一种基于有监督对比学习的细粒度文本分类方法
摘要:
本发明公开了一种基于有监督对比学习的细粒度文本分类方法,包括:步骤1,构建文本分类模型,并定义层级分类体系,细粒度刻画类别;步骤2,选取样本,并对于每个样本合理构建正负例,进行数据增广;步骤3,基于交叉熵损失和对比损失对文本分类模型进行联合训练,实现细粒度文本分类。针对细粒度文本分类的实际需求,定义层级分类体系;为了区分细粒度文本分类,引入基于对比学习的损失函数;为了构建样本的正例,提出了一种基于随机替换的数据增广方式;提出一种基于对比损失和交叉熵损失相结合的细粒度文本分类方法,引入了对比学习的思想解决细粒度文本分类问题,保证同类别样本较近的语义距离。
0/0