分布式神经网络加速器系统
    1.
    发明公开

    公开(公告)号:CN117332831A

    公开(公告)日:2024-01-02

    申请号:CN202311271771.X

    申请日:2023-09-28

    Abstract: 本发明提出一种分布式神经网络加速器系统,主机节点配置为:向每一加速器节点进行远程认证,利用神经网络编译器对模型进行编译,生成数据流图,并确定各个加速器节点间子图的依赖关系;对编译后的模型进行切分,将各个子图分配到各加速器节点。每一子图的计算层包含:一接口层,以可转移张量表示,包含转移张量数据、第一辅助数据;转移张量数据保存在片外存储器,第一辅助数据保存在片上存储器;一内部层,以普通张量表示,包含普通张量数据、第二辅助数据;普通张量数据保存在片外存储器,第二辅助数据包含第二张量版本号、第二张量MAC,第二张量版本号保存在片上存储器,第二张量MAC保存在片外存储器。其减少了VN的内存访问开销和存储开销。

    一种基于数据并行可信分布式神经网络加速器架构构建方法

    公开(公告)号:CN117195983A

    公开(公告)日:2023-12-08

    申请号:CN202310986571.6

    申请日:2023-08-07

    Abstract: 一种基于数据并行可信分布式神经网络加速器架构构建方法、加速器架构、加速器和服务器,包括以下步骤:构建主机节点步骤,用于对多个神经网络加速器节点进行远程认证、控制和数据分发;构建动态随机存取内存步骤;构建所述多个神经网络加速器节点步骤,进一步包括:构建控制处理器步骤;构建计算单元步骤;构建内存控制器步骤,用于提供数据可信保护,其中,又包括:在片上构建分布式大模型的全局版本号结构;利用不使用数据地址的方式对数据进行加密、解密、完整性保护生成和完整性保护验证;所述加密、解密、完整性保护生成和完整性保护验证以神经网络层的张量为粒度进行通信。

    基于帧间相似性的对抗补丁检测定位方法及系统

    公开(公告)号:CN115422533A

    公开(公告)日:2022-12-02

    申请号:CN202210940151.X

    申请日:2022-08-05

    Abstract: 本发明提出一种基于帧间相似性的对抗补丁检测定位方法,包括:提取关键视频帧的浅层特征图,通过滑窗方式从该浅层特征图中选取多个候选窗口,当任一候选窗口中LISF的个数超过筛选阈值时,以该候选窗口为重要窗口;以每个该重要窗口为掩膜遮挡该视频帧,并执行图像检测,得到对应每个该重要窗口的掩膜检测结果;对所有该掩膜检测结果执行垄断者投票,判断该对抗补丁在该关键视频帧中的位置;根据帧间相似性消除该对抗补丁对该关键视频帧的相邻视频帧的干扰。本发明还提出一种基于帧间相似性的对抗补丁检测定位系统,以及一种用于对抗补丁检测定位的数据处理装置。

    基于局部浅层重要神经元的对抗补丁检测定位方法及系统

    公开(公告)号:CN115422532A

    公开(公告)日:2022-12-02

    申请号:CN202210940143.5

    申请日:2022-08-05

    Abstract: 本发明提出一种基于局部浅层重要神经元的对抗补丁检测定位方法,包括:获取视频帧的浅层特征图,从该浅层特征图中选取多个候选窗口,当任一候选窗口中LISF的个数超过筛选阈值时,以该候选窗口为重要窗口;以每个该重要窗口为掩膜遮挡该视频帧,并执行图像检测,得到对应每个该重要窗口的掩膜检测结果;对所有该掩膜检测结果执行垄断者投票,若存在某一掩膜检测结果与其他掩膜检测结果相异,且其他掩膜检测结果均相同,则该视频帧存在对抗补丁,该掩膜检测结果对应的重要窗口为该对抗补丁所在位置,反之则该视频帧为正常图像。本发明还提出一种基于局部重要浅层神经元的对抗补丁检测定位系统,以及一种用于对抗补丁检测定位的数据处理装置。

Patent Agency Ranking