- 专利标题: System and method for liquid air energy storage
-
申请号: US16014820申请日: 2018-06-21
-
公开(公告)号: US10508596B2公开(公告)日: 2019-12-17
- 发明人: John D. Upperman , Ralph Greenberg
- 申请人: John D. Upperman , Ralph Greenberg
- 代理商 Michael A. Blake
- 主分类号: F02C6/14
- IPC分类号: F02C6/14 ; F01K23/02 ; F17C9/04 ; F03D9/17 ; F04B23/04 ; F28D20/02 ; F15B1/02 ; F04B15/08 ; F01K25/10 ; F28D17/04 ; F28D20/00 ; F04B49/22
摘要:
A liquid air energy storage system, the system comprising: a liquid air storage means; an input of a first pump in fluid communication with the liquid air storage means; a first heat exchanger in fluid communication with an output of the first pump; a second heat exchanger in fluid communication first heat exchanger and configured to receive the fluid stream from the first pump and the first heat exchanger; a first expander turbine generator in fluid communication with the second heat exchanger; the first heat exchanger in fluid communication with the first expander turbine generator; a third heat exchanger in fluid communication with the first heat exchanger and configured to receive the fluid stream from the first expander turbine generator and the first heat exchanger; a second expander turbine generator in fluid communication with the third heat exchanger; the first heat exchanger in fluid communication with the second expander turbine generator; the fluid stream from second expander turbine generator and first heat exchanger in fluid communication with ambient atmosphere; a refrigerant stream in fluid communication with a third expander turbine generator; a fourth heat exchanger in fluid communication with the third expander turbine generator; a fourth expander turbine generator in fluid communication with the fourth heat exchanger; a fifth heat exchanger in fluid communication with the fourth expander turbine generator; the first heat exchanger in fluid communication with the fifth heat exchanger; an input of a second pump in fluid communication with the first heat exchanger, and configured to receive the refrigerant stream from the fifth heat exchanger and the and the first heat exchanger; the first heat exchanger in fluid communication with the output of the second pump; a sixth heat exchanger in fluid communication with the first heat exchanger, and configured to receive the refrigerant stream from the output of the second pump and the first heat exchanger; and the third expander turbine generator in fluid communication with the sixth heat exchanger. A liquid air energy storage system, the system comprising: a liquid air storage means; an input of a first pump in fluid communication with the liquid air storage means; a first heat exchanger in fluid communication with an output of the first pump; a second heat exchanger in fluid communication first heat exchanger and configured to receive the fluid stream from the first pump and the first heat exchanger; a first expander turbine generator in fluid communication with the second heat exchanger; the first heat exchanger in fluid communication with the first expander turbine generator; a third heat exchanger in fluid communication with the first heat exchanger and configured to receive the fluid stream from the first expander turbine generator and the first heat exchanger; a second expander turbine generator in fluid communication with the third heat exchanger; the first heat exchanger in fluid communication with the second expander turbine generator; the fluid stream from second expander turbine generator and first heat exchanger in fluid communication with ambient atmosphere; a refrigerant stream in fluid communication with a third expander turbine generator; a fourth heat exchanger in fluid communication with the third expander turbine generator; a fourth expander turbine generator in fluid communication with the fourth heat exchanger; a fifth heat exchanger in fluid communication with the fourth expander turbine generator; the first heat exchanger in fluid communication with the fifth heat exchanger; a seventh heat exchanger in fluid communication with the first heat exchanger, and configured to receive the refrigerant stream from the fifth heat exchanger and the and the first heat exchanger; an input of a second pump in fluid communication with the seventh heat exchanger; the first heat exchanger in fluid communication with the output of the second pump; a phase separator in fluid communication with the first heat exchanger, and configured to receive the refrigerant stream from the output of the second pump and the first heat exchanger; a liquid refrigerant stream exiting the phase separator and in fluid communication with the first heat exchanger; the liquid refrigerant vaporizing due to the first heat exchanger and becoming a second vapor refrigerant stream; a sixth heat exchanger in fluid communication second vapor refrigerant stream; the third expander turbine generator in fluid communication with the sixth heat exchanger; and a first vapor refrigerant stream exiting the phase separator and in fluid communication with the sixth heat exchanger. A method for liquid air energy storage, the method comprising: pumping a liquid air stream in a first pump; exchanging heat with the liquid air stream in a first heat exchanger so the liquid air becomes vapor air stream; removing energy from the vapor air stream in a second heat exchanger; driving a first expander turbine generator with the vapor air stream and generating a first amount of electricity; cooling the vapor air stream from the first expander turbine generator in the first heat exchanger; removing energy from the vapor air stream from the first heat exchanger and from the first expander turbine generator in a third heat exchanger; driving a second expander turbine generator with the vapor air stream and generating a second amount of electricity; exchanging heat with the vapor air stream from the second expander turbine generator in the first heat exchanger and then releasing the vapor air stream to the ambient atmosphere; driving a third expander turbine generator with a refrigerant vapor stream and generating a third amount of electricity; removing energy from the refrigerant vapor stream in a fourth heat exchanger; driving a fourth expander turbine generator with the refrigerant vapor stream from the fourth heat exchanger and generating a fourth amount of electricity; removing energy from the refrigerant vapor stream in a fifth heat exchanger; exchanging energy with the refrigerant vapor stream in the first heat exchanger; pumping the refrigerant vapor stream in a second pump; exchanging energy with the refrigerant vapor stream from the second pump in the first heat exchanger; and exchanging energy with the refrigerant vapor stream from the first heat exchanger and second pump in a sixth heat exchanger. A liquid air energy storage system, the system comprising: pumping a liquid air stream in a first pump; exchanging heat with the liquid air stream in a first heat exchanger so the liquid air becomes vapor air stream; removing energy from the vapor air stream in a second heat exchanger; driving a first expander turbine generator with the vapor air stream and generating a first amount of electricity; cooling the vapor air stream from the first expander turbine generator in the first heat exchanger; removing energy from the vapor air stream from the first heat exchanger and from the first expander turbine generator in a third heat exchanger; driving a second expander turbine generator with the vapor air stream and generating a second amount of electricity; exchanging heat with the vapor air stream from the second expander turbine generator in the first heat exchanger and then releasing the vapor air stream to the ambient atmosphere; driving a third expander turbine generator with a refrigerant vapor stream and generating a third amount of electricity; removing energy from the refrigerant vapor stream in a fourth heat exchanger; driving a fourth expander turbine generator with the refrigerant vapor stream from the fourth heat exchanger and generating a fourth amount of electricity; removing energy from the refrigerant vapor stream in a fifth heat exchanger; exchanging energy with the refrigerant vapor stream in the first heat exchanger; exchanging energy with the refrigerant vapor stream in a seventh heat exchanger; pumping the refrigerant vapor stream in a second pump; exchanging energy with the refrigerant vapor stream from the second pump in the first heat exchanger and creating a refrigerant liquid vapor stream; separating a refrigerant vapor stream and refrigerant liquid stream from the refrigerant liquid vapor stream in a phase separator; exchanging energy with the refrigerant liquid stream from the phase separator in the first heat exchanger, changing the refrigerant liquid stream to a refrigerant vapor stream; exchanging energy with the refrigerant vapor stream from the first heat exchanger and phase separator in a sixth heat exchanger; and exchanging energy with the refrigerant vapor stream directly from the phase separator in the sixth heat exchanger.
公开/授权文献
- US20180371993A1 SYSTEM AND METHOD FOR LIQUID AIR ENERGY STORAGE 公开/授权日:2018-12-27
信息查询
IPC分类: