一种基于GAT-GPR的外卖订单需求预测方法
Abstract:
本发明公开了一种基于GAT‑GPR的外卖订单需求预测方法,包括如下步骤:获取各种数据集,对获得的历史订单数据集进行预处理;将经过预处理后的历史订单数据进行DPC聚类,将处理后的数据集划分为训练集、验证集和测试集;构建基于图注意力网络和高斯过程回归混合模型的订单需求混合预测模型;使用训练集训练模型,对得到的训练后的模型利用测试集进行测试,根据测试的结果选择出表现最优的预测模型;使用得到的最优预测模型对测试集进行预测,得到模型的输出结果,对输出结果进行反标准化获得预测的点餐量或取餐量,取其中的点餐量为最终预测出的订单需求量。本发明能够克服外卖订单需求量定性预测中预测精度低,定量预测中不能做到预测精确的时间的问题。
Public/Granted literature
Patent Agency Ranking
0/0