-
公开(公告)号:CN119559952B
公开(公告)日:2025-05-13
申请号:CN202510027827.X
申请日:2025-01-08
Applicant: 华侨大学
Abstract: 本发明公开了一种基于融合损失约束的无监督跨域伪造语音检测方法,涉及多媒体安全领域,其目的是在源域和目标域语音非独立同分布时,也能使用源域数据训练的检测网络来对目标域语音进行检测,方法包括:检测网络构建步骤、检测网络训练步骤和语音检测步骤。本发明在无监督情况下,使用混合正则化损失作为泛化性助推器,提升检测网络对未见过的伪造语音的泛化性,一定程度上提升了检测网络本身在跨域情况下的泛化能力,再与融合源域与目标域之间的深层细节特征及全局语义特征的融合损失联合约束检测网络,构建跨域的伪造语音检测网络。本发明在提取伪造信息的同时消除对语言种类的依赖,保证了在语言差异导致的领域漂移情况下的高准确率。
-
公开(公告)号:CN119559952A
公开(公告)日:2025-03-04
申请号:CN202510027827.X
申请日:2025-01-08
Applicant: 华侨大学
Abstract: 本发明公开了一种基于融合损失约束的无监督跨域伪造语音检测方法,涉及多媒体安全领域,其目的是在源域和目标域语音非独立同分布时,也能使用源域数据训练的检测网络来对目标域语音进行检测,方法包括:检测网络构建步骤、检测网络训练步骤和语音检测步骤。本发明在无监督情况下,使用混合正则化损失作为泛化性助推器,提升检测网络对未见过的伪造语音的泛化性,一定程度上提升了检测网络本身在跨域情况下的泛化能力,再与融合源域与目标域之间的深层细节特征及全局语义特征的融合损失联合约束检测网络,构建跨域的伪造语音检测网络。本发明在提取伪造信息的同时消除对语言种类的依赖,保证了在语言差异导致的领域漂移情况下的高准确率。
-