-
公开(公告)号:CN113171102B
公开(公告)日:2022-09-02
申请号:CN202110376948.7
申请日:2021-04-08
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于持续深度学习的ECG数据分类方法,具体为:获取采样率分别为128Hz和360Hz的ECG数据,对ECG数据进行预处理;构建卷积神经网络模型,并设置模型的超参数;利用构建的卷积神经网络模型结合EWC方法对采样率为128Hz的心拍样本进行训练并测试,得到第一次训练好的卷积神经网络模型;利用第一次训练好的卷积神经网络模型结合EWC方法对采样率为360Hz的心拍样本进行训练并测试,得到ECG数据分类模型;利用采样率为128Hz的心拍样本对ECG数据分类模型进行测试;采用ECG数据分类模型对待分类的ECG数据进行分类,得到分类结果。本发明能够对两种不同采样率的心电数据进行自动、高效、准确地分类心拍类型,进一步提高分类精度,加强模型的泛化能力。
-
公开(公告)号:CN112270996B
公开(公告)日:2023-04-25
申请号:CN202011267085.1
申请日:2020-11-13
Applicant: 南京信息工程大学
IPC: G16H50/70 , G06N3/0464 , G06N3/0442 , G06N3/08
Abstract: 本发明公开了一种可用于多变量医疗传感数据流的分类方法,首先构造签名矩阵,该签名矩阵可以捕捉各个时间序列之间的相关性并可以代表这些时间序列,此外它还对噪声具有鲁棒性;随后,针对个别不平衡的类别,我们采用辅助分类器生成对抗网络ACGAN来生成足够该类别所对应的签名矩阵;最后我们构建了一个基于注意力Attention机制的双向卷积长短期记忆BPCLSTM轻量级网络分类模型,以实现对多变量医疗传感数据流地准确分类,该分类模型不仅可以提高分类的准确率,而且还能够降低原始分类模型的规模。
-
公开(公告)号:CN113171102A
公开(公告)日:2021-07-27
申请号:CN202110376948.7
申请日:2021-04-08
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于持续深度学习的ECG数据分类方法,具体为:获取采样率分别为128Hz和360Hz的ECG数据,对ECG数据进行预处理;构建卷积神经网络模型,并设置模型的超参数;利用构建的卷积神经网络模型结合EWC方法对采样率为128Hz的心拍样本进行训练并测试,得到第一次训练好的卷积神经网络模型;利用第一次训练好的卷积神经网络模型结合EWC方法对采样率为360Hz的心拍样本进行训练并测试,得到ECG数据分类模型;利用采样率为128Hz的心拍样本对ECG数据分类模型进行测试;采用ECG数据分类模型对待分类的ECG数据进行分类,得到分类结果。本发明能够对两种不同采样率的心电数据进行自动、高效、准确地分类心拍类型,进一步提高分类精度,加强模型的泛化能力。
-
公开(公告)号:CN112270996A
公开(公告)日:2021-01-26
申请号:CN202011267085.1
申请日:2020-11-13
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种可用于多变量医疗传感数据流的分类方法,首先构造签名矩阵,该签名矩阵可以捕捉各个时间序列之间的相关性并可以代表这些时间序列,此外它还对噪声具有鲁棒性;随后,针对个别不平衡的类别,我们采用辅助分类器生成对抗网络ACGAN来生成足够该类别所对应的签名矩阵;最后我们构建了一个基于注意力Attention机制的双向卷积长短期记忆BPCLSTM轻量级网络分类模型,以实现对多变量医疗传感数据流地准确分类,该分类模型不仅可以提高分类的准确率,而且还能够降低原始分类模型的规模。
-
-
-