基于触发词语态学习的金融文本事件抽取方法
摘要:
本发明通过神经网络领域的方法,实现了基于触发词语态学习的金融文本事件抽取方法。方法包括三个步骤:金融领域文本预训练、事件分类和基于触发词语态学习的金融文本事件要素抽取;金融领域文本预训练步骤的实现结合金融知识图谱构建BERT预训练模型,以输入词序列作为模型输入,结合神经网络方法,在已有的金融文本训练集和金融知识图谱数据上进行再训练,得到适合下游事件分类和事件抽取的词表征和实体表征,而后通过词表征做多标签多分类任务得到事件检测结果,最后每一个输入词对应的词表征作为多标签分类任务的表征向量进行计算得到输出结果,从而形成一个能够自动精准抽取金融文本事件的方法。
0/0