-
公开(公告)号:CN113536760A
公开(公告)日:2021-10-22
申请号:CN202110761419.9
申请日:2021-07-06
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种引述句和辟谣模式句引导的“谣言‑辟谣文章”匹配方法及系统。通过引导模型行为,使其更加关注辟谣文章中带有“引述”和“辟谣模式”成分的句子,实现考虑到辟谣文章特点的“谣言‑辟谣文章”匹配程度评分。具体地,本发明通过使用文字相似度指标精调神经网络模型增强引述句的发现能力,通过引入模式向量增强辟谣模式句的发现能力,从而使模型关注到含有引述成分和辟谣模式的关键句子,过滤掉辟谣文章中大部分无关句子,最终实现高效准确的“谣言‑辟谣文章”匹配。
-
公开(公告)号:CN113254864A
公开(公告)日:2021-08-13
申请号:CN202110478862.5
申请日:2021-04-29
Applicant: 中国科学院计算技术研究所数字经济产业研究院 , 杭州中科睿鉴科技有限公司
Abstract: 本发明涉及一种基于节点特征和回复路径的动态子图生成方法、争议性检测方法,S1、基于“帖子‑评论”图G构建路径矩阵P和路径长度矩阵S,其中路径矩阵P记录图G中每个节点到终端节点的所有路径,终端节点包括图G中的帖子节点和没有回复的评论节点;路径长度矩阵S记录路径矩阵中每条路径的长度;S2、基于路径矩阵P和路径长度矩阵S计算得到路径拉普拉斯矩阵L;S3、基于路径拉普拉斯矩阵L以及图G中节点本身的内容特征,计算获得当前节点感知路径信息的表达;S4、基于当前节点与相应路径上所有节点的相似性,保留每条路径上最重要的部分节点,所有路径上的重要节点构成当前节点对应的子图,该子图中的节点为与当前节点相关的局部讨论。
-
公开(公告)号:CN112148875A
公开(公告)日:2020-12-29
申请号:CN202010768194.5
申请日:2020-08-03
Applicant: 杭州中科睿鉴科技有限公司 , 中国科学院计算技术研究所数字经济产业研究院
Abstract: 本发明涉及一种基于图卷积神经网络整合内容和结构信息的争议性检测方法。本发明的目的是提供一种基于图卷积神经网络整合内容和结构信息的争议性检测方法。本发明的技术方案是一种基于图卷积神经网络整合内容和结构信息的争议性检测方法,其特征在于:建立“话题‑帖子‑评论”图,图中评论连接到该评论回复的评论/帖子上,帖子连接到该帖子属于的话题上;根据“话题‑帖子‑评论”图中话题节点、帖子节点和评论节点的文本获取相应节点的初始表达向量;使用图卷积神经网络学习“话题‑帖子‑评论”图中节点的表达;根据帖子节点和相应评论节点的平均表达进行争议性分类。本发明适用于社交媒体平台争议性检测领域。
-
公开(公告)号:CN113536760B
公开(公告)日:2023-09-26
申请号:CN202110761419.9
申请日:2021-07-06
Applicant: 中国科学院计算技术研究所
IPC: G06F40/194 , G06F40/30 , G06F16/35 , G06F18/23213 , G06F18/214 , G06N3/04 , G06N3/084
Abstract: 本发明提出一种引述句和辟谣模式句引导的“谣言‑辟谣文章”匹配方法及系统。通过引导模型行为,使其更加关注辟谣文章中带有“引述”和“辟谣模式”成分的句子,实现考虑到辟谣文章特点的“谣言‑辟谣文章”匹配程度评分。具体地,本发明通过使用文字相似度指标精调神经网络模型增强引述句的发现能力,通过引入模式向量增强辟谣模式句的发现能力,从而使模型关注到含有引述成分和辟谣模式的关键句子,过滤掉辟谣文章中大部分无关句子,最终实现高效准确的“谣言‑辟谣文章”匹配。
-
公开(公告)号:CN113297497A
公开(公告)日:2021-08-24
申请号:CN202110689802.8
申请日:2021-06-22
Applicant: 中国科学院计算技术研究所
IPC: G06F16/9535 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于动态子图生成方法挖掘关键局部争论进行争议性检测的方法,包括:步骤C1,基于动态子图生成方法获取帖子‑评论图中的所有子图集合;步骤C2,基于所述子图集合,利用图神经网络预测帖子具有争议性的概率。本发明能挖掘出帖子内容相关的争论进行争议性检测,能够应对数据中存在的无关信息,能提高图神经网络的检测性能。
-
公开(公告)号:CN110032733A
公开(公告)日:2019-07-19
申请号:CN201910184862.7
申请日:2019-03-12
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种针对新闻长文本的谣言检测方法及系统,包括:获取指定新闻平台中大于预设字数的文本作为长文本,提取长文本中段落的关键词,并以该关键词检索社交平台获取社交数据,使用文本相关性算法获得该段落的相关数据;获取标注数据集,标注数据集包括已标注谣言信息的多个社交数据,使用标注数据集训练多个分类模型,并将训练完成的分类模型集合为融合模型,使用融合模型得到相关数据的可信度得分,用以代表段落为非谣言的概率。本发明使用异源检测方法解决了难以对长文直接判别的问题。
-
-
-
-
-