基于朴素贝叶斯算法的电力数据分类方法及系统
摘要:
本发明涉及计算机领域,尤其涉及基于朴素贝叶斯算法的电力数据分类方法及系统,包括:S1:从电力公司的电力系统中获取数据并生成数据集;S2:从数据集中取数据子集,并作增量式训练;S3:对于每一个类别,计算各类别在数据子集中的频率;S4:将数据子集划分成K个子数据子集,分别对属于Ck的子数据子集进行计算,计算出其中第j个特征的概率;S5:针对待预测样本,计算其对于每个类别Ck的后验概率,概率值最大的类别即为待预测样本的预测类别;S6:在数据集中去掉当前数据子集,并判断数据集是否为空,若非空则进入步骤S2,若空则结束分类。本发明能够迅速准确的实现数据的分类,分类性能不会因为数据的不同而展现差异,具有良好的健壮性。
0/0