- 专利标题: Systems and methods for generic visual odometry using learned features via neural camera models
-
申请号: US17021968申请日: 2020-09-15
-
公开(公告)号: US11508080B2公开(公告)日: 2022-11-22
- 发明人: Vitor Guizilini , Igor Vasiljevic , Rares A. Ambrus , Sudeep Pillai , Adrien Gaidon
- 申请人: TOYOTA RESEARCH INSTITUTE, INC.
- 申请人地址: US CA Los Altos
- 专利权人: TOYOTA RESEARCH INSTITUTE, INC.
- 当前专利权人: TOYOTA RESEARCH INSTITUTE, INC.
- 当前专利权人地址: US CA Los Altos
- 代理机构: Sheppard, Mullin, Richter & Hampton LLP
- 代理商 Hector A. Agdeppa; Daniel N. Yannuzzi
- 主分类号: G06T7/55
- IPC分类号: G06T7/55 ; G06T7/33 ; G06T3/00 ; G06T7/80 ; G05D1/00 ; G05D1/02
摘要:
Systems and methods for self-supervised learning for visual odometry using camera images captured on a camera, may include: using a key point network to learn a keypoint matrix for a target image and a context image captured by the camera; using the learned descriptors to estimate correspondences between the target image and the context image; based on the keypoint correspondences, lifting a set of 2D keypoints to 3D, using a learned neural camera model; estimating a transformation between the target image and the context image using 3D-2D keypoint correspondences; and projecting the 3D keypoints into the context image using the learned neural camera model.
公开/授权文献
信息查询