基于机器学习的含聚污水重力式沉降清淤界限预测方法
摘要:
本发明涉及的是基于机器学习的含聚污水重力式沉降清淤界限预测方法,它包括:含聚污水样本空间的样本数据预处理;含聚污水样本空间中基于主成分分析法的多重特征降维处理;考虑淤泥层增长速率离散性的含聚污水分类预测数据集划分;建立基于交叉熵损失的含聚污水分类多层感知预测模型,含聚污水分类多层感知预测模型由输入层、单层隐含层、输出层组成;定量表征含聚污水重力式沉降清淤界限,通过预测结果最优的含聚污水分类多层感知预测模型对含聚污水重力式沉降清淤界限进行预测。本发明构建含聚污水分类多层感知预测模型,并以清淤周期为指标定量表征含聚污水重力式沉降的清淤界限,解决清淤界限凭靠经验,无法满足油田现场需求的技术难题。
0/0