发明授权
摘要:
本发明属于时间序列推荐技术领域,具体为基于因子分解机的多任务时序推荐方法。本发明具体步骤为:根据不同的推荐任务需求处理数据并得到相似性矩阵;将用户静态特征和根据相似性矩阵筛选出的动态特征作为模型静态任务和动态任务的输入;不同任务经过嵌入层、注意力机制、因子分解交互层、线性层得到最终给结果;根据结果和损失更新模型参数,不断训练直至达到收敛停止条件;保存模型,在新数据中加载模型并得到TOPN推荐结果。本发明着力提高因子分解机模型在时序推荐场景中的实用性和准确性,将多任务、注意力机制等与因子分解机相结合,从而提升因子分解机在现实时序推荐任务中的效果。
公开/授权文献
- CN114282687A 一种基于因子分解机的多任务时序推荐方法 公开/授权日:2022-04-05