-
公开(公告)号:CN118674663A
公开(公告)日:2024-09-20
申请号:CN202410579341.2
申请日:2024-05-10
Applicant: 北京邮电大学
IPC: G06T5/90 , G06T5/77 , G06T5/60 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种基于HSV色彩空间的多曝光高动态范围图像重建方法。所述方法包括将多曝光低动态范围图像进行伽玛校正,得到的伪高动态范围图像从RGB色彩空间转换到HSV色彩空间,并进行裁剪;将不同曝光对应图像的明度分量送入亮度分支网络,对于动态场景下多曝光图像不对齐的问题,基于注意力机制消除鬼影,得到预测的V通道图像;同时将中等曝光图像的色调和饱和度分量送入色度分支网络,设计多级结构,基于编解码模型分别学习两种色度信息特征,并利用轻量网络学习两者之间的关联特征,得到预测的H和S通道图像;最终重建的三个通道图像拼接后转换到RGB色彩空间,得到高质量的高动态范围重建图像。本发明模拟人眼视觉感知特性,从源头上剔除特征学习过程中的冗余信息,在保证高动态范围图像重建视觉效果的基础上,实现了模型轻量化。