一种基于机器学习的单层二硫化钼样品光学表征方法、模型及其用途
摘要:
本发明提供了一种基于机器学习的单层二硫化钼样品光学表征方法、模型及其用途。首先,将二硫化钼样品光学成像通过图形处理提取出可疑单层ROI区域;然后,将可疑单层ROI局域的像素值与硅片在光学显微镜下拍摄出来的特征值求差值向量,通过拉曼表征来区分单层和少层样品,通过肉眼观测的方式确定残胶,根据层数分类来建立目标值;将差值向量求平均值和标准值作为特征值,并与目标值组成数据集,最后通过对数据集降维并通过机器学习算法对该数据集进行分类,获得最佳单层表征模型。基于该模型,通过光学成像即可快速分辨出单层二硫化钼样品,极大的节约寻找单层二硫化钼所需要花费的时间。
0/0