Reconfigurable memory compression techniques for deep neural networks
摘要:
Examples described herein relate to a neural network whose weights from a matrix are selected from a set of weights stored in a memory on-chip with a processing engine for generating multiply and carry operations. The number of weights in the set of weights stored in the memory can be less than a number of weights in the matrix thereby reducing an amount of memory used to store weights in a matrix. The weights in the memory can be generated in training using gradients from back propagation. Weights in the memory can be selected using a tabulation hash calculation on entries in a table.
信息查询
0/0