Distributed deep learning system using a communication network for stochastic gradient descent calculations
摘要:
Each of learning nodes calculates gradients of a loss function from an output result obtained by inputting learning data to a learning target neural network, converts a calculation result into a packet, and transmits the packet to a computing interconnect device. The computing interconnect device receives the packet transmitted from each of the learning nodes, acquires a value of the gradients stored in the packet, calculates a sum of the gradients, converts a calculation result into a packet, and transmits the packet to each of the learning nodes. Each of the learning nodes receives the packet transmitted from the computing interconnect device and updates a constituent parameter of a neural network based on a value stored in the packet.
公开/授权文献
信息查询
0/0