一种基于深度学习的快速安全约束经济调度方法
摘要:
本发明公开了一种基于深度学习的快速安全约束经济调度方法,主要步骤为:1)确定适用于安全约束经济调度模型的深度神经网络。2)对堆栈降噪自动编码器SDAE进行训练。3)建立基于深度学习的安全约束经济调度模型。4)令k=1,将电力系统运行条件输入到深度神经网络中,得到安全约束经济调度模型的起作用约束集J(1)。5)将约束集J(1)。输入到安全约束经济调度模型中,得到安全约束经济调度方案。6)对安全约束经济调度方案进行N-1检验,若有新约束J(new),则令k=k+1,约束集更新为J(k)=J(k)∪J(new),并返回步骤5。若无新约束,则输出安全约束经济调度方案。本发明可广泛应用于电力系统各个行业的安全约束经济调度分析。
0/0