基于FCN与稀疏-低秩子空间表示融合的PolSAR图像分类方法
摘要:
本发明公开了一种基于FCN与稀疏‑低秩子空间表示融合的PolSAR图像分类方法,充分利用了FCN能够从PolSAR数据本身自动地学习非线性的深层多尺度空间特征的强大能力,以及基于稀疏‑低秩图嵌入的线性降维算法能够在一个低维子空间中同时捕获PolSAR数据的局部和全局结构信息的优势,并对FCN和稀疏‑低秩子空间表示进行有效地融合,解决了PolSAR图像的非线性深层空间特征提取问题、降维问题,以及极化信息和空间信息的有效融合问题,并有效解决PolSAR图像的分类问题。本发明获得的融合的多层次子空间特征含有多种类型的信息,包括线性的和非线性的、浅层的和深层的、局部的和全局的,以及极化的和多尺度空间的,因此具有很强的判别性,能够大大提高PolSAR图像的分类准确率。
0/0