基于样本扩充的网络舆情分析方法
摘要:
本发明公开了了一种基于样本扩充的网络舆情分析方法,包括步骤:S1,扩充情感极性词典,S2,以四元组形式表达情感极性词典中的每个情感词,并从四元组中提取出模型训练样本,然后基于ALBERT和TextCNN算法训练形成网络舆情倾向性分析模型;S3,将当前舆情信息作为网络舆情倾向性分析模型的输入,模型预测输出当前网络舆情的倾向性。本发明通过扩充情感极性词典,增加了模型训练样本的数据量,解决了样本类型不平衡的问题,通过结合ALBERT和TextCNN算法去训练网络舆情倾向分析模型,克服了单独使用TextCNN算法训练模型存在的不能学习到网络舆情文本更深层次、更全面的信息的缺陷,提升模型了对网络舆情倾向性的预测准确度。
公开/授权文献
0/0