一种基于数据挖掘的管理线损异常识别方法
摘要:
本发明涉及一种基于数据挖掘的管理线损异常识别方法,其技术特点在于:步骤1、采用滑动窗口法对预处理后的管理线损时间序列数据进行子序列分割;步骤2、构建基于神经网络的时间序列预测模型,获得管理线损子序列的预测值,并将预测值和实测值间差异范围大于预设阈值的子序列判定为异常子序列;步骤3、针对异常子序列提取其特征变量,建立管理线损特征样本集合,并采用三种不同算法进行聚类;步骤4、对三种聚类结果进行簇匹配,采用多数投票聚类集成法获得最终聚类结果,通过比较簇内对象数目与预设阈值的差异大小,得出管理线损异常子序列的具体分类情况。本发明可以快速准确地识别管理线损的异常情况,具有更好的稳定性和实用性。
0/0