一种使用扩散模型生成数据的颈椎MRI图像自监督分割方法
摘要:
本发明公开了一种使用扩散模型生成数据的颈椎MRI图像自监督分割方法。该方法包括颈椎MRI切片筛选和基于扩散模型的超分辨率重建等的图像预处理;以及为了解决深度分割模型的训练数据量不足和数据缺乏差异性的问题,使用了改进的扩散模型生成高质量的MRI图像;最后使用自监督方法,将真实图像和生成图像结合,解决了标签量不足的问题,构建Encoder‑Decoder结构的Att‑UNet网络对输入数据进行相关特征提取,并使用多尺度一致性输出衡量损失,最终得到了更精准的椎体和椎间盘分割结果。本发明将基于扩散模型的MRI图像生成与自监督分割结合,有效扩充了样本数量,提升了模型鲁棒性和分割精度,为临床颈椎疾病诊断提供了更准确的参考信息。
0/0