一种基于机器学习的软件缺陷确认方法

    公开(公告)号:CN109726120A

    公开(公告)日:2019-05-07

    申请号:CN201811477275.9

    申请日:2018-12-05

    Abstract: 本发明涉及一种基于机器学习的软件缺陷确认方法,包括:步骤一:构建特征向量;步骤二:基于聚类分析的缺陷代码知识库构建,包括:以缺陷代码特征向量集作为数据集输入,聚类集成;对一个数据集进行聚类集成,首先要产生多个聚类结果,然后对这些聚类进行集成;包括进行多个聚类结果收集以及多个聚类结果集成;形成缺陷代码知识库样本;步骤三:基于监督学习的缺陷代码确认,包括:以获得的缺陷代码知识库样本为输入,构建多类分类器并用测试样本判断分类器是否满足评价指标;若不满足评价指标,引入代价函数对分类器进行迭代优化直至满足指标。本发明完成对误报缺陷和非误报缺陷的分离工作,达到软件缺陷精确确认、提高测试效率的目的。

    一种基于机器学习的软件缺陷确认方法

    公开(公告)号:CN109726120B

    公开(公告)日:2022-03-08

    申请号:CN201811477275.9

    申请日:2018-12-05

    Abstract: 本发明涉及一种基于机器学习的软件缺陷确认方法,包括:步骤一:构建特征向量;步骤二:基于聚类分析的缺陷代码知识库构建,包括:以缺陷代码特征向量集作为数据集输入,聚类集成;对一个数据集进行聚类集成,首先要产生多个聚类结果,然后对这些聚类进行集成;包括进行多个聚类结果收集以及多个聚类结果集成;形成缺陷代码知识库样本;步骤三:基于监督学习的缺陷代码确认,包括:以获得的缺陷代码知识库样本为输入,构建多类分类器并用测试样本判断分类器是否满足评价指标;若不满足评价指标,引入代价函数对分类器进行迭代优化直至满足指标。本发明完成对误报缺陷和非误报缺陷的分离工作,达到软件缺陷精确确认、提高测试效率的目的。

Patent Agency Ranking