基于语音增强算法的对抗样本攻击防御方法及装置

    公开(公告)号:CN111564154A

    公开(公告)日:2020-08-21

    申请号:CN202010206879.0

    申请日:2020-03-23

    Abstract: 本发明实施例提供基于语音增强算法的对抗样本攻击防御方法及装置,可以获取待识别语音样本与待识别语音样本的频谱特征;根据待识别语音样本的频谱特征,通过预设算法对待识别语音样本进行噪声频谱的计算,并利用计算得到的估计噪声频谱对待识别语音样本进行去噪,得到去噪后的语音样本,其中,算法包括基于连续最小值跟踪的谱减法与结合语音存在概率的对数最小均方误差算法MMSE算法;通过预先训练的语音识别模型对去噪后的语音样本进行识别,得到识别结果。从而通过获取待识别语音样本后对待识别语音样本进行去噪处理后,通过对去噪后的语音样本进行识别,增加语音识别准确率,提高防御对抗样本攻击的效率。

    一种图像的识别方法及装置

    公开(公告)号:CN111461177A

    公开(公告)日:2020-07-28

    申请号:CN202010158601.0

    申请日:2020-03-09

    Abstract: 本发明实施例提供的一种图像的识别方法及装置,其中,方法包括:获取原始图像,基于原始图像生成粒子群,迭代更新粒子群,直至达到迭代次数,得到更新后的粒子群,在更新后的粒子群中,确定自适应值最小的目标粒子,针对原始图像,将该原始图像的特征值上与目标粒子对应的坐标值求和,得到对抗样本,利用对抗样本,训练预设的深度学习模型,得到训练后的深度学习模型,利用训练后的深度学习模型识别被扰动的图像。本发明实施例无需获知深度学习模型的内部结构,将目标粒子的坐标值与原始图像的特征值求和得到对抗样本,使用该对抗样本训练得到的深度学习模型抗干扰能力较强,可以提高识别携带未知扰动的图像时的准确性。

    基于语音增强算法的对抗样本攻击防御方法及装置

    公开(公告)号:CN111564154B

    公开(公告)日:2023-08-08

    申请号:CN202010206879.0

    申请日:2020-03-23

    Abstract: 本发明实施例提供基于语音增强算法的对抗样本攻击防御方法及装置,可以获取待识别语音样本与待识别语音样本的频谱特征;根据待识别语音样本的频谱特征,通过预设算法对待识别语音样本进行噪声频谱的计算,并利用计算得到的估计噪声频谱对待识别语音样本进行去噪,得到去噪后的语音样本,其中,算法包括基于连续最小值跟踪的谱减法与结合语音存在概率的对数最小均方误差算法MMSE算法;通过预先训练的语音识别模型对去噪后的语音样本进行识别,得到识别结果。从而通过获取待识别语音样本后对待识别语音样本进行去噪处理后,通过对去噪后的语音样本进行识别,增加语音识别准确率,提高防御对抗样本攻击的效率。

    一种图像的识别方法及装置

    公开(公告)号:CN111461177B

    公开(公告)日:2023-07-07

    申请号:CN202010158601.0

    申请日:2020-03-09

    Abstract: 本发明实施例提供的一种图像的识别方法及装置,其中,方法包括:获取原始图像,基于原始图像生成粒子群,迭代更新粒子群,直至达到迭代次数,得到更新后的粒子群,在更新后的粒子群中,确定自适应值最小的目标粒子,针对原始图像,将该原始图像的特征值上与目标粒子对应的坐标值求和,得到对抗样本,利用对抗样本,训练预设的深度学习模型,得到训练后的深度学习模型,利用训练后的深度学习模型识别被扰动的图像。本发明实施例无需获知深度学习模型的内部结构,将目标粒子的坐标值与原始图像的特征值求和得到对抗样本,使用该对抗样本训练得到的深度学习模型抗干扰能力较强,可以提高识别携带未知扰动的图像时的准确性。

Patent Agency Ranking