一种基于强化学习的多阶段装备组合规划方法
摘要:
本发明公开了一种基于强化学习的多阶段装备组合规划方法,属于装备发展规划技术领域。该方法首先根据装备发展的需求确定所需输入参数;然后构建组合优化模型,构建组合优化模型时首先构建单阶段多场景的优化模型,再建立多阶段多场景的组合优化模型;然后基于强化学习中的Q‑Learning方法,构建优化求解算法。该求解算法首先采用NSGA算法或MOEA算法求解当前阶段的Pareto解集,然后借助Q‑Learning方法获得最优的组合方案;最后输入参数,并求解得到最终组合方案。本发明的方法能够针对多场景、多阶段的复杂环境,能够快速、高效地得到最优的装备组合规划方案,为决策者提供参考,从而使决策者快速地响应,做出准确的决策。
公开/授权文献
0/0