一种基于关键影响因子的全局时空气象农灾预测方法

    公开(公告)号:CN114819344B

    公开(公告)日:2024-10-18

    申请号:CN202210441892.3

    申请日:2022-04-25

    Abstract: 本发明公开了一种基于关键影响因子的全局时空气象农灾预测方法,包括以下步骤:对异构数据按照时间与空间进行融合,融合成时空数据立方体;收集特定农业灾害指标的历史数据;选出对农业灾害影响最大的指标组合作为影响因子;将时空数据立方体转化为无纲量平面;从云平台时空数据立方体中按时间与空间提取气象与农业关联数据分组;在二维特征平面集合基础上构建带有全局时空特性的农业灾害预测的第二神经网络,计算农灾发生概率。本发明针对全局时空气象农灾预测方法的改进,基于关键影响因子的全局时空气象农灾预测方法,能够从时间与空间两方面对特定区域与时间段气象与农业观测值进行全局分析,更准确预测未来可能发生的农业灾害。

    一种基于关键影响因子的全局时空气象农灾预测方法

    公开(公告)号:CN114819344A

    公开(公告)日:2022-07-29

    申请号:CN202210441892.3

    申请日:2022-04-25

    Abstract: 本发明公开了一种基于关键影响因子的全局时空气象农灾预测方法,包括以下步骤:对异构数据按照时间与空间进行融合,融合成时空数据立方体;收集特定农业灾害指标的历史数据;选出对农业灾害影响最大的指标组合作为影响因子;将时空数据立方体转化为无纲量平面;从云平台时空数据立方体中按时间与空间提取气象与农业关联数据分组;在二维特征平面集合基础上构建带有全局时空特性的农业灾害预测的第二神经网络,计算农灾发生概率。本发明针对全局时空气象农灾预测方法的改进,基于关键影响因子的全局时空气象农灾预测方法,能够从时间与空间两方面对特定区域与时间段气象与农业观测值进行全局分析,更准确预测未来可能发生的农业灾害。

Patent Agency Ranking