一种基于视角自适应特征学习的行人性别识别方法

    公开(公告)号:CN111160226A

    公开(公告)日:2020-05-15

    申请号:CN201911370041.9

    申请日:2019-12-26

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于视角自适应特征学习的行人性别识别方法包括:视角自适应训练过程,性别识别过程。本发明利用输入行人的视角信息来指导卷积神经网络的特征学习过程,以减轻行人视角变化对神经网络进行性别识别的影响,使训练得到的网络模型具有更加准确的行人性别识别效果。本发明结合了行人的视角信息,解决了以往基于卷积神经网络用在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,例如大型商场,机场,火车站等。

    一种基于3D-DOG特征的光场图像质量识别方法

    公开(公告)号:CN113011281A

    公开(公告)日:2021-06-22

    申请号:CN202110220509.7

    申请日:2021-02-26

    Applicant: 华侨大学

    Abstract: 本发明公开一种基于3D‑DOG特征的光场图像质量识别方法,包括:将输入参考和失真光场图像转化为参考和失真光场序列;分别对参考和失真光场序列采用3D‑DOG滤波器提取3D‑DOG特征;基于3D‑DOG特征计算参考和失真光场序列的相似度;使用3D‑DOG特征池化策略计算得到光场图像质量分数。本发明充分考虑到人眼视觉系统对二维边缘信息和三维几何结构的敏感度,采用3D‑DOG特征有效地描述光场图像的场景边缘信息和结构变化,具有较好的光场图像质量评价性能。

Patent Agency Ranking