一种基于yolov5x模型的水稻稻株高度测量方法

    公开(公告)号:CN116823916A

    公开(公告)日:2023-09-29

    申请号:CN202310555177.7

    申请日:2023-05-16

    Abstract: 本发明提供了一种基于yolov5x模型的水稻稻株高度测量方法,方法包括以下步骤:数据采集,获得水稻不同生长时期的航拍图像以及不同生长时期的高度;数据处理,对采集的航拍图像进行处理,得到包括水稻稻株高程融合图像的数据集;获取数据集中第一区域的水稻稻株的高程像素值以及对应水稻稻株的真实高度值,并建立水稻稻株的真实高度与高程像素值之间的最小二乘线性回归模型;利用YOLOv5x模型对数据集中的第二区域的位置进行识别,获取识别位置的融合图像的高程像素值;将获取的高程像素值代入建立的最小二乘线性回归模型,得到识别位置的水稻稻株高度。该方法能够快速准确检测水稻稻株的高度,为研究判断水稻的生长情况提供有力支持。

    一种基于深度信息的田间水稻叶龄识别方法

    公开(公告)号:CN116883917A

    公开(公告)日:2023-10-13

    申请号:CN202310606955.0

    申请日:2023-05-26

    Abstract: 本发明公开了一种基于深度信息的田间水稻叶龄识别方法,包括如下步骤:S1:获取训练集;所述训练集包括水稻彩色图像、水稻深度图像、气象数据、水稻品种以及水稻叶龄;S2:采用若干个训练集对叶龄模型进行训练,得到叶龄预测模型;其中,设置训练集中水稻彩色图像、水稻深度图像、气象数据和水稻品种为所述叶龄预测模型的输入数据,设置水稻叶龄为所述叶龄预测模型的输出数据;S3:采用叶龄预测模型进行水稻叶龄识别。本发明提供的一种基于深度信息的田间水稻叶龄识别方法,具有操作简便、效率高、准确度高等优点,为水稻种植提供科学依据和技术支持。

Patent Agency Ranking