-
公开(公告)号:CN107633258B
公开(公告)日:2020-04-10
申请号:CN201710719610.0
申请日:2017-08-21
Applicant: 北京精密机电控制设备研究所
Abstract: 本发明涉及一种基于前馈特征提取的深度学习识别系统及方法,属于计算机视觉技术领域。本发明反复进行特征前馈,直到识别目标物,经过不断前馈后,高层特征层融合了低层特征的信息,尤其是微小目标物在低层的特征信息,经过前馈的深度学习网络,小目标的特征激活更加灵敏,可以快速、准确的识别目标物,解决了上述难点,对微小目标物的识别速度和精度有巨大提高。
-
公开(公告)号:CN107622276A
公开(公告)日:2018-01-23
申请号:CN201710719962.6
申请日:2017-08-21
Applicant: 北京精密机电控制设备研究所
IPC: G06K9/62
Abstract: 本发明提供了一种基于机器人仿真与物理采样结合的深度学习训练方法,包括三个阶段:第一阶段采用计算机仿真样本对预设深度学习训练模型进行训练,得到第一阶段深度学习训练模型;第二阶段,将第一阶段深度学习训练模型与预设深度学习训练模型进行模型融合,将物理样本对融合后深度学习训练模型进行训练,得到第二阶段深度学习训练模型;第三阶段,将第二阶段深度学习训练模型与预设深度学习训练模型进行模型融合,采用机器人仿真样本和物理样本的混合得到混合样本,对融合后的深度学习训练模型进行训练,得到最终的深度学习训练模型。
-
公开(公告)号:CN107622276B
公开(公告)日:2021-03-26
申请号:CN201710719962.6
申请日:2017-08-21
Applicant: 北京精密机电控制设备研究所
IPC: G06K9/62
Abstract: 本发明提供了一种基于机器人仿真与物理采样结合的深度学习训练方法,包括三个阶段:第一阶段采用计算机仿真样本对预设深度学习训练模型进行训练,得到第一阶段深度学习训练模型;第二阶段,将第一阶段深度学习训练模型与预设深度学习训练模型进行模型融合,将物理样本对融合后深度学习训练模型进行训练,得到第二阶段深度学习训练模型;第三阶段,将第二阶段深度学习训练模型与预设深度学习训练模型进行模型融合,采用机器人仿真样本和物理样本的混合得到混合样本,对融合后的深度学习训练模型进行训练,得到最终的深度学习训练模型。
-
公开(公告)号:CN107633258A
公开(公告)日:2018-01-26
申请号:CN201710719610.0
申请日:2017-08-21
Applicant: 北京精密机电控制设备研究所
Abstract: 本发明涉及一种基于前馈特征提取的深度学习识别系统及方法,属于计算机视觉技术领域。本发明反复进行特征前馈,直到识别目标物,经过不断前馈后,高层特征层融合了低层特征的信息,尤其是微小目标物在低层的特征信息,经过前馈的深度学习网络,小目标的特征激活更加灵敏,可以快速、准确的识别目标物,解决了上述难点,对微小目标物的识别速度和精度有巨大提高。
-
-
-