-
公开(公告)号:CN118227979A
公开(公告)日:2024-06-21
申请号:CN202410652939.X
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/15 , G06F18/214 , G06N3/0464 , G06F30/27 , G06F119/02
Abstract: 本发明公开一种基于改进卷积神经网络利用热带太平洋次表层海温异常的预测ENSO方法,包括以下步骤:(1)采集热带太平洋次表层海温数据、Nino3.4观测数据,并对数据进行预处理,构建训练数据集;(2)搭建加入了注意力机制SENet的CNN模型;(3)基于所述训练集和模型进行训练;(4)生成预测产品利用皮尔森积矩相关系数计算得到ENSO预测;本发明所用数据资源和计算资源少,计算速度更快,预测时效长;突出次表层海温的经向扰动,更能体现热带太平洋次表层海温异常东传的特征。
-
公开(公告)号:CN117236201B
公开(公告)日:2024-02-23
申请号:CN202311525721.X
申请日:2023-11-16
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
公开(公告)号:CN117236201A
公开(公告)日:2023-12-15
申请号:CN202311525721.X
申请日:2023-11-16
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
公开(公告)号:CN117237677B
公开(公告)日:2024-03-26
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN116467946B
公开(公告)日:2023-10-27
申请号:CN202310437043.5
申请日:2023-04-21
Applicant: 南京信息工程大学
IPC: G06F30/27 , G06F18/15 , G06F18/214 , G06F18/213 , G06N3/0464 , G06N3/08 , G01W1/10 , G06F111/10
Abstract: 本发明公开了一种基于深度学习的模式预报产品降尺度方法,包括:采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,构成降尺度数据集;搭建基于改进卷积神经网络的深度学习模型;基于所述训练集和模型进行训练;基于实时低分辨率数值模式预报数据、地面高程数据生成高分辨率降尺度产品。本发明使用卷积处理地面高程数据,保留其高分辨率信息的同时控制了其在网络特征提取和降尺度部分的比例,提高了结果的准确率;结合了非局地注意力机制与Res2net模块,提高了数据利用效率和网络拟合能力;采用最近邻插值与卷积运算配合进行上采样,规避了转置卷积带来的棋盘效应,提高了模型的准确率和实用价值。
-
公开(公告)号:CN116467946A
公开(公告)日:2023-07-21
申请号:CN202310437043.5
申请日:2023-04-21
Applicant: 南京信息工程大学
IPC: G06F30/27 , G06F18/15 , G06F18/214 , G06F18/213 , G06N3/0464 , G06N3/08 , G01W1/10 , G06F111/10
Abstract: 本发明公开了一种基于深度学习的模式预报产品降尺度方法,包括:采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,构成降尺度数据集;搭建基于改进卷积神经网络的深度学习模型;基于所述训练集和模型进行训练;基于实时低分辨率数值模式预报数据、地面高程数据生成高分辨率降尺度产品。本发明使用卷积处理地面高程数据,保留其高分辨率信息的同时控制了其在网络特征提取和降尺度部分的比例,提高了结果的准确率;结合了非局地注意力机制与Res2net模块,提高了数据利用效率和网络拟合能力;采用最近邻插值与卷积运算配合进行上采样,规避了转置卷积带来的棋盘效应,提高了模型的准确率和实用价值。
-
公开(公告)号:CN118227979B
公开(公告)日:2024-09-06
申请号:CN202410652939.X
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/15 , G06F18/214 , G06N3/0464 , G06F30/27 , G06F119/02
Abstract: 本发明公开一种基于改进卷积神经网络利用热带太平洋次表层海温异常的预测ENSO方法,包括以下步骤:(1)采集热带太平洋次表层海温数据、Nino3.4观测数据,并对数据进行预处理,构建训练数据集;(2)搭建加入了注意力机制SENet的CNN模型;(3)基于所述训练集和模型进行训练;(4)生成预测产品利用皮尔森积矩相关系数计算得到ENSO预测;本发明所用数据资源和计算资源少,计算速度更快,预测时效长;突出次表层海温的经向扰动,更能体现热带太平洋次表层海温异常东传的特征。
-
公开(公告)号:CN117233870B
公开(公告)日:2024-01-23
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN117237677A
公开(公告)日:2023-12-15
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870A
公开(公告)日:2023-12-15
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
-
-
-
-
-
-
-
-