IPC: G06V10/764 , G06V10/20 , G06V20/10 , G06N3/0455 , G06V10/46 , G06V10/774
Abstract: 本发明公开一种用于土壤湿度反演的深度学习框架,属于GNSS‑R微波遥感领域;一种用于土壤湿度反演的深度学习框架包括:ResNet34编码器、解码器和ViT模块;ResNet34编码器捕获输入图像的多尺度和分层特征,并能够随着图层的逐渐加深来学习复杂的特征,最终形成可用于遥感图像分析的多尺度特征图;解码器遵循自下而上的方式,对最低分辨率的特征图进行上采样开始,并结合ViT模块来获取特征中的编码器特征图细节;ViT模块提取多尺度空间土壤湿度特征并捕获长程依赖关系。
-
公开(公告)号:CN118428413B
公开(公告)日:2024-09-13
申请号:CN202410876209.8
申请日:2024-07-02
Applicant: 南京信息工程大学
IPC: G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/766 , G06V10/80 , G06V10/82 , G06V10/40
Abstract: 本发明公开一种用于估算地表水含量的深度学习模型及应用,属于GNSS‑R微波遥感技术领域;模型包括:上下文模块、Swin Transformer编码器、解码器以及Head模块;所述上下文模块从输入数据中提取浅层特征,编码器能理解图像的全局结构和局部细节,捕获遥感任务所需的空间关系,提取图像的底层特征;解码器整合编码器提取的底层特征获得特征图;Head模块将通过上下文模块提取的浅层特征与从所述特征图逐渐整合的层级式特征融合;利用GNSS‑R数据对水体的高敏感性进行回归估计,并结合地形因素、植被信息、土壤湿度和经纬度数据,最终生成地表水含量估算结果。
-
公开(公告)号:CN118429725A
公开(公告)日:2024-08-02
申请号:CN202410864544.6
申请日:2024-07-01
Applicant: 南京信息工程大学
IPC: G06V10/764 , G06V10/20 , G06V20/10 , G06N3/0455 , G06V10/46 , G06V10/774
Abstract: 本发明公开一种用于土壤湿度反演的深度学习框架,属于GNSS‑R微波遥感领域;一种用于土壤湿度反演的深度学习框架包括:ResNet34编码器、解码器和ViT模块;ResNet34编码器捕获输入图像的多尺度和分层特征,并能够随着图层的逐渐加深来学习复杂的特征,最终形成可用于遥感图像分析的多尺度特征图;解码器遵循自下而上的方式,对最低分辨率的特征图进行上采样开始,并结合ViT模块来获取特征中的编码器特征图细节;ViT模块提取多尺度空间土壤湿度特征并捕获长程依赖关系。
-
-
-