-
公开(公告)号:CN117332831A
公开(公告)日:2024-01-02
申请号:CN202311271771.X
申请日:2023-09-28
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种分布式神经网络加速器系统,主机节点配置为:向每一加速器节点进行远程认证,利用神经网络编译器对模型进行编译,生成数据流图,并确定各个加速器节点间子图的依赖关系;对编译后的模型进行切分,将各个子图分配到各加速器节点。每一子图的计算层包含:一接口层,以可转移张量表示,包含转移张量数据、第一辅助数据;转移张量数据保存在片外存储器,第一辅助数据保存在片上存储器;一内部层,以普通张量表示,包含普通张量数据、第二辅助数据;普通张量数据保存在片外存储器,第二辅助数据包含第二张量版本号、第二张量MAC,第二张量版本号保存在片上存储器,第二张量MAC保存在片外存储器。其减少了VN的内存访问开销和存储开销。
-
公开(公告)号:CN115422531A
公开(公告)日:2022-12-02
申请号:CN202210940140.1
申请日:2022-08-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种对抗补丁检测定位硬件架构,包括:深度神经网络加速器,用于输出视频帧的浅层特征图,以及输出对该视频帧和遮挡图像进行识别的识别结果;该遮挡图像为以掩膜窗口对该视频帧进行遮挡后的图像;掩膜窗口搜索单元,用于从该视频帧的浅层特征图中选取该掩膜窗口;投票逻辑单元,用于对所有该遮挡图像的识别结果进行投票,并根据投票结果确定该视频帧中对抗补丁的位置。以及一种基于该对抗补丁检测定位硬件架构的对抗补丁检测定位方法。
-
公开(公告)号:CN118313322A
公开(公告)日:2024-07-09
申请号:CN202310019857.7
申请日:2023-01-06
Applicant: 中国科学院计算技术研究所
Inventor: 陈云霁 , 承书尧 , 靳鹏威 , 郭崎 , 杜子东 , 张蕊 , 田韵豪 , 胡杏 , 赵永威 , 郝一帆 , 关翔涛 , 韩虎生 , 赵政越 , 刘晰鸣 , 张曦珊 , 褚越杰 , 毛卫龙 , 陈天石
IPC: G06F30/327 , G06F30/3323 , G06F30/337 , G06F18/231
Abstract: 本发明提出一种基于近似电路生成的逻辑电路自动生成方法和系统,包括:获取待实现的黑盒函数,且该黑盒函数包括多组输入信号和输出结果的对应关系;对该黑盒函数进行采样得到函数样本,为该函数样本中每对输入信号和输出结果的对应关系对应关系构建用于表达逻辑电路结构的有向无环图,聚类所有该有向无环图的同层节点,得到多个簇;展开每个簇中的每个节点,合并展开后功能相同的子节点得到样本电路结构图。本发明的逻辑电路生成方法,可用于芯片设计流程中,降低人工参与成本,提高芯片设计效率。
-
公开(公告)号:CN117475254A
公开(公告)日:2024-01-30
申请号:CN202311329374.3
申请日:2023-10-13
Applicant: 中国科学院计算技术研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V10/762
Abstract: 本发明提出一种破除图像数据不可学习噪声的深度学习训练方法,包括:获取训练图像样本,构建为分类数据集;对所有该训练图像样本进行聚类,获取各聚类簇的聚类信息,根据该聚类信息,生成该分类数据集的过拟合指标;以该分类数据集对目标图像分类模型进行训练,基于该过拟合指标判断每个训练轮是否出现过拟合,并对每个训练轮的学习率进行动态调整。本发明还提出一种破除图像数据不可学习噪声的深度学习训练系统,以及一种用于实现破除图像数据不可学习噪声的深度学习训练的数据处理装置。
-
公开(公告)号:CN117195983A
公开(公告)日:2023-12-08
申请号:CN202310986571.6
申请日:2023-08-07
Applicant: 中国科学院计算技术研究所
Abstract: 一种基于数据并行可信分布式神经网络加速器架构构建方法、加速器架构、加速器和服务器,包括以下步骤:构建主机节点步骤,用于对多个神经网络加速器节点进行远程认证、控制和数据分发;构建动态随机存取内存步骤;构建所述多个神经网络加速器节点步骤,进一步包括:构建控制处理器步骤;构建计算单元步骤;构建内存控制器步骤,用于提供数据可信保护,其中,又包括:在片上构建分布式大模型的全局版本号结构;利用不使用数据地址的方式对数据进行加密、解密、完整性保护生成和完整性保护验证;所述加密、解密、完整性保护生成和完整性保护验证以神经网络层的张量为粒度进行通信。
-
公开(公告)号:CN115422533A
公开(公告)日:2022-12-02
申请号:CN202210940151.X
申请日:2022-08-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种基于帧间相似性的对抗补丁检测定位方法,包括:提取关键视频帧的浅层特征图,通过滑窗方式从该浅层特征图中选取多个候选窗口,当任一候选窗口中LISF的个数超过筛选阈值时,以该候选窗口为重要窗口;以每个该重要窗口为掩膜遮挡该视频帧,并执行图像检测,得到对应每个该重要窗口的掩膜检测结果;对所有该掩膜检测结果执行垄断者投票,判断该对抗补丁在该关键视频帧中的位置;根据帧间相似性消除该对抗补丁对该关键视频帧的相邻视频帧的干扰。本发明还提出一种基于帧间相似性的对抗补丁检测定位系统,以及一种用于对抗补丁检测定位的数据处理装置。
-
公开(公告)号:CN115422532A
公开(公告)日:2022-12-02
申请号:CN202210940143.5
申请日:2022-08-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种基于局部浅层重要神经元的对抗补丁检测定位方法,包括:获取视频帧的浅层特征图,从该浅层特征图中选取多个候选窗口,当任一候选窗口中LISF的个数超过筛选阈值时,以该候选窗口为重要窗口;以每个该重要窗口为掩膜遮挡该视频帧,并执行图像检测,得到对应每个该重要窗口的掩膜检测结果;对所有该掩膜检测结果执行垄断者投票,若存在某一掩膜检测结果与其他掩膜检测结果相异,且其他掩膜检测结果均相同,则该视频帧存在对抗补丁,该掩膜检测结果对应的重要窗口为该对抗补丁所在位置,反之则该视频帧为正常图像。本发明还提出一种基于局部重要浅层神经元的对抗补丁检测定位系统,以及一种用于对抗补丁检测定位的数据处理装置。
-
-
-
-
-
-