US12062790B2
A solid-state ion conductor including a compound of Formula 1:
Li(3+2y1)B(P1-y1A1y1O4)2 Formula 1
wherein, in Formula 1, A1 is an element of Groups 4, 14, or a combination thereof, and has an oxidation state of +4, and 0
US12062786B2
A positive active material for a rechargeable lithium battery includes a first compound represented by Chemical Formula 1 and a second compound represented by Chemical Formula 2, the second compound having a smaller particle size than that of the first compound, wherein cation mixing in the surface portion of the positive active material is less than or equal to about 7.5%, cation mixing in the bulk of the positive active material is less than or equal to about 3%, a residual lithium content on the surface of the positive active material is less than or equal to about 3,000 ppm, and the first compound and the second compound each independently include 90 at % to about 98 at % of Ni with respect to the metals excluding Li.
Lia1Nix1Coy1M11−x1−y1O2, Chemical Formula 1
Lia2Nix2Coy2M21−x2−y2O2. Chemical Formula 2
US12062785B2
The invention relates to a method for producing a rechargeable high-energy battery with an anion-redox-active composite cathode containing lithium hydroxide as the electrochemically active component, which is mixed and contacted with electronically or mixed-conductive transition metals and/or transition metal oxides, so that an electronically or mixed-conductive network is formed, this mixture is applied to a current drain, and the composite cathode thus formed is placed in a cell housing together with a separator, a lithium-conductive electrolyte and a lithium-containing anode, so that an electrochemical cell is present and is subjected to at least one initial forming cycle.
US12062784B2
Provided are a negative electrode for a lithium secondary negative electrode battery including: a current collector; a first negative electrode active material layer disposed on the current collector and including a silicon-based active material, a first graphite-based active material, and a linear conductive material; and a second negative electrode active material layer disposed on the first negative electrode active material layer and including a second graphite-based active material. The first graphite-based active material has a carbon coating layer on at least a part of a surface. Also provided is a lithium secondary battery including the negative electrode.
US12062782B2
Electrochemical cells of the present disclosure may include one or more multilayered electrodes. One or both multilayered electrodes may be configured such that a second layer farther from the current collector has a higher resistance to densification than a first layer closer to the current collector. This may be achieved by including a plurality of non-active ceramic particles in the second layer. Accordingly, calendering of the electrode results in a greater compression of the first layer, and a beneficial porosity profile is created. This may improve the ionic conductivity of the electrode, as compared with known systems.
US12062781B2
A cathode material includes a lithium composite oxide matrix including lithium (Li) and at least one selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), and aluminium (Al), and has a surface layer which is a rocksalt structure and includes tungsten (W); and a material layer formed on the surface layer of the lithium composite oxide matrix and including tungsten (W) and lithium (Li). The cathode material of the present application provides excellent high-temperature cycle and high-temperature storage performance, and the capability of discharge at a high rate, and improves the safety performance of the electrochemical device.
US12062778B2
A sulfur-carbon composite for controlling the particle size of the sulfur-carbon composite to a specific range and a method for preparing the same.
US12062769B2
A battery pack supplies an electrically driven treatment apparatus with an electric driving power, and includes: a stack limiting structure; a plurality of pouch cells, wherein the pouch cells are disposed in a stack, wherein the stack is disposed within the stack limiting structure; an outer temperature sensor, wherein the outer temperature sensor is disposed and configured for measuring an outer temperature of the stack outside the stack at an edge of the stack or the stack limiting structure, and/or outside the stack limiting structure; and a control device. The control device is configured for comparison of the measured outer temperature and/or a quantity based on the measured outer temperature to at least one temperature comparative value. The at least one temperature comparative value is a function of at least one of the pouch cells. The control device is configured for controlling the battery pack in response to a result of the comparison.
US12062767B1
An electric vehicle includes a chassis, a battery in a battery compartment supported by the chassis and a dual underside battery cooling system to transfer heat from the battery by drawing hot air from the battery compartment via air outlets. The dual underside battery cooling system includes a left fan for generating a left airflow along a left underside path of the vehicle and a right fan for generating a right airflow along a right underside path of the vehicle, the left and right airflows expelling the hot air from the battery compartment toward a rear of the vehicle. The processor independently controls the left fan and the right fan to selectively generate a differential downforce on left and right wheels of the vehicles when cornering to thereby compensate for centrifugal roll and to generate an equal downforce on the left and right wheels when accelerating in a straight line.
US12062766B2
A system or method for individualized coolant flow to each of a plurality of energy storage devices 10 housed in an electric vehicle. Each energy storage device 10 includes a heat exchanger 11 coupled in thermal conductivity with a segmented battery module 13. The segmented battery module 13 includes battery cells 13B and sensors (13C, 13D, and 13E). The heat exchanger 11 includes an HE flow controller 11C. Individual sensor information for each energy storage device 10 is collected via the BMU 13A of each segmented battery module 13. The charging SCC 22 uses this individual sensor information to calculate the HE flow rate of coolant pumped through each energy storage device's 10 heat exchanger 11 to cool the battery cells 13B of the energy storage device 10. Coolant delivered to the heat exchangers 11 is cooled by an external cooling unit 21 of a power source 20 during each charging session.
US12062764B2
A semiconductor device that inhibits deterioration of a secondary battery is provided. The semiconductor device includes a secondary battery module and a first circuit. The secondary battery module includes a secondary battery and a sensor. The first circuit includes a variable resistor. The sensor has a function of measuring a temperature of the secondary battery. The first circuit has a function of judging the charge voltage of the secondary battery and outputting a first result; a function of judging the temperature of the secondary battery measured by the sensor and outputting a second result; a function of determining the magnitude of the variable resistor on the basis of the first result and the second result; a function of discharging the charge voltage through the variable resistor; and a function of stopping discharge when the charge voltage reaches a specified voltage.
US12062748B2
A light-emitting device includes a carrier, a light-emitting element and a connection structure. The carrier includes a first electrical conduction portion. The light-emitting element includes a first light-emitting layer capable of emitting first light and a first contact electrode formed under the light-emitting layer. The first contact electrode is corresponded to the first electrical conduction portion. The connection structure includes a first electrical connection portion and a protective portion surrounding the first contact electrode and the first electrical connection portion. The first electrical connection portion includes an upper portion, a lower portion and a neck portion arranged between the upper portion and the lower portion. An edge of the upper portion is protruded beyond the neck portion, and an edge of the lower portion is protruded beyond the upper portion.
US12062733B2
The present invention relates to a solar cell manufacturing method, a solar cell manufactured thereby, and a substrate for a solar cell. The solar cell manufacturing method involves forming a separating portion for separating a substrate, which is for manufacturing the solar cell, into a plurality of pieces. The solar cell manufacturing method comprises: a step for preparing the substrate; a first substrate etching step for forming a first groove in one surface of the substrate; a second substrate etching step for forming a second groove inside the first groove; and a third substrate etching step for etching the substrate including the second groove, wherein the separating portion includes the first groove and the second groove.
US12062725B2
The present disclosure provides a thin film transistor, a display panel and a display device. The thin film transistor includes a semiconductor material layer, a first insulating layer and a gate layer. The semiconductor material layer is at a side of a base substrate, and includes a first channel portion, a first doped portion and a second channel portion sequentially connected. The first insulating layer is at a side of the semiconductor material layer facing away from the base substrate. The gate layer is at a side of the first insulating layer facing away from the semiconductor material layer, and includes a first gate portion and a second gate portion. An orthographic projection of the first gate portion on the base substrate coincides with an orthographic projection of the first channel portion on the base substrate, and the first gate portion is configured to receive a gate driving signal.
US12062720B2
A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region and a source/drain region in the active region adjacent the gate stack. The source/drain region includes a first semiconductor layer having a first germanium concentration and a second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second germanium concentration greater than the first germanium concentration. The source/drain region further includes a third semiconductor layer over the second semiconductor layer and a fourth semiconductor layer over the third semiconductor layer. The third semiconductor layer has a third germanium concentration greater than the second germanium concentration. The fourth semiconductor layer has a fourth germanium concentration less than the third germanium concentration.
US12062715B2
An HEMT includes: a heterostructure; a dielectric layer on the heterostructure; a gate electrode, which extends throughout the thickness of the dielectric layer; a source electrode; and a drain electrode. The dielectric layer extends between the gate electrode and the drain electrode and is absent between the gate electrode and the source electrode. In this way, the distance between the gate electrode and the source electrode can be designed in the absence of constraints due to a field plate that extends towards the source electrode.
US12062709B2
A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
US12062708B2
Horizontal gate-all-around devices and methods of manufacturing same are described. The hGAA devices comprise a trimmed semiconductor material between source regions and drain regions of the device. The method includes selectively isotropically etching semiconductor material layers between source regions and drain regions of an electronic device.
US12062702B2
In a method for manufacturing a semiconductor structure, a substrate is provided; a stack layer is formed on the substrate, the stack layer including an interfacial layer, a high-k dielectric layer and a work function composite layer which are sequentially stacked; a transition layer is formed on the stack layer; and a metal gate layer is formed on the transition layer. The work function composite layer is prepared by a physical vapor deposition process.
US12062697B2
Provided is a semiconductor device which use a two-dimensional semiconductor material as a channel layer. The semiconductor device includes: a gate electrode on a substrate; a gate dielectric on the gate electrode; a channel layer on the gate dielectric; and a source electrode and a drain electrode that may be electrically connected to the channel layer. The gate dielectric has a shape with a height greater than a width, and the channel layer includes a two-dimensional semiconductor material.
US12062695B2
In an embodiment, a device includes: a channel region; a gate dielectric layer on the channel region; a first work function tuning layer on the gate dielectric layer, the first work function tuning layer including a p-type work function metal; a barrier layer on the first work function tuning layer; a second work function tuning layer on the barrier layer, the second work function tuning layer including a n-type work function metal, the n-type work function metal different from the p-type work function metal; and a fill layer on the second work function tuning layer.
US12062694B2
A layout structure of a capacitive cell using forksheet FETs is provided. In transistors P3 and N3, VDD is supplied to a pair of pads and a gate interconnect, and VSS is supplied to a pair of pads and a gate interconnect. Capacitances are produced between nanosheets and the gate interconnect and between nanosheets and the gate interconnect. The faces of the nanosheets closer to the nanosheets are exposed from the gate interconnect, and the faces of the nanosheets closer to the nanosheets are exposed from the gate interconnect.
US12062693B2
A semiconductor device structure, along with methods of forming such, are described. The structure includes a first gate electrode layer, a second gate electrode layer disposed over and aligned with the first gate electrode layer, and a gate isolation structure disposed between the first gate electrode layer and the second gate electrode layer. The gate isolation structure includes a first surface and a second surface opposite the first surface. At least a portion of the first surface is in contact with the first gate electrode layer. The second surface includes a first material and a second material different from the first material, and at least a portion of the second surface is in contact with the second gate electrode layer.
US12062688B2
Some embodiments include dielectric material having a first region containing HfO and having a second region containing ZrO, where the chemical formulas indicate primary constituents rather than specific stoichiometries. The first region contains substantially no Zr, and the second region contains substantially no Hf. Some embodiments include capacitors having a first electrode, a second electrode, and a dielectric material between the first and second electrodes. The dielectric material includes one or more first regions and one or more second regions. The first region(s) contain(s) Hf and substantially no Zr. The second region(s) contain(s) Zr and substantially no Hf. Some embodiments include memory arrays.
US12062680B2
A package structure that includes a cavity between a solid-state imaging element and a cover member prevents damage caused due to an increase in the internal pressure in the cavity, for example, upon reflow. A solid-state imaging device includes a solid-state imaging element that includes a semiconductor substrate and of which a light-receiving side is a side of one of plate surfaces of the semiconductor substrate; a translucent cover member that is provided on the light-receiving side of the solid-state imaging element, and a support that is provided on the light-receiving side of the solid-state imaging element, and supports the cover member. The semiconductor substrate further includes a concave portion that is formed on another of the plate surfaces of the semiconductor substrate.
US12062677B2
An imaging apparatus of the present disclosure includes: a plurality of pixel blocks that each includes a plurality of light-receiving pixels including color filters of mutually the same color, the plurality of light-receiving pixels being divided into a plurality of pixel pairs each including two light-receiving pixels; and a plurality of lenses provided at respective positions corresponding to the plurality of pixel pairs.
US12062676B2
An image sensor in which a shading phenomenon is decreased and the quality is increased is provided. The image sensor includes a light-receiving region including a plurality of unit pixels. The image sensor further includes a first region with unit pixels adjacent to a center of the light-receiving region, and a second region with the unit pixels spaced apart from the center of the light-receiving region. In both regions, a plurality of color filters corresponding to the plurality of unit pixels is disposed on a first face of the substrate, as well as a grid pattern interposed between the plurality of color filters defining boundaries between the unit pixels. A width of the grid pattern in the second region is greater than a width of the grid pattern in the first region, thereby adjusting light receiving areas near the edge of the image sensor to correct for a shading phenomenon.
US12062668B2
Disclosed are a crystallization process of an oxide semiconductor, a method of manufacturing a thin film transistor including the same, a thin film transistor, a display panel, and an electronic device. The crystallization process of an oxide semiconductor includes forming an amorphous oxide semiconductor layer on a substrate, forming a crystallization auxiliary layer including a light absorbing inorganic material on the amorphous oxide semiconductor layer, and annealing the crystallization auxiliary layer to crystallize the amorphous oxide semiconductor layer.
US12062660B2
A semiconductor device includes a substrate, a gate structure on the substrate, a first etch stop layer, a second etch stop layer, and an interlayer insulation layer that are stacked on the gate structure, and a contact plug penetrating the interlayer insulation layer, the second etch stop layer, and the first etch stop layer and contacting a sidewall of the gate structure. The contact plug includes a lower portion having a first width and an upper portion having a second width. A lower surface of the contact plug has a stepped shape.
US12062658B2
An integrated circuit structure includes a lower interconnect structure, a first semiconductor fin, a lower gate structure, first source/drain structures, an upper gate structure, and an upper interconnect structure. The first semiconductor fin is above the lower interconnect structure. The lower gate structure is under the first semiconductor fin and extends across the first semiconductor fin. The first source/drain structures are in the first semiconductor fin and on opposite sides of the lower gate structure. The first source/drain structures forms a lower transistor with the lower gate structure. The upper gate structure is above the first semiconductor fin and extends across the first semiconductor fin. The upper gate structure forms an upper transistor with the first source/drain structures. The upper interconnect structure is above the upper gate.
US12062657B2
A semiconductor including a short channel device including a vertical FET (Field-Effect Transistor), and a long channel device comprising a second vertical FET integrated with the short channel device. The long channel device including a plurality of short channel devices.
US12062655B2
A method for manufacturing a semiconductor device is provided in which a semiconductor element that generates heat during operation is formed in an active region of a semiconductor substrate and a temperature sensitive diode sensor arranged to detect temperature is formed in a temperature sensitive diode region of the semiconductor substrate. The method includes: forming a polysilicon layer that composes the temperature sensitive diode sensor in the temperature sensitive diode region, forming a mask, and introducing impurities through the mask into the semiconductor substrate and the polysilicon layer. The mask has an element pattern having an element opening through which a region composing the semiconductor element is exposed in the active region, a diode pattern having a diode opening through which a portion of the temperature sensitive diode region is exposed, and a monitoring pattern provided within the diode pattern with a size smaller than that of the diode opening.
US12062641B2
An integrated circuit includes a first semiconductor wafer, a second semiconductor wafer, a first interconnect structure, a first through substrate via, and an under bump metallurgy (UBM) layer. The first semiconductor wafer has a first side of the first semiconductor wafer. The second semiconductor wafer is coupled to the first semiconductor wafer, and is over the first semiconductor wafer. The second semiconductor wafer has a first device in a first side of the second semiconductor wafer. The first interconnect structure is on a second side of the first semiconductor wafer opposite from the first side of the first semiconductor wafer. The first interconnect structure includes an inductor below the first semiconductor wafer. The first through substrate via extends through the first semiconductor wafer. The first through substrate via electrically couples the inductor to at least the first device. The UBM layer is on a surface of the first interconnect structure.
US12062640B2
A semiconductor device including a first integrated circuit component, a second integrated circuit component, a third integrated circuit component, and a dielectric encapsulation is provided. The second integrated circuit component is stacked on and electrically coupled to the first integrated circuit component, and the third integrated circuit component is stacked on and electrically coupled to the second integrated circuit component. The dielectric encapsulation is disposed on the second integrated circuit component and laterally encapsulating the third integrated circuit component, where outer sidewalls of the dielectric encapsulation are substantially aligned with sidewalls of the first and second integrated circuit components. A manufacturing method of the above-mentioned semiconductor device is also provided.
US12062633B2
Provided is a semiconductor package including: at least one semiconductor device on a first substrate; a non-conductive film (NCF) on the at least one semiconductor device and comprising an irreversible thermochromic pigment; and a molding member on the at least one semiconductor device in a lateral direction, wherein a content of the irreversible thermochromic pigment in the NCF is about 0.1 wt % to about 5 wt % with respect to a weight of the NCF.
US12062628B2
A semiconductor device includes a gate line extending in a first direction, parallel to an upper surface of a semiconductor substrate; a first active region including a first channel region disposed below the gate line and including a first conductivity-type impurity; a second active region disposed to be separated from the first active region in the first direction, including a second channel region disposed below the gate line, and including the first conductivity-type impurity; and a plurality of metal wirings disposed at a first height level above the semiconductor substrate, wherein at least one metal wiring, among the plurality of metal wirings, is directly electrically connected to the first active region, no metal wirings at the first height level are electrically connected to the second active region, and at least one metal wiring, among the plurality of metal wirings, is connected to receive a signal applied to the gate line.
US12062623B2
The present disclosure relates to a radio frequency (RF) device that includes a mold device die and a multilayer redistribution structure underneath the mold device die. The mold device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion, and a first mold compound. The FEOL portion includes an active layer, a contact layer, and isolation sections. Herein, the active layer and the isolation sections reside over the contact layer, and the active layer is surrounded by the isolation sections. The first mold compound resides over the active layer without silicon crystal, which has no germanium content, in between. The multilayer redistribution structure includes redistribution interconnections and a number of bump structures that are at bottom of the multilayer redistribution structure and electrically coupled to the mold device die via the redistribution interconnections.
US12062621B2
A semiconductor package includes a redistribution layer, a semiconductor chip on the redistribution layer, and a molding layer covering a sidewall of the semiconductor chip and a top surface and a sidewall of the redistribution layer. The sidewall of the redistribution layer is inclined with respect to a bottom surface of the redistribution layer, and a sidewall of the molding layer is spaced apart from the sidewall of the redistribution layer.
US12062620B2
An array substrate includes connecting leads, a signal channel region extending in a first direction, a first power voltage lead, and a second power voltage lead. Any one of the signal channel region includes at least two control region columns extending in the first direction, and any one of the control region columns includes a plurality of control regions arranged along the first direction. Any one of the control regions includes a pad connecting circuit and a first pad group for bonding a microchip, the first pad group is electrically connected to the first power voltage lead. The pad connection circuit includes a plurality of second pad groups, and is provided with a first end electrically connected to the first pad group, and a second end electrically connected to the second power voltage lead.
US12062616B2
Methods/structures of joining package structures are described. Those methods/structures may include a die disposed on a surface of a substrate, an interconnect bridge embedded in the substrate, and at least one vertical interconnect structure disposed through a portion of the interconnect bridge, wherein the at least one vertical interconnect structure is electrically and physically coupled to the die.
US12062597B2
In a described example, an apparatus includes: a package substrate having a die mount portion and lead portions; at least one semiconductor device die over the die mount portion of the package substrate, the semiconductor device die having bond pads on an active surface facing away from the package substrate; electrical connections between at least one of the bond pads and one of the lead portions; a post interconnect over at least one of the bond pads, the post interconnect extending away from the active surface of the semiconductor device die; and a dielectric material covering a portion of the package substrate, the semiconductor device die, a portion of the post interconnect, and the electrical connections, forming a packaged semiconductor device, wherein the post interconnect extends through the dielectric material and had an end facing away from the semiconductor device die that is exposed from the dielectric material.
US12062586B2
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and multiple first conductive lines over the semiconductor substrate. The first conductive lines are not electrically connected to each other. The semiconductor device structure also includes multiple first magnetic structures wrapped around portions of the first conductive lines and multiple second conductive lines over the semiconductor substrate. The second conductive lines are electrically connected in series. The semiconductor device structure further includes multiple second magnetic structures wrapped around portions of the second conductive lines. A size of each of the second magnetic structures and a size of each of the first magnetic structures are substantially the same.
US12062583B2
An optical metrology model for in-line thickness measurements of a film overlying non-ideal structures on a substrate is generated by performing pre-measurements prior to deposition of the film and performing post-measurements after the deposition. The pre- and post-measurements are performed at at least one of multiple polarization angles or multiple orientations of the substrate. Differences in reflectance between the pre- and post-measurements are determined at the multiple polarization angles and the multiple orientations. At least one of the multiple polarization angles or the multiple orientations are identified where the differences in reflectance are indicative of a suppressed influence from the non-ideal structures. The optical metrology model is generated using the identified polarization angles and the identified orientations as inputs to a machine-learning algorithm.
US12062577B2
A method for fabricating a semiconductor device includes forming a bit line contact hole in a substrate; forming a first spacer on a sidewall of the bit line contact hole; forming a sacrificial spacer over the first spacer; forming a first conductive material that fills the bit line contact hole over the sacrificial spacer; forming a second conductive material over the first conductive material; forming a bit line by etching the second conductive material; and forming a bit line contact plug and a gap between the bit line contact plug and the first spacer by partially etching the first conductive material and the sacrificial spacer to be aligned with the bit line.
US12062571B2
The present disclosure relates to a fabricating procedure of a radio frequency device, in which a precursor wafer including active layers, SiGe layers, and a silicon handle substrate is firstly provided. Each active layer is formed from doped epitaxial silicon and underneath a corresponding SiGe layer. The silicon handle substrate is over each SiGe layer. Next, the silicon handle substrate is removed completely, and the SiGe layer is removed completely. An etch passivation film is then formed over each active layer. Herein, removing each SiGe layer and forming the etch passivation film over each active layer utilize a same reactive chemistry combination, which reacts differently to the SiGe layer and the active layer. The reactive chemistry combination is capable of producing a variable performance, which is an etching performance of the SiGe layer or a forming performance of the etch passivation film over the active layer.
US12062567B2
Exemplary methods of semiconductor processing may include coupling a fluid conduit within a substrate support in a semiconductor processing chamber to a system foreline. The coupling may vacuum chuck a substrate with the substrate support. The methods may include flowing a gas into the fluid conduit. The methods may include maintaining a pressure between the substrate and the substrate support at a pressure higher than the pressure at the system foreline.
US12062566B2
A die-ejector (2) comprising a chamber (4) with a cover plate (40) having a passageway, a plurality of plates (56) arranged inside the chamber (4) and reciprocally movable between an initial position (58) and an operating position (60), respectively, intended to interact with the carrier to support the removal of the dies from the carrier, and a drive member (100) for moving the plates (56) to be moved from the operating position towards the initial position. The die-ejector (2) further comprises a magnet (20) and a spring system, respectively, which interacts with anchor sections (74) of the plates (56) and exerts on the plates (54) an attraction force (F′) or an impact force, respectively, directed towards the operating position, and a stop member (78) for stopping the movement of the plates (56) in the operating position, the plates abutting the stop member (78) in the operating position.
US12062562B2
Air curtain devices can reduce defects on semiconductor wafers when implemented on a track equipped with robotic wafer transport. The air curtain devices can be added to one or more processing devices arranged along the track to prevent defects from landing on wafer surfaces. For example, the air curtain devices can prevent volatile organic solvent mist from drifting towards processing devices on the track and preventing contamination via a wafer transport system.
US12062558B2
A treatment method for an OOC action during a semiconductor production process includes: multiple Out Of Control Action Plan IDs (OCAPID) respectively corresponding to multiple semiconductor production process steps and multiple identified contents in one-to-one correspondence with the multiple OCAPIDs are established, and an OOC action checklist including multiple OOC action check items according to the identified contents is established; it is determined whether the OOC action occurs to a wafer subjected to the current semiconductor production process step, and if the OOC action occurs to the wafer, the current OCAPID corresponding to the current semiconductor production process step is automatically obtained, and the wafer is inspected according to the current identified content corresponding to the current OCAPID.
US12062554B2
A heater control system for a gas delivery system of a substrate processing system includes an oven, N resistive uninsulated heaters arranged inside of the oven, where N is an integer greater than one, and a controller. The oven encloses one or more components of the substrate processing system and to maintain a predetermined temperature in the oven. Each of the N resistive heaters selectively heats at least a portion of one of the components in the oven. The controller is configured to maintain the predetermined temperature in localized regions in the oven by determining a resistance in each of the N resistive heaters and adjusting power to each of the N resistive heaters based on N-1 resistance ratios of N-1 of the N resistive heaters relative to one of the N resistive heaters.
US12062551B2
Generally discussed herein are systems, devices, and methods that include an organic high density interconnect structure and techniques for making the same. According to an example a method can include forming one or more low density buildup layers on a core, conductive interconnect material of the one or more low density buildup layers electrically and mechanically connected to conductive interconnect material of the core, forming one or more high density buildup layers on an exposed low density buildup layer of the one or more low density buildup layers, conductive interconnect material of the high density buildup layers electrically and mechanically connected to the conductive interconnect material of the one or more low density buildup layers, and forming another low density buildup layer on and around an exposed high density buildup layer of the one or more high density buildup layers.
US12062544B2
A laser annealing method for a semiconductor device, includes: a first step of adding an impurity to a semiconductor substrate; and a second step of irradiating a region to which the impurity is added with a pulsed laser beam a plurality of times to anneal the semiconductor substrate. In the second step, a first region of a portion of the region to which the impurity is added is irradiated with the pulsed laser beam, and after a predetermined time interval, a second region adjacent to the first region is irradiated with the pulsed laser beam. The predetermined time interval is larger than a pulse interval of the pulsed laser beam.
US12062542B2
A test wafer is placed inside a baking module and is baked. Via one or more temperature sensors, a cumulative heat amount delivered to the test wafer during the baking is measured. The measured cumulative heat amount is compared with a predefined cumulative heat amount threshold. In response to the comparing indicating that the measured cumulative heat amount is within the predefined cumulative heat amount threshold, it is determined that the baking module is qualified for actual semiconductor fabrication. In response to the comparing indicating that the measured cumulative heat amount is outside of the predefined cumulative heat amount threshold, it is determined that the baking module is not qualified for actual semiconductor fabrication.
US12062540B2
A method for forming an integrated circuit device is provided. The method includes forming a transistor over a frontside of a substrate; forming an interconnect structure over the transistor; depositing a first transition metal layer over the interconnect structure; performing a plasma treatment to turn the first transition metal layer into a first transition metal dichalcogenide layer; forming a dielectric layer over the first transition metal dichalcogenide layer; forming a first gate electrode over the dielectric layer and a first portion of the first transition metal dichalcogenide layer; and forming a first source contact and a first drain contact respectively connected with a second portion and a third portion of the first transition metal dichalcogenide layer, the first portion of the first transition metal dichalcogenide layer being between the second and third portions of the first transition metal dichalcogenide layers.
US12062536B2
Methods for depositing an amorphous carbon layer on a substrate and for filling a substrate feature with an amorphous carbon gap fill are described. The method comprises performing a deposition cycle comprising: introducing a hydrocarbon source into a processing chamber; introducing a plasma initiating gas into the processing chamber; generating a plasma in the processing chamber at a temperature of greater than 600° C.; forming an amorphous carbon layer on a substrate with a deposition rate of greater than 200 nm/hr; and purging the processing chamber.
US12062535B2
A system for processing a semiconductor wafer is provided. The system includes a processing tool. The system also includes gas handling housing having a gas inlet and a gas outlet. The system further includes an exhaust conduit fluidly communicating with the processing tool and the gas inlet of the gas handling housing. In addition, the system includes at least one first filtering assembly and at least one second filtering assembly. The first filtering assembly and the second filtering assembly are positioned in the gas handling housing and arranged in a series along a flowing path that extends from the gas inlet to the gas outlet of the gas handling housing. Each of the first filtering assembly and the second filtering assembly comprises a plurality of wire meshes stacked on top of another.
US12062527B2
A baffle unit includes an inner ring, an outer ring disposed outside the inner ring, and a connecting portion connecting the inner ring with the outer ring. The connecting portion includes multiple openings arranged in a radial direction of the baffle unit and in a circumferential direction of the baffle unit, each of the multiple openings being arcuate and extending in the circumferential direction; multiple rigid portions each being disposed between the adjacent openings of the multiple openings that are adjacent to each other on a same concentric circle of the baffle unit; and multiple walls each being formed between the adjacent openings of the multiple openings that are adjacent to each other in the radial direction. Each of the multiple walls connects a rigid portion of the multiple rigid portions with another rigid portion of the multiple rigid portions.
US12062521B2
A method and a device for prefixing substrates, whereby at least one substrate surface of the substrates is amorphized in at least one surface area, characterized in that the substrates are aligned and then make contact and are prefixed on the amorphized surface areas.
US12062518B2
A cathode assembly for emitting charged particles, used in for example an electron gun as source for generating an electron beam is provided. The cathode assembly has a cathode including an emitting member and a carrier. The emitting member is mounted in the carrier, and the carrier is electrically connected to a holder. The cathode is heated by irradiation from an external source, whereby the emitting member emits charged particles from an emitting surface at an emitting temperature. The connection between the carrier and the holder provides a thermal barrier for reducing the amount of thermal energy transferred from the cathode to the holder.
US12062513B2
A circuit element protection apparatus applied to a signal input terminal, the circuit element protection apparatus includes a slave processing unit, a main processing unit, a first soft start unit and a second soft start unit. The first soft start unit receives a signal from the signal input terminal, and is used for noise filtering on the signal and delayed a transmission of the signal to the slave processing unit. The second soft start unit receives the signal from the signal input terminal, and is used for noise filtering on the signal and delayed the transmission of the signal to the main processing unit. The present disclosure further includes a protection method for circuit elements.
US12062511B2
An arc path formation unit and a direct current relay are disclosed. The arc path formation unit, according to various embodiments of the present disclosure, includes a Halbach array provided in at least one of the forward and backward directions. The Halbach array forms a magnetic field within an arc chamber by itself or along with another magnetic body. An electromagnetic force may be generated for inducing an arc that is generated by a formed magnetic field and current flowing through the direct current relay. The electromagnetic force is generated in a direction away from each fixed contact. Accordingly, the generated arc can be extinguished and discharged effectively.
US12062508B2
Disclosed are an electromagnet driving mechanism, an electromagnet driving assembly and a dual power automatic transfer switch. The electromagnet driving mechanism includes: a mechanism frame; a stationary core; a movable core, including a moving stroke between a first position away from the stationary core and a second position in contact with the stationary core, the moving stroke including an approaching stroke section; a coil, configured to generate a magnetic attraction force between the stationary core and the movable core upon being energized to drive the movable core to move towards the second position; a reset spring member; and a reset auxiliary assembly, including a push member and a reset auxiliary spring. The reset auxiliary assembly applies a reset auxiliary spring force to the movable core in the approaching stroke section through the push member.
US12062507B2
A wall box may provide adjustable support for a control device, such as a keypad, to allow for level alignment of the control device when mounted to the wall box. The wall box may have an adjustable support frame to which the control device may be mounted. When the control device is mounted to the support frame of the wall box, the support frame may be rotated to adjust the alignment of the control device. In addition, the wall box may comprise one or more projections configured to be received in respective detents in notched surfaces of the control device to allow for adjustment of the alignment of the control device. Further, the wall box may have a modular assembly and may be constructed from a central portion and two side portions at the time of installation of the wall box.
US12062506B2
An illuminated keyswitch structure and an illuminating module thereof are provided. A base plate has an opening. The illuminating module includes a drive circuit board, having a face reflector and at least one dot reflector disposed thereon, a spacer adhered on the drive circuit board and having a through hole and an adhesive-less clearance fringe at least partially surrounding the through hole, a light-emitting part disposed on the drive circuit board and proximate to the face reflector and the dot reflector, and a translucent covering structure covering above the light-emitting part and including a reflective layer. The reflective layer reflects off light from the light-emitting part, and the face reflector and/or the at least one dot reflector reflect light to pass through the through hole of the spacer and then illuminate upward through the translucent covering structure and further through the opening of the base plate.
US12062505B2
A movement mechanism includes: a case; a moving portion movable with respect to the case; and a support member that links the case and moving portion together and supports the moving portion so as to be movable with respect to the case. The support member has a plurality of pairs of first support portions and a plurality of pairs of second support portions, each of which is elastically deformable, has a plate-like shape, and extends between the case and the moving portion. The first support portions and second support portions are respectively placed on a first side and a second side in a moving direction of the moving portion so as to be symmetric with respect to the moving portion in plan view.
US12062504B2
A switch panel for an aircraft includes a cover and aback plate. A distance from the cover to the back plate is a thickness of the switch panel. In some cases, the thickness is less than about 9.525 mm. A button assembly for a switch panel for an aircraft includes a button base, a button retainer, and a lens. The button base includes a bottom end, a base side, and a transition portion between the bottom end and the base side. In certain cases, the transition portion of the button base is beveled or radiused with a sloped or concave shape.
US12062503B2
A photoelectric conversion element including: a first substrate; a first electrode; a photoelectric conversion layer; a second electrode; and a second substrate, wherein the photoelectric conversion element includes a sealing part sealing at least the photoelectric conversion layer, the sealing part is disposed so as to surround periphery of the photoelectric conversion layer, and a width of the sealing part disposed at each side has a minimum width A and a maximum width B in a width direction, and a ratio (B/A) of the maximum width B to the minimum width A is 1.02 or more but 5.0 or less.
US12062496B2
A capacitor includes a capacitor element, a pair of bus bars, and an insulating member. The capacitor element includes a positive electrode surface and a negative electrode surface. The pair of bus bars includes a positive electrode bus bar that is connected to the positive electrode surface of the capacitor element and a negative electrode bus bar that is connected to the negative electrode surface, A plate-shaped insulating member is disposed between the positive electrode bus bar and the negative electrode surface. A part of the insulating member is inserted into a bus bar through-hole provided in the positive electrode bus bar.
US12062489B2
A module comprises at least two ultracapacitors and at least one balancing circuit. The balancing circuit is connected to a heat dissipation component. The heat dissipation component is present on a heat sink comprising a metal.
US12062481B2
A coil component includes a body; a support substrate disposed in the body; a coil portion including a first coil pattern, a first lead-out pattern, and a second lead-out pattern; a first slit portion defined at a corner portion between the first end surface and the first surface, and a second slit portion defined at a corner portion between the second end surface and the first surface, the first and second slit portions exposing the first and second lead-out patterns; a first external electrode and a second external electrode spaced apart from each other on the first surface, and respectively extending onto the first and second slit portions to be connected to the first and second lead-out patterns; and a surface insulating layer disposed on the first and second slit portions to cover a portion of the first and second external electrodes and extending onto the first surface.
US12062457B2
Provided herein are systems, methods, and apparatuses for providing a real-time global bio-surveillance and response solution. The systems and apparatuses may include one or more sentinel subsystems and one or more surge subsystems that each include a real-time, cloud-based, distributed, interconnected set of hardware, software, and/or firmware for comprehensive surveillance, complete detection, and immediate response various to biological, chemical, and/or bio-chemical anomalies, for example, a new or emerging pathogen or other health condition.
US12062451B2
An emergency medical treatment system is provided that can be used in connection with providing prehospital medical treatment to a patient. The system includes a patient data display device programmed to receive and display data associated with the patient; an environmental assessment device configured to capture visual, aural, or other ambient environmental data associated with an emergency treatment site associated with the patient; a patient monitoring device configured to be positioned on the patient and having multiple sensors programmed to collect physiological data or vitals data associated with the patient; and a patient data processing device configured with a speech-to-text module. Rules-based or machine learning based algorithm modules can be provided for generating alerts or making treatment option recommendations in connection with the patient data collected and displayed on the patient display device.
US12062442B2
A method for adjusting the operation of a surgical instrument using machine learning in a surgical suite is disclosed.
US12062433B2
A system for automated conversion and delivery of medical images. In an example implementation, a server is configured to retrieve a medical image file including medical data and metadata, in a medical data format, determine an output destination type based on the metadata, identify standardized format specifications based on the determined output destination type from the retrieved metadata, convert the medical data into a format compatible with the identified standardized format, and transmit an output message of the converted medical data to at least a recipient delivery address.
US12062430B2
A surgery visualization theatre comprising: an augmented/extended reality (AXR) headset; a digital viewport mounted on a cobotic arm; a monitor mounted on a monitor cobotic arm; a camera subsystem mounted on a camera cobotic arm; and a frame with cobotic arms featuring intelligence and command and control for the system and visualization methodologies, where the digital viewport cobotic arm, the monitor cobotic arm, and the camera cobotic arm are mounted on the frame and the AXR headset is connected thereto.
US12062419B2
A system writes input data to a storage device as machine-written polynucleotides; and reads machine written polynucleotides from the storage device as output data. The storage device includes a flow cell including a plurality of storage wells in which machine written polynucleotides may be stored. The storage device may include a set of electrodes corresponding to the storage wells that allow for selective interactions with wells across the surface of a flow cell. Operation of the storage device may include receiving a read request associated with a particular location in the storage device, creating a copy of a nucleotide sequence located at the particular location in the storage device, transferring the copy of the nucleotide sequence to a read location, and reading the copy of the nucleotide sequence at the read location.
US12062413B1
A first-in-first-out (FIFO) storage structure within an integrated-circuit component is loaded with qualification values corresponding to respective pairs of edges expected within a timing strobe signal transmitted to the integrated-circuit component. The qualification values are sequentially output from the FIFO storage structure during respective cycles of the timing strobe signal and a gate signal is either asserted or deasserted during the respective cycles of the timing strobe signal according to the qualification values output from the FIFO storage structure.
US12062408B2
Disclosed herein are related to a memory array including a set of memory cells and a set of switches to configure the set of memory cells. In one aspect, each switch is connected between a corresponding local line and a corresponding subset of memory cells. The local clines may be connected to a global line. Local lines may be metal rails, for example, local bit lines or local select lines. A global line may be a metal rail, for example, a global bit line or a global select line. A switch may be enabled or disabled to electrically couple a controller to a selected subset of memory cells through the global line. Accordingly, the set of memory cells can be configured through the global line rather than a number of metal rails to achieve area efficiency.
US12062402B2
A non-volatile memory device including a memory cell array including a plurality of cell strings, wherein each cell string of the plurality of cell stings includes a string selection transistor, a plurality of memory cells, and a ground selection transistor connected in series between a bit line and a common source line; and a control circuit configured to perform a program operation on a selected memory cell from among the plurality of memory cells and pre-charge a selected cell string including the selected memory cell in a pre-charge section included in a verification section, wherein the selected cell string is pre-charged as a first pre-charge voltage is applied to a selected bit line connected to the selected memory cell.
US12062398B2
A nonvolatile memory device includes a memory cell array including a plurality of memory cells, and a peripheral circuit that performs a program operation of repeatedly performing a program loop. The program loop includes performing a program by applying a program voltage to memory cells selected from the plurality of memory cells, and a first verify by applying a plurality of verify voltages to the selected memory cells. The peripheral circuit completes the program operation in response to a success of the first verify, performs a second verify by applying an additional verify voltage different from the plurality of verify voltages to the selected memory cells, and determines the program operation has failed in response to a failure of the second verify.
US12062392B2
A floating body SRAM cell that is readily scalable for selection by a memory compiler for making memory arrays is provided. A method of selecting a floating body SRAM cell by a memory compiler for use in array design is provided.
US12062390B2
A memory device includes: a refresh control circuit configured to generate a self-refresh command and a refresh address, word line control circuits configured to control a refresh operation of a plurality of word lines, a group management circuit configured to classify N address groups by grouping the refresh addresses to be generated by the refresh control circuit and to select from the N address groups, a current address group including a refresh address to be currently generated and a subsequent address group including a refresh address to be generated after the current address group according to the predetermined order, a row control circuit configured to group the plurality of word line control circuits with N control signals respectively corresponding to the N address groups, respectively, and a supply control circuit configured to activate signals corresponding to the current and subsequent address groups among the N control signals.
US12062380B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for coding speech using neural networks. One of the methods includes obtaining a bitstream of parametric coder parameters characterizing spoken speech; generating, from the parametric coder parameters, a conditioning sequence; generating a reconstruction of the spoken speech that includes a respective speech sample at each of a plurality of decoder time steps, comprising, at each decoder time step: processing a current reconstruction sequence using an auto-regressive generative neural network, wherein the auto-regressive generative neural network is configured to process the current reconstruction to compute a score distribution over possible speech sample values, and wherein the processing comprises conditioning the auto-regressive generative neural network on at least a portion of the conditioning sequence; and sampling a speech sample from the possible speech sample values.
US12062373B2
Introduced here are computer programs and associated computer-implemented techniques for facilitating the creation of a master transcription (or simply “transcript”) that more accurately reflects underlying audio by comparing multiple independently generated transcripts. The master transcript may be used to record and/or produce various forms of media content, as further discussed below. Thus, the technology described herein may be used to facilitate editing of text content, audio content, or video content. These computer programs may be supported by a media production platform that is able to generate the interfaces through which individuals (also referred to as “users”) can create, edit, or view media content. For example, a computer program may be embodied as a word processor that allows individuals to edit voice-based audio content by editing a master transcript, and vice versa.
US12062371B2
A client device attempts to communicate with an access point device both when it is connected to the wireless network along with the access point device as well as when the client device is remote communicating over the Internet. The client device determines a communications path and appropriate command protocol depending upon the client device's location and the communications command protocol supported by the access point device. Once this selection occurs, a user may provide a voice command which is translated into text and converted into an appropriate formatted command message for transmission to the access point device. Any response from the access point device is received by the client device as the same formatted command message which is converted to speech and presented to the user and both an audio and a visual display corresponding to the response.
US12062369B2
A system, method and computer readable medium for dynamic noise reduction in a voice call. The system includes an encoder having a short-time Fourier transform module to determine a magnitude spectrum and a phase spectrum of an input audio signal, including speech and dynamic noise. A separator coupled to the encoder comprises a temporal convolution network (TCN) used to develop a separation mask using the magnitude spectrum as input. The TCN is trained using a frequency SNR function used to calculate loss during training. A mixer is coupled to the separator to multiply the separation mask with the magnitude spectrum to separate the speech from the dynamic noise to obtain a denoise magnitude spectrum. A decoder coupled to the mixer and the encoder includes an inverse short-time Fourier transform module to reconstruct the input audio signal without the dynamic noise using the denoise magnitude spectrum and the phase spectrum.
US12062368B1
Systems and methods to detect themes in contacts data. Contacts data may be encoded as text (e.g., chat logs), audio (e.g., audio recordings), and various other modalities. Text-based transcripts of contacts data may be parsed into turns, an issue turn may be detected using a machine learning model, a key phrase may be extracted from the issue turn. Key phrases from across multiple contacts data may be clustered to identify themes.
US12062367B1
Systems, devices, and methods are provided for processing video streams. Metadata is extracted from an input video stream and processed using a video stream analyzer. The extracted metadata may be correlated along a time dimension. A metadata graph is generated based on relationships between various information present in the video stream as well as external fact sources. Machine learning models may be trained to receive an input phrase, determine a graph query from the input, and determine an output by traversing the metadata graph according to the graph query.
US12062350B2
This application discloses a method for adjusting image luminance performed at an electronic device. The method includes: determining that an original luminance of a target pixel in an image is lower than a luminance threshold of the image, the luminance threshold being determined according to luminance of pixels in the image; in accordance with the determination: obtaining a luminance distribution intensity of pixels adjacent to the target pixel in the image; determining a luminance difference between the luminance threshold and the luminance distribution intensity of the adjacent pixels; and adjusting the original luminance of the target pixel to a corresponding target luminance according to the luminance difference. By preserving the changing characteristic of relative luminance between the target pixel and the adjacent pixel, the luminance adjustment is more consistent with the luminance distribution of the image, thereby achieving a technical effect of improving the luminance adjustment on an image.
US12062336B2
An organic light emitting diode display includes a first transistor disposed on a substrate and including a gate electrode, an input electrode, and an output electrode, a second transistor electrically connected to a scan line, a data line, and the input electrode of the first transistor, a third transistor including a gate electrode, a first electrode electrically connected to the output electrode of the first transistor, and a second electrode electrically connected to the gate electrode of the first transistor, and an overlapping layer that overlaps the gate electrode of the third transistor in a plan view. The overlapping layer is disposed between the substrate and a semiconductor layer of the third transistor.
US12062335B2
A display device includes: a first light emitting element; a third light emitting element adjacent to the first light emitting element in a first direction; second light emitting elements respectively adjacent to the first and third light emitting elements in a second direction crossing the first direction; first pixel circuits respectively under the first and third light emitting elements; second pixel circuits respectively under the second light emitting elements; and a dummy pixel circuit in a dummy circuit area adjacent to a display area in which the first, second, and third light emitting elements and the first and second pixel circuits are arranged and connected to the third light emitting element, wherein the dummy pixel circuit has a width smaller than a width of each of the first pixel circuits in the second direction.
US12062314B2
Provided are a compensation method for a display panel and a display device. The compensation method for a display panel includes: obtaining a first display grayscale obtained to be displayed in a to-be-displayed image by a first sub-pixel, and obtaining a first display data voltage corresponding to the first display grayscale; determining whether the first display data voltage is greater than a low brightness demarcation voltage; and if yes, obtaining a first compensation data voltage corresponding to the first sub-pixel according to the first display grayscale; and determining, according to a lighting voltage corresponding to the first sub-pixel, whether the first compensation data voltage is in a dark-state voltage range; and if yes, compensating the first sub-pixel by using the lighting voltage corresponding to the first sub-pixel, and if not, compensating the first sub-pixel by using the first compensation data voltage.
US12062313B2
This disclosure is directed towards systems and methods of power saving in electronic displays based on changing clock signal frequencies supplied to the gate-in-panel (GIP) circuitry during extended blanking modes of the electronic display. The display driver circuitry of the display may reduce and/or halt clock signal frequencies sent to GIP circuitry in the display, to reduce power output during extended blanking modes of the electronic display.
US12062309B2
A device and method for detecting a screen freeze error of a display of a vehicle. The method comprises monitoring a drive pattern of at least one pixel in a porch area during a time period corresponding to a plurality of image frames, wherein the porch area including at least one of a front porch area and a back porch area of a display panel driven according to the plurality of image frames; and determining occurrence of a screen freeze error by comparing the drive pattern of the at least one pixel with a preset drive pattern.
US12062292B2
An updatable, single fault impervious integrated control and monitoring system (ICMS) for airfield avionics comprising at least a pair of I/O Processors connected in parallel by two separate networks to each of a) a plurality of workstations, preferably including a Master Workstation, and b) one or more Equipment I/O Interface backplanes; said one or more Equipment I/O Interface backplanes comprising one or more programmable Equipment I/O Interface circuit card plugged therein and being structured to be programmed to bidirectionally translate at least one of a plurality of signal types required for control and monitoring of avionic equipment and convert said at least one of a plurality of signal types to and from a common signal type usable by the I/O Processors. Methods of making and using the updatable, single fault impervious ICMS are also described.
US12062286B2
A collision accident prevention method, apparatus, server, and computer program are proposed. The method can include predicting, based on data on a three-dimensional (3D) space corresponding to a caution zone, motion of each of at least one pedestrian in the caution zone and at least one vehicle in the caution zone. The method may also include determining, based on the predicted motion, a degree of risk of collision between the at least one pedestrian and the at least one vehicle. The method may further include providing a message corresponding to the determined degree of risk of collision to the at least one vehicle.
US12062284B2
A vehicle display control device includes a processor configured to execute computer-readable instructions to perform. The processor is configured to identifying a specific vehicle that is another vehicle satisfying a specific condition based on information acquired according to communication from another vehicle located near a host vehicle, identifying a distance and a direction associated with the specific vehicle viewed from the host vehicle, and causing a display device to display a notification image capable of including a first area surrounding a host vehicle icon indicating the host vehicle and a second area surrounding the first area and a display icon indicating the position of the specific vehicle.
US12062281B1
A traffic obstruction early warning system installed in roadway locations with limited visibility or restricted line of sight to warn drivers approaching a hazardous road condition well in advance so that precautionary measures may be taken and thereby reduce the risk of the multiple vehicle involvement. Selected roadway locations for the system installations can be the location of past vehicle pile-ups, or at-risk locations. The system timely and cohesively integrates inputs from a plurality of roadway sensors and human reporting to deploy a variety of visible and audible alerts to approaching drivers, law enforcement, emergency responders, local hospitals, utility companies, vehicle apps, and others using a variety of communication modalities.
US12062275B2
Some embodiments are directed to an emergency response system implemented via a back-end application computer server. A vehicle telematics data store may contain electronic records and each electronic record may include, for example, an electronic record identifier and at least one vehicle operation parameter (e.g., a vehicle speed, an accident location, an accident time of day, etc.). The computer server may receive, from an emergency responder (e.g., a police officer, ambulance, firefighter, etc.) via an interactive graphical emergency responder interface display, a vehicle tag (e.g., based on a QR code). The computer server may then retrieve, from the vehicle telematics data store, a vehicle operation parameter associated with the vehicle tag and update the display based on the retrieved a vehicle operation parameter associated with the vehicle tag.
US12062274B2
To appropriately exclude alarms not requiring maintenance operator confirmation. An alarm control device 1 includes: an individual filter determination unit 11 which acquires, from a storage unit, a determination condition (an individual filter) for whether or not maintenance operator confirmation corresponding to a device alarm issued from a network element device 2 is necessary; an alarm evaluation unit 12 which acquires information corresponding to a determination criterion of the determination condition from a management database 4 managing the network element device 2, checks the acquired information with the determination condition, and determines whether or not maintenance operator confirmation is necessary; and an alarm notification unit 13 which transmits a device alarm to a maintenance operator terminal 5 when the maintenance operator confirmation is determined to be necessary and does not transmit the device alarm to the maintenance operator terminal 5 when the maintenance operator confirmation is determined to be unnecessary.
US12062239B2
An information processing device of the present invention includes a detection means that detects the content of an image, a determination means that determines a processing mode for the image based on the result of detection of the content of the image, and an execution means that executes processing for a captured image corresponding to the processing mode.
US12062231B2
Disclosed is an inundation and overflow prediction system, and particularly, when there is provided an inundation and overflow prediction system, which can visually express the areas and degree of inundation and overflow on an orthophotograph, a Digital Elevation Model, and a Digital Surface Model based on images captured by a drone, which can reflect the latest environment and provide accurate numerical data, visualized information on inundated areas may be used in real-time for management of land to identify areas vulnerable to inundation and overflow and quickly respond to disasters, and objective information on numerical data may be provided in selecting locations for installing safety facilities against flood. Additionally, reports and documents, drawings for creating data, and visible simulation values may be output to supports works, and, there is an effect of constructing and utilizing a database regarding maintenance of social infrastructures through continuously learning of drone images.
US12062229B2
The invention relates to a process for identification of an implant, optionally worn by an individual, comprising the following steps, performed by a processing unit:
obtaining a radiographic input image in which a dental implant is visible;
classification of a region of interest of said radiographic image by means of at least one convolutional neural network; said classification producing a list of candidate implants to be the implant visible on the image, the list being ordered as a function of a probability of being the implant visible on the image.
US12062227B2
Systems and methods of the present disclosure can include a computer-implemented method for efficient machine-learned model training. The method can include obtaining a plurality of training samples for a machine-learned model. The method can include, for one or more first training iterations, training, based at least in part on a first regularization magnitude configured to control a relative effect of one or more regularization techniques, the machine-learned model using one or more respective first training samples of the plurality of training samples. The method can include, for one or more second training iterations, training, based at least in part on a second regularization magnitude greater than the first regularization magnitude, the machine-learned model using one or more respective second training samples of the plurality of training samples.
US12062216B1
A fingerprint reader comprises a platen comprising a light-reflecting surface; a light source configured to emit light rays to illuminate a subject placed in contact with the light-reflecting surface of the platen; a camera configured to capture image data of the subject in contact with the light-reflecting surface of the platen; multiple optical elements arranged in an optical path between the platen and the camera; and an optical chassis comprising: multiple parallel raceway plates, the raceway plates fabricated from carbon fiber, and multiple crossmembers connecting pairs of the raceway plates, wherein the multiple optical elements are disposed in the multiple crossmembers.
US12062215B2
The present disclosure relates to a method and device for using latency compensatory pose prediction with respect to three-dimensional (3D) media data to perform rendering in a communication system supporting mixed reality (XR)/augmented reality (AR). According to an embodiment of the present disclosure, a method for a first device, which receives 3D media data from a media server in a communication system, to perform rendering comprises the steps of: receiving, from AR glasses, pose prediction-related information including pose information of a first point in time; performing pose prediction of a second point in time, at which 2-dimensional (2D) rendering is to be performed in the AR glasses, on the basis of the pose prediction-related information; rendering one or a plurality of 2D pose prediction rendering views with respect to the received 3D media data on the basis of one or a plurality of pieces of predicted pose information of the second point in time; and transmitting, to the AR glasses, 2D media data compressed by encoding the one or plurality of 2D pose prediction rendering views.
US12062214B2
Methods and systems are disclosed for encoding a Morton code. Techniques disclosed comprise receiving location vectors associated with primitives, where the primitives are graphical elements spatially located within a three-dimensional scene. Techniques further comprise determining a code pattern comprising a prefix pattern and a base pattern, and, then, coding each of the location vectors according to the code pattern.
US12062204B2
Various examples of systems and methods are provided for imaging calibration for slide processing. In one example, among others, a system for processing microscope slides includes a light source; an imaging device comprising a lens; and a slide positioner that can position the ground-glass portion of a slide between the light source and lens. Processing circuitry of the system can acquire an image of at least a section of the ground-glass portion at an initial position; analyze contrast of adjacent pixels with respect to a defined contrast characteristic; iteratively advance the lens and acquire additional images based upon analysis of contrast of adjacent pixels with respect to the defined contrast characteristic; and identify an optimal focal location of the lens based upon the defined contrast characteristic. Subsequent image acquisition via the lens can be based at least in part upon the optimal focal location.
US12062197B2
Systems and methods for validation of modeling and simulation systems that provide for the virtual fitting of wearable devices, such as glasses, by a user. Three-dimensional modeling and simulation of test subject both with and without fitting frames corresponding to a wearable device may be captured to validate the modeling and simulation modules and associated algorithms and machine learning modules used to simulate the fit of the wearable device on a user. Validation in this manner may provide for increased accuracy/realism of the modeling and simulation systems.
US12062196B2
The present invention provides a method for registering a circuit design layout and a scanning electron microscope image. The method comprises: step S1, providing a circuit design layout and a scanning electron microscope image; step S2: processing the circuit design layout to acquire a binary design layout image, and processing the scanning electron microscope image to acquire a binary scanning electron microscope image; step S3: performing Gaussian filtering on the binary design layout image and the binary scanning electron microscope image to maximize a gray value at a central axis of regions corresponding to a design pattern and a scanned pattern; and Step S4: performing registration according to the central axis of the design pattern and the scanned pattern. The present invention also provides a system for registering a circuit design layout and a scanning electron microscope image, a circuit design layout and an imaging error calculation method thereof, and an electronic device. The method and system for registering a circuit design layout and a scanning electron microscope image, the circuit design layout and the imaging error calculation method thereof, and the electronic device feature accurate registration and accurate error calculation.
US12062195B2
An example disclosed method includes (i) transmitting a first point cloud to a client, wherein the first point cloud corresponds to a reference point cloud, (ii) receiving a second point cloud, and (iii) hierarchically determining changes in the second point cloud from the reference point cloud, wherein hierarchically determining the changes includes (a) identifying first areas in the second point cloud that have changed from the reference point cloud, and (b) for a first area having a highest priority, determining a first rigid 3D transformation that approximates a first change from the reference point cloud, and if the first rigid 3D transformation cannot be determined, further determining first points to be used to modify the reference point cloud, wherein the first points are representative of the first change.
US12062186B2
A method, machine readable medium and system for RGBD semantic segmentation of video data includes determining semantic segmentation data and depth segmentation data for less than all classes for images of each frame of a first video, determining semantic segmentation data and depth segmentation data for images of each key frame of a second video including a synchronous combination of respective frames of the RGB video and the depth-aware video in parallel to the determination of the semantic segmentation data and the depth segmentation data for each frame of the first video, temporally and geometrically aligning respective frames of the first video and the second video, and predicting semantic segmentation data and depth segmentation data for images of a subsequent frame of the first video based on the determination of the semantic segmentation data and depth segmentation data for images of a key frame of the second video.
US12062185B2
A method and system for mapping boundary detecting features of at least one source triangulated mesh of known topology to a target triangulated mesh of arbitrary topology. A region of interest in a volumetric image associated with each triangle of the target triangulated mesh is provided to a feature mapping network. The feature mapping network assigns a feature selection vector to each triangle of the target triangulated mesh. The associated region of interest and assigned feature selection vector for each triangle of the target triangulated mesh are provided to a boundary detection network. A predicted boundary based on features of the associated region of interest selected by the assigned feature selection vector is obtained from the boundary detection network.
US12062181B2
An image processing apparatus configured to extract an irradiation field from an image obtained through radiation imaging, comprises: an inference unit configured to obtain an irradiation field candidate in the image based on inference processing; a contour extracting unit configured to extract a contour of the irradiation field based on contour extraction processing performed on the irradiation field candidate; and a field extracting unit configured to extract the irradiation field based on the contour.
US12062176B2
The present disclosure describes systems, non-transitory computer-readable media, and methods for detecting and indicating modifications between a digital image and a modified version of a digital image. For example, the disclosed systems generates an ordered collection of change records in response to detecting modifications to the digital image. The disclosed systems generates determine one or more non-contiguous modified regions of pixels in the digital image based on the change records. The disclosed system generate an edited region indicator corresponding to the non-contiguous modified regions. The disclosed systems can further color-code the edited region indicator at an object level based on objects in the modified version of the digital image.
US12062170B2
Disclosed is a system and method for classifying a tooth condition, comprising: a localization layer; a classification layer; a processor; a non-transitory storage element coupled to the processor; encoded instructions stored in the non-transitory storage element, wherein the encoded instructions when implemented by the processor, configure the automated parsing pipeline system to: localize a present anatomical landmark in a patient's oral or maxillofacial region depicted in a parsed image frame by the localization layer, said landmark comprising of a feature or features with anatomical or pathological significance; and classify a dental or maxillofacial condition based on measuring any kind of relation between two or more features within and/or between landmarks by the classification layer.
US12062162B2
An image processing device performs projection conversion that makes an image captured of an object to be recognized closer to a normal image captured from front of the object to be recognized based on a correlation between: a pre-specified plurality of feature ranges dispersed within a range of the object to be recognized; and a plurality of feature ranges designated based on the dispersion in the image.
US12062159B1
A camera apparatus includes control circuitry configured to acquire an input color image of an agricultural field, smoothen the input color image with a median blur and convert the smoothened input color image into a plurality of different color spaces. The control circuitry is configured to execute a set of channel operations on an individual channel or combined channels in each color space of the plurality of different color spaces and generate a normalized image based on outputs received from each color space processing path. The control circuitry is configured to determine a threshold value based on a histogram of the normalized image and apply the determined threshold value to generate a first binary mask image. The control circuitry is configured to apply one or more morphology operations to remove noise in the first binary mask image and generate an output binary mask image of foliage mask.
US12062157B2
Disclosed is a system and associated methods for generating a composite image from scans or images that are aligned using invisible fiducials. The invisible fiducial is a transparent substance or a projected specific wavelength that is applied to and changes reflectivity of a surface at the specific wavelength without interfering with a capture of positions or visible color characteristics across the surface. The system performs first and second capture of a scene with the surface, and detects a position of the invisible fiducial in each capture based on values measured across the specific wavelength that satisfy a threshold associated with the invisible fiducial. The system aligns the first capture with the second capture based on the detected positions of the invisible fiducial, and generates a composite image by merging or combining the positions or visible color characteristics from the aligned captures.
US12062147B2
An information processing system includes an estimation unit that, when map information indicating a map of an environment around a first device in a real space is updated, estimates a position of the first device, based on observation information obtained by observing the environment around the first device and the map information after update, an identification unit that identifies a position of a virtual camera provided in a virtual space associated with the real space, based on the position of the first device estimated by the estimation unit, and a video generation unit that generates a video of the virtual space corresponding to an imaging range of the camera at the position identified by the identification unit.
US12062141B2
The subject technology receives information for a product. The subject technology generates a 3D model file of the product in a first format. The subject technology converts the 3D model file to a 3D object file in a second format. The subject technology associates the 3D object file to the product in a product catalog service. The subject technology publishes an augmented reality (AR) content generator corresponding to the product.
US12062139B2
A virtual scenario generation method includes acquiring scenario characteristic information corresponding to a target virtual scenario to be generated; generating a scenario division mesh in an initial virtual scenario based on the scenario characteristic information, the scenario division mesh comprising division marking data configured to divide the initial virtual scenario; generating a scenario object collection which is about to be added to the scenario division mesh and comprises one or more scenario objects; performing attribute matching on the one or more scenario objects and the division marking data to obtain one or more candidate scenario objects allocated to the division marking data; selecting a target scenario object from the one or more candidate scenario objects according to position associated information between the candidate scenario objects and the division marking data; and matching the target scenario object with the division marking data to generate the target virtual scenario.
US12062137B2
An information processing apparatus has an identification unit, an obtaining unit, and an output unit. The identification unit identifies, in a virtual viewpoint image generated using shape data representing a three-dimensional shape of an object, a target for which to generate data for modeling a three-dimensional object, based on time information related to the virtual viewpoint image as well as a position of a virtual viewpoint and a direction of a line of sight from the virtual viewpoint related to the virtual viewpoint image. The obtaining unit obtains shape data on a first object in the virtual viewpoint image, the first object corresponding to the identified target. The output unit outputs data for modeling a three-dimensional object generated based on the obtained shape data.
US12062131B2
The invention relates to a six-DoF measurement aid for determining 3D coordinates of a multiplicity of object points to be measured in the form of 3D points of a point cloud in cooperation with a laser tracker, having an environment sensor arrangement and a control module. The control module comprises a platform control assistance functionality, which is configured to instruct the environment sensor arrangement, during the automatically guided movement of the six-DoF measurement aid, in a first mode to generate environmental information for determining an environmental normal, and in a second mode to generate environmental information for detecting anomalies with respect to the environmental normal, and to provide the environmental information generated by the environment sensor arrangement for control assistance of the platform control.
US12062128B2
Described herein is a computer-implemented method for simulating texture features of a n-layer target coating, the method including at least the steps of: a) providing known real geometrical properties and known individual ingredients with known real material properties; b) modelling the n-layer target coating in a virtual environment; c) virtually tracing rays of light from one or more light sources towards an aim region defined on a surface of the n-layer target coating; d) virtually collecting rays of light that interacted with the n-layer target coating; e) virtually determining, at least one of an angular, a spectral and a spatial distribution of intensity of the rays of light re-emitted from or reflected by the n-layer target coating; and f) evaluating the determined distribution(s) of intensity and outputting, by an output device, at least one image based on the evaluation.
US12062119B2
Embodiments presented in this disclosure provide for dynamic application of user selected visual accessibility transforms onto glyphs of standard fonts so that, for instance, a user device can present textual content to a user in a form personalized by the user to be more readable. In accordance with some aspects, a user selection of a font transformation is received. A set of initial control points of an initial glyph is transposed based on the font transformation to generate a set of modified control points. A modified glyph is constructed using differential evolution based at least on the set of initial control points and the set of modified control points.
US12062111B2
The invention provides, in some aspects, a system for rendering images, the system having one or more client digital data processors and a server digital data processor in communications coupling with the one or more client digital data processors, the server digital data processor having one or more graphics processing units. The system additionally comprises a render server module executing on the server digital data processor and in communications coupling with the graphics processing units, where the render server module issues a command in response to a request from a first client digital data processor. The graphics processing units on the server digital data processor simultaneously process image data in response to interleaved commands from (i) the render server module on behalf of the first client digital data processor, and (ii) one or more requests from (a) the render server module on behalf of any of the other client digital data processors, and (b) other functionality on the server digital data processor.
US12062101B2
The system creates a first start time and a first recording of a first user interface with which a user is interacting. Upon determining that the user is not interacting with the first user interface, the system creates a first end time, a second start time, and a second recording of a second user interface with which the user is interacting. Upon obtaining an indication to create a second end time, the system creates the second end time. The system calculates a first difference between the first end time and first start time and a second difference between the second end time and second start time. The system obtains a first task and second task associated with the first recording and second recording, respectively. Based on the first and second differences and the first and second tasks, the system creates a first and a second time entry, respectively.
US12062096B2
A method for providing actionable intelligence in real-time to facilitate a plurality of transactions is disclosed. The method includes compiling historical activity data for potential clients; defining, by using a model, a score for each of the potential clients based on the compiled historical activity data; receiving, via an event stream, a request, the request relating to a transaction request for a financial instrument; retrieving client coverage data that corresponds to the potential clients, the client coverage data including a strategic client plan that relates to development of client relationships; identifying a predetermined rule that corresponds to the request; and automatically determining, in real-time for the request, a recommended client from the potential clients based on at least one from among the score, the client coverage data, the corresponding predetermined rule, and the historical activity data.
US12062093B2
Provided are a method and an apparatus for executing a quantitative trading strategy, for executing the quantitative trading strategy through a graphical interface, without requiring a user to have a capability of writing program codes, thereby improving the user experience. The method for executing the quantitative trading strategy includes: displaying a graphical interface including an execution area; obtaining a first instruction inputted by a user; obtaining a first quantitative trading strategy in response to the first instruction, the first quantitative trading strategy including at least one parameter related to a real market operation; adding the first quantitative trading strategy to the execution area to form a first execution record corresponding to the first quantitative trading strategy; and executing, based on the first execution record, the first quantitative trading strategy to obtain execution information of the first quantitative trading strategy.
US12062090B2
A blockchain enabled electronic futures trading system and method provided which allows for optional computerized delivery of cryptocurrency. A trade determination system allows a buyer and seller computer system to trade a future on a cryptocurrency such as bitcoin. Additionally, the trade determination system communicates with a central clearing computer system that allows the seller to provide, using the block chain, an amount of bitcoin equal to or greater than the underlying future by transferring the bitcoin from a seller bitcoin wallet associated with the seller computer system to a central clearing bitcoin wallet associated with the central clearing computer system. Upon the expiration date of the future, the seller may optionally select to provide to the buyer the bitcoin that was previously transferred to the central clearing bitcoin wallet instead of fiat currency.
US12062088B1
The present application is directed to apparatuses, methods, and systems for remote deposit capture with enhanced image detection. In one form, a system includes a processor configured to extract an instrument image from an image that is associated with an account, where the instrument image is extracted by determining at least one corner of a plurality of corners of an instrument in the image, and to transmit the instrument image to a financial institution server to transfer funds between financial institution accounts.
US12062081B2
A system including one or more processors and one or more non-transitory computer-readable media storing computing instructions that, when executed on the one or more processors, cause the one or more processors to perform functions including: receiving a respective item description and at least one respective attribute value for each item of a set of items; generating at least one respective text embedding; generating a graph of the set of items based on at least co-view data to create pairs of items that are co-viewed by joining respective pairs of items; training the text embedding model and a machine learning model using a neural loss function based on the graph; and automatically determining, using the machine learning model, as trained, a label for each item of the set of items. Other embodiments are disclosed.
US12062080B2
The present disclosure relates to improving recommendations for small shops on an ecommerce platform while maintaining accuracy for larger shops by retraining a machine-learning recommendation model to reduce sample selection bias using a meta-learning process. The retraining process comprises identifying a sample subset of shops on the ecommerce platform, and then creating shop-specific versions of the recommendation model for each of the shops in the subset by optimizing the baseline model to predict user-item interactions in a first training dataset for the applicable shop. Each of the shop-specific models is then tested using a second training dataset for the shop. A loss is calculated for each shop-specific model based on the model's predicted user-item interactions and the actual user-item interactions in the second training dataset for the shop. A global loss is calculated based on each of the shop-specific losses, and the baseline model is updated to minimize the global loss.
US12062068B2
A OneAPP platform system and method provide hyperlocal searching. Each computing device has a OneApp that identifies a user action on the computing device that indicates an interest in a point of interest (PoI) and transform, in response to the user action on the computing device, the OneApp stored on the computing device into a PoI specific App that delivers PoI specific content and offers to the computing device.
US12062063B1
A system for a product bundle may include a user device for acquiring an image including stocked food products, and a bundle server configured to obtain the image from the user device. The bundle server may identify each of the stocked food products using image recognition, and associate at least one of the identified stocked food products with a recipe. The recipe may include needed food products. The bundle server may generate a product bundle for purchase that includes the needed food products. The product bundle may have a bundle price less than a sum of individual purchase prices of each of the needed food products. The bundle server may also communicate the product bundle for purchase and the bundle price to the user device, and generate a digital promotion redeemable toward the purchase of the product bundle and communicate the digital promotion to the user device.
US12062060B2
Embodiments of the present disclosure disclose a method and a device for processing user interaction information. A specific embodiment of the method comprises: acquiring a set of user interaction information associated with a preset interaction operation, wherein the user interaction information comprises category information and brand information of an interaction object, user attribute information, and operation time information of interaction operations corresponding to a brand of the interaction object; generating a corresponding interaction feature of a user on the basis of the set of user interaction information; and determining, on the basis of the interaction feature of the user and a pre-trained preset operation probability generation model, a probability of the user executing a target operation associated with a brand of the interaction object in the corresponding user interaction information.
US12062052B2
Systems for securing transactions based on merchant trust score are disclosed. The system may receive information identifying a merchant from a user device and, in response, retrieve transaction data associated with the merchant and receive website data in response to receiving information identifying the merchant. The system may use a machine learning model to generate a merchant trust score for the merchant, and determine whether the merchant trust score is less than a predetermined threshold. The system may also generate or retrieve an alternative payment method and provide related information or a recommendation to the user device.
US12062050B2
A method executed by a computing entity includes interpreting digital records to produce a first digital record representing a first contingent asset. The method further includes interpreting a first authenticity indicator associated with the first digital record to produce a first contingent asset risk level. When the first contingent asset risk level is greater than a contingency risk threshold level, the method further includes establishing a set of first contingent asset available terms for a corresponding set of portions of the first contingent asset, generating a set of first smart contracts to represent the set of portions to include the set of first contingent asset available terms and a contingent status. The method further includes causing generation of a non-fungible token to represent the set of first smart contracts in an object distributed ledger.
US12062043B1
A system for processing distributed ledger transactions using a time-sequenced, asynchronous, Byzantine Fault Tolerant (taBFT) consensus system. Transaction data from a client device is received by a full node in a distributed ledger network. The full nodes are preferably satellite based nodes. The full nodes include an object router and a validator node. Transaction data is received at the object router, a timestamp is attached to the transaction data, and the combined data is encrypted and sent to the validator node, and also to other full nodes. The validator node verifies the format, structure and correctness of the data contained in the transaction, and validates the requested transaction. Other full nodes receive the encrypted transaction data and make their own determination of the validity of the transaction data. Upon consensus approval of a transaction, the transaction data is executed and submitted to a permanent data store.
US12062033B2
The present disclosure describes devices and methods for an anonymized tracking service. In particular, devices and methods are described for a third party system that allows a user to selectively opt-in to wireless location tracking at specific stores. The anonymized tracking service may include a third party, a third party server system, a mobile device, and one or more store computing systems. In one aspect, a third-party (e.g., not associated with a store) mobile application may be downloaded onto a mobile device of a user. The mobile application provides a central control unit that allows the user to select which stores have permission to track the location of the user within a building associated with the store. In some embodiments, the central control unit may also allow a user to select which type or how much additional information the store may collect and save.
US12062027B2
An example operation includes one or more of receiving, by a server, a request for particular data, determining, by the server, a transport that can provide the particular data based on one or more current settings of the transport and a current route of the transport, requesting, by the server, the transport to provide the particular data for a value, and receiving, by the server, the particular data.
US12062023B1
A waste management system includes a waste management device, a monitoring unit, and a communication unit. The waste management device includes a collection unit, a classification unit, a segregation unit, a plurality of sensors, a power unit, and a plurality of waste bins. The collection unit collects one or more waste articles. The classification unit utilizes a machine-learning model and identifies a waste category of the one or more waste articles. The segregation unit transports the one or more waste articles to a particular waste bin corresponding to the identified waste category. The power unit supplies power to the waste management device. The monitoring unit monitors the waste management device and controls a resultant action. The communication unit communicates one or more data between a control station and the waste management device using a plurality of IoT devices.
US12062020B2
Systems and methods for presenting calendar information in electronic messages can include a data processing system receiving a request for calendar information for display in an electronic message responsive to the client device accessing the electronic message. The data processing system can identify, using information in the request, the calendar information of the sender of the electronic message and calendar information of the recipient of the electronic message. The data processing system can retrieve the calendar information of the sender of the electronic message and the calendar information of the recipient of the electronic message. The data processing system can automatically generate an image depicting the calendar information of the sender of the electronic message and the calendar information of the recipient of the electronic message, and send instructions to the client device to cause display of the image within the electronic message accessed by the client device.
US12062019B2
Disclosed herein are system, method, and computer program product embodiments for delivering and receiving messages. An embodiment operates by allowing users to subscribe to various chat panels of a messaging system. Users will be able to utilize the chat panels to send and receive messages. In a corporate context, an administrator may be able to quickly send unidirectional messages to employees as well as assign users to mandatory divisions based on job function. In an embodiment, the messaging system also allows for email integration and graphical user interface workspace configuration.
US12062013B1
A system and method applying store operational data for automated product location tracking within an environment can include collecting operational data with item identifier information, generating item event location data through a sensor monitoring system, processing the operational data and establishing a candidate item location dataset using item event location data associated with the operational data, and translating the candidate item location dataset into an item location map. Variations of the system and method can integrate with product scanning events and/or transaction data.
US12062012B2
Dispensing units or stations for dispensing items, such as in a healthcare facility, are linked in a network. The dispensing stations are arranged in groups. Inventory data for all the stations in a group is combined together, and displayed at a graphical view or widget. Multiple widgets may be displayed on a dashboard screen of a user system, for use in managing inventory.
US12061993B2
Disclosed is a service providing system capable of providing an information processing function effective for a variety of system constructions as a service. The service providing system of the present embodiment realizes an information retrieval function, a knowledge base construction function, and a knowledge presentation function. The information retrieval function retrieves information on an analysis target and information indicating a condition of the analysis target; the knowledge base construction function constructs a knowledge database for acquiring knowledge corresponding to the condition of the analysis target based on the information retrieved by the information retrieval function. The knowledge presentation function presents knowledge corresponding to the condition of the analysis target from the knowledge database.
US12061991B2
Transfer learning in machine learning can include receiving a machine learning model. Target domain training data for reprogramming the machine learning model using transfer learning can be received. The target domain training data can be transformed by performing a transformation function on the target domain training data. Output labels of the machine learning model can be mapped to target labels associated with the target domain training data. The transformation function can be trained by optimizing a parameter of the transformation function. The machine learning model can be reprogrammed based on input data transformed by the transformation function and a mapping of the output labels to target labels.
US12061984B2
In one aspect, the invention comprises a system and method for control of a transaction state system utilizing a distributed ledger. First, the system and method includes an application plane layer adapted to receive instructions regarding operation of the transaction state system. Preferably, the application plane layer is coupled to the application plane layer interface. Second, a control plane layer is provided, the control plane layer including an adaptive control unit, such as a cognitive computing unit, artificial intelligence unit or machine-learning unit. Third, a data plane layer includes an input interface to receive data input from one or more data sources and to provide output coupled to a decentralized distributed ledger, the data plane layer is coupled to the control plane layer. Optionally, the system and method serve to implement a smart contract on a decentralized distributed ledger.
US12061981B1
Some embodiments provide a method for training parameters of a network. the method receives a machine-trained (MT) network with multiple layers of computation nodes. Each computation node of a set of the layers computes an output value based on a set of input values and a set of trained weight values. A first layer of the MT network includes a first number of filters. The method replaces the first layer with (i) a second layer having a second number of filters that is less than the first number of filters and (ii) a third layer having the first number of filters. Output values of computation nodes of the second layer are quantized and the third layer using the quantized output values of the second layer as input values.
US12061980B2
System and methods for training neural network models for real-time flow simulations are provided. Input data is acquired. The input data includes values for a plurality of input parameters associated with a multiphase fluid flow. The multiphase fluid flow is simulated using a complex fluid dynamics (CFD) model, based on the acquired input data. The CFD model represents a three-dimensional (3D) domain for the simulation. An area of interest is selected within the 3D domain represented by the CFD model. A two-dimensional (2D) mesh of the selected area of interest is generated. The 2D mesh represents results of the simulation for the selected area of interest. A neural network is then trained based on the simulation results represented by the generated 2D mesh.
US12061975B2
A reconfigurable, for example with time, network switch matrix coupling switch charge circuits representing multiply and add circuits (MACs) and neurons (MACs with activations) capable of accepting and outputting proportional to charge pulses through crossbars within said network, said crossbars controlled by local controllers and higher level controllers to setup said crossbar communications.
US12061973B2
A neural processing device and transaction tracking method thereof are provided. The neural processing device comprises a first set of a plurality of neural cores, a shared memory shared by the first set of the plurality of neural cores, and a programmable hardware transactional memory (PHTM) configured to receive a memory access request directed to the shared memory from the first set of the plurality of neural cores and configured to commit or buffer the memory access request.
US12061968B2
A computer-implemented method that includes receiving, by a processing unit, an instruction that specifies data values for performing a tensor computation. In response to receiving the instruction, the method may include, performing, by the processing unit, the tensor computation by executing a loop nest comprising a plurality of loops, wherein a structure of the loop nest is defined based on one or more of the data values of the instruction. The tensor computation can be at least a portion of a computation of a neural network layer. The data values specified by the instruction may comprise a value that specifies a type of the neural network layer, and the structure of the loop nest can be defined at least in part by the type of the neural network layer.
US12061965B2
A method for training a model for generating simulation data for training an autonomous driving agent, comprising: analyzing real data, collected from a driving environment, to identify a plurality of environment classes, a plurality of moving agent classes, and a plurality of movement pattern classes; generating a training environment, according to one environment class; and in at least one training iteration: generating, by a simulation generation model, a simulated driving environment according to the training environment and according to a plurality of generated training agents, each associated with one of the plurality of agent classes and one of the plurality of movement pattern classes; collecting simulated driving data from the simulated environment; and modifying at least one model parameter of the simulation generation model to minimize a difference between a simulation statistical fingerprint, computed using the simulated driving data, and a real statistical fingerprint, computed using the real data.
US12061962B2
Embodiments of the disclosure relate to systems and methods for leveraging unsupervised machine learning to produce interpretable routing rules. In various embodiments, a training dataset comprising a plurality of data records is created. The plurality of data records includes message data comprising a plurality of messages and action data comprising a plurality of actions that correspond to the plurality of messages. A first machine learning model is trained using the training dataset. The first machine learning model as trained provides cluster data that indicates, for each data record of the plurality of data records of the training dataset, membership in a cluster of a plurality of clusters. An enhanced training dataset is created that comprises the message data from the training dataset, the action data from the training dataset, and the cluster data. A set of second machine learning models is trained using the enhanced training dataset, each respective second machine learning model of the set of second machine learning models providing a decision tree of a plurality of decision trees and corresponding to a distinct cluster of the plurality of clusters. Rules can be extracted from each decision tree of the plurality of decision trees and used as a basis for creating and transmitting alerts based on incoming messages.
US12061960B2
A learning device is configured to perform learning of a decision tree. The learning device includes a gradient output unit and a branch score calculator. The gradient output unit is configured to output a cumulative sum of gradient information corresponding to each value of a feature amount of learning data. The branch score calculator is configured to calculate a branch score used for determining a branch condition for a node of the decision tree, from the cumulative sum without using a dividing circuit.
US12061956B1
Techniques for utilizing a federated learning service are described. An exemplary method includes causing a development of a deployable machine learning model using at least two devices, the development of the deployable machine learning model including: providing an initial machine learning model or algorithm to the at least two devices external to the provider network, causing each of the at least two devices external to the provider network to locally train the initial machine learning model or algorithm using training data to each generate a modified version of the initial machine learning model, determining updates between the initial model and the generated modified versions of the initial machine learning model, and applying the determined updates to the initial model to generate the candidate machine learning model.
US12061943B2
The invention relates to measuring devices or display devices and a method for operating these devices, in particular instruments for level measurement, for level detection, for detecting the topology of a product surface or for displaying the measured values of these instruments. A measuring device or display device has an RFID unit. The RFID unit is set up to exchange data with a memory on an external command from an external communication device, to switch a controllable switch on and off, and/or to transfer energy to an energy storage device.
US12061924B2
Finding optimal solutions to Web Service Location Allocation Problem (WSLAP) using exhaustive algorithms and exact approaches is not practical. Computational time required to solve WSLAP using exact approaches increases exponentially with the problem size. The disclosure herein generally relates to service deployment, and, more particularly, to a method and system for web service location allocation and virtual machine deployment. The system identifies a plurality of web-services that are associated with the WSLAP and then decomposes the WSLAP to a plurality of sub-problems. For each sub-problem, the system determines at least one non-dominating solution, which are then merged to generate the solution for the WSLAP. The generated solution to the WSLAP can be used for perform Virtual Machine (VM) deployment under uncertainties, using a stochastic approach, wherein the uncertainties refer to dynamic change in requirements in terms of parameters such as but not limited to configuration, and cost.
US12061922B2
Techniques for decoupling compute and storage resources in a hyper-converged infrastructure (HCI) are provided. In one set of embodiments, a control plane of the HCI deployment can provision a host from a host platform of an infrastructure on which the HCI deployment is implemented and can provision one or more storage volumes from a storage platform of the infrastructure, where the storage platform runs on physical server resources in the infrastructure that are separate from the host platform. The control plane can then cause the one or more storage volumes to be network-attached to the host in a manner that enables a hypervisor of the host to make the one or more storage volumes available, as part of a virtual storage pool, to one or more virtual machines in the HCI deployment for data storage.
US12061919B2
A system and method for providing dynamic I/O virtualization is herein disclosed. According to one embodiment, a device capable of performing hypervisor-agnostic and device-agnostic I/O virtualization includes a host computer interface, memory, I/O devices (GPU, disk, NIC), and efficient communication mechanisms for virtual machines to communicate their intention to perform I/O operations on the device. According to one embodiment, the communication mechanism may use shared memory. According to some embodiments, the device may be implemented purely in hardware, in software, or using a combination of hardware and software. According to some embodiments, the device may share its memory with guest processes to perform optimizations including but not limited to a shared page cache and a shared heap.
US12061918B2
Provided herein are systems and method for providing routing of complex dynamically updated website applications using micro front ends (MFEs). The MFEs can be instantiated in a nested fashion. Each MFE can be agnostic to other levels of the website application structure that are not directly adjacent to the MFE in the hierarchy of the nesting. Navigation events can be bubbled up to a shell application to retain top-level control of routing within the website application without requiring the shell application to have all levels of routing in the hierarchy.
US12061890B2
An example operation may include one or more of receiving a request to install a software system via a host platform, where the software system comprises a plurality of software programs of a plurality of providers, respectively, generating a non-fungible token (NFT) for a software program from among the plurality of software programs based on a private key, embedding the NFT with the software program within the software system and storing provider data of the software program mapped to the NFT via a blockchain ledger, and installing the software system via the host platform with the NFT embedded therein.
US12061888B2
A method can be used for verifying an execution of a compiled software program stored in a program memory of a processor and executed by the processor. A write operation includes assigning a destination address in a register of the processor and writing a datum at a location pointed to by the destination address contained in the register. A verification operation includes reassigning the same destination address in the same register, reading the datum contained at the location pointed to by the destination address contained in the register after the reassignment, and comparing the read datum and the written datum.
US12061885B2
A compilation method includes obtaining a source program code. The source program code includes a first function in a first language code and a second function in a second language code. The first language code is a native language. The second language code is a non-native language. The method also includes generating a third language code based on the source program code. The third language code includes a third function, a fourth function and a fifth function. The third function is generated based on the first function. The fourth function is generated based on the second function. The fifth function is generated based on the first function and the second function. Executing the third function invokes the fourth function via the fifth function.
US12061878B2
A system and method for the creation of locality sensitive hash signatures using weighted feature sets is disclosed. The disclosed methodology takes advantage of discretization mechanisms commonly used in computer systems to model the influence of the feature weights on the calculated hash signature. Pseudo random numbers required for the signature calculation are created in ascending order, which enables the signature generation mechanism to identify and avoid the unnecessary creation of pseudo random numbers to improve the performance of the signature calculation process. Further, hierarchic, tree-search like algorithms are used during the processing of signature weights to further decrease the number of required random numbers. The features of the Poisson Process model, like its ability to provide random numbers in ascending order and the split—and mergeability of Poisson Processes are used to further improve the performance of the signature calculation process.
US12061876B2
Systems and methods are provided for facilitating the building and use of natural language understanding models. The systems and methods identify a plurality of tokens and use them to generate one or more pre-trained natural language models using a transformer. The transformer disentangles the content embedding and positional embedding in the computation of its attention matrix. Systems and methods are also provided to facilitate self-training of the pre-trained natural language model by utilizing multi-step decoding to better reconstruct masked tokens and improve pre-training convergence.
US12061875B2
A corpus of textual data records, labeled by experts as corresponding to a defined characteristic, that comprise descriptions of problems with an item are collected. A language model generates a plurality of n-grams from the corpus. Frequently occurring n-grams are analyzed using a zero-shot learning model to determine similarity to the defined characteristic. N-grams highly similar to the defined characteristic may be selected as defined phrases. N-grams highly similar to another characteristic may also be selected to reduce false positives. The zero-shot model may also be used to determine a weighting factor for each defined phrase for each record. A relevance score is determined for a record by multiplying the weighting factors for each phrase that has a similarity score relative to the record above a threshold based on the expert labeling. The relevancy score may be used to automatically diagnose problems with the item.
US12061860B2
Systems, methods, and computer-readable media are disclosed for generating uniform hierarchical views of technical documents irrespective of a file format for the technical document. Metadata definitions may be received that define a technical document hierarchy for the technical document. Based on the metadata definitions, technical data element may be mapped to the technical document hierarchy. The technical document may be generated, the technical document comprising the technical data elements. Based in part on the technical document and the metadata definitions, the uniform hierarchical view may be generated. The uniform hierarchical view may be populated with at least a subset of the technical data elements from the technical document. Once generated, the uniform hierarchical view may be displayed.
US12061853B2
Various implementations described herein refer to a device having an integrated circuit with multiple tiers including a first tier and a second tier that are arranged vertically in a stacked configuration. The first tier may have first functional components, and the second tier may have second functional components. The device may have a three-dimensional (3D) connection within the first tier that allows for synchronous signaling between the first functional components and the second functional components for reducing latency between the multiple tiers including the first tier and the second tier.
US12061843B2
A method of controlling an environment using a roaming electronic assistant. The method comprises capturing a plurality of associations of voice commands to device commands coded for a first electronic assistant (EA) device by a home electronic assistant (EA) client application, where each association links a voice command to a corresponding device command coded for the first EA device, and where the first EA device takes action in a home environment based on the voice commands, sending the associations of voice commands to device commands coded for the first EA device to an EA client application executing on a computer system, and building a mapping of the associations for the first EA device to associations for a second EA device by the EA client application, where each association for the second EA device links a voice command to a device command coded for the second EA device.
US12061841B2
A computer-implemented method allocates screen space to two or more voice commands concurrently. The method includes receiving, by a voice controlled device (VCD), two or more voice commands including a first voice command and a second voice command, where a result for each of the voice commands can be displayed on a screen associated with the VCD. The method further includes allocating a portion of the screen for each command including, a first allocation for a first result of the first command and a second allocation for a result of the second command. The method also includes displaying, based on the allocating, the first result and the second result simultaneously on the screen.
US12061829B2
A monitoring control apparatus is provided. The apparatus comprises at least one memory; and at least one processor. When executing a program stored in the at least one memory, the processor causes the apparatus to operate as a saving unit saving a capturing order of devices for each capturing unit; a holding unit holding, for each job, a state of a device used in the job; and a control unit specifying a target device in accordance with the capturing order and capture the specified target device with the capturing unit. The control unit specifies a target device as a next capturing target in accordance with the capturing order and if there is no job in which a state of the specified target device is a waiting state, specifies a next device as a target device in accordance with the capturing order.
US12061813B2
A request to restore a specific backup instance is received. In response to the received request to restore the specific backup instance, a new reference backup instance based on the specific backup instance stored at the storage controlled by the backup system is created at a storage controlled by a backup system. Data associated with the specific backup instance is provided to a recipient system from the storage associated with a backup system. A constructive incremental backup snapshot of the recipient system is performed based on the new reference backup instance.
US12061811B2
Methods and systems for multi-device, multi-channel cloud-based differential data synchronization. The system includes a server system, a source device including a first migration application instance, the source device configured to execute the first migration application instance to initiate a data transfer process with the server system to transfer user data to the server system upon a user ordering a target device, and the target device including a second migration application instance, the target device configured to execute the second migration application instance to initiate a data transfer process with the server system to transfer the user data to the target device, and execute a second data transfer with the source device to finalize data synchronization when the user is picking up the target device.
US12061795B2
This document describes aspects of communicating information about repair elements of a memory device. A memory device can include multiple repair elements that can each replace a defective or damaged memory element, such as a memory row, using a repair operation. By knowing a quantity of remaining available repair elements, a user of a memory device can make informed decisions about whether to make a replacement. In operation, a host device can send a command to the memory device requesting repair element information. Logic of the memory device can determine a quantity of repair elements that are available for a repair operation. In some cases, the logic may store this quantity in a register of the memory device. The memory device can signal the quantity of repair elements to the host device in response to the command.
US12061793B1
A decoding engine within an integrated-circuit (IC) component iteratively executes error detection/correction operations with respect to a sequence of input data volumes to generate a corresponding sequence of error syndrome values, the input data volumes each including a first block of data and corresponding error correction code retrieved from one or more external memory components together with a respective one of a plurality of q-bit data patterns. Selector circuitry within the decoding engine selects one of the plurality of q-bit data patterns to be an output q-bit value according to error-count differentiation indicated by the error syndrome values.
US12061792B1
A method for use in a flash memory to handle host write commands includes: performing a dummy pattern detection while programing data into a specific section of a first block or a first super block of the flash memory; setting a dummy pattern indicator if all the data that is programmed to the specific section of the first block or the first super block of the flash memory corresponds to a predetermined dummy pattern; and in response to host write commands, modifying a host-to-flash (H2F) address mapping table regarding data that is requested by the host write commands to be programmed to a second block or a second super block of the flash memory without programming the data into the second super block or the second block to complete the host write commands if the dummy pattern indicator is set.
US12061791B2
A data storage device includes a host interface for coupling the data storage device to a host system. The data storage device also includes a device memory and a controller. The controller is configured to determine if a retrim is needed for the data storage device. In accordance with a determination that the retrim is needed, the controller is configured to identify a time to initiate a new trim on the data storage device, and cause the new trim on the data storage device at the time identified.
US12061786B2
A computer-implemented method for setting a typed parameter of a typed operation applied to a 3D modeled object in a 3D scene. The method comprises displaying a representation of the 3D modeled object in the 3D scene. The method comprises obtaining the typed operation to be applied on a point of interest of the displayed representation of the 3D modeled object and selecting a first typed parameter among at least two typed parameters, thereby defining the selected first typed parameter as a current selected typed parameter. The method comprises providing a 2D manipulator in the 3D scene for setting the current selected typed parameter and setting the current selected typed parameter upon user interaction with at least one logical area of the 2D manipulator associated with the current selected typed parameters. The method improves the setting of a typed parameter of a typed operation.
US12061779B2
Techniques and systems for receiving and using a customization file are provided, including a computing device, a method, or a computer-program product. For example, a method may include receiving a customization file that includes customized content for customizing a communication interface overlay. The method may further include accessing native application code and executing the native application code to run a native application. The method may further include accessing a compiled set of code that is separate from the native application code. The compiled set of code is accessible by the native application code. The method may further include executing the compiled set of code, wherein a default file of the compiled set of code provides a native communication interface overlay, wherein the native communication interface overlay is overlaid over a graphical interface of the native application, and wherein the native communication interface overlay allows communication with a resource of a third-party. The method may further include executing the received customization file, wherein executing the received customization file customizes the compiled set of code, and wherein the customized compiled set of code customizes the native communication interface overlay to provide a customized communication interface overlay.
US12061772B2
Aspects of the present disclosure involve ranking augmented reality content. The program and method provide for receiving, by a messaging application, a request from a first user to compose a message for sending to a preselected second user, the message being configured to include an image captured by a device camera, the first user and the second user corresponding to contacts in the messaging application; determining, in response to receiving the request, a ranking for a plurality of augmented reality content items configured to be displayed with the image, the ranking being based on at least one signal that relates the first user to the second user; and displaying, based on the ranking, the image with a user interface comprising multiple icons, each icon being user-selectable to display a respective one of the plurality of augmented reality content items with the image.
US12061767B2
Improved systems and methods for navigating and interacting in virtual communication environments. At least some of these systems and methods provide a framework that includes one or more virtual areas and supports realtime communications between the communicants. At least some of these systems and methods provide an interface that includes navigation controls that enable a user to navigate virtual areas and interaction controls that enable the user to interact with other communicants in the one or more virtual areas.
US12061764B2
A touch panel comprising a transparent substrate and a layer of transparent conducting material on the transparent substrate, the layer of transparent conducting material being provided in a pattern comprising a plurality of electrode cells connected along a first direction and isolated from each other in the layer by gaps between the electrode cells in a second direction. A pattern of transparent insulating material is provided on the layer of transparent conducting material so as to provide bridging portions of the transparent insulating material that span across at least a subset of the gaps between the electrode cells in the second direction. The touch panel further comprises a plurality of transparent electrically conductive tracks, each comprising a plurality of at least one of nanowires, nano tubes and nanosheets. Each track is provided over a respective one of the bridging portions to electrically connect a respective two of the electrode cells.
US12061760B2
Provided is an imaging device that includes a rear display and an electronic viewfinder and is excellent in operability to a touch panel when an electronic viewfinder is used. When a user performs a touch manipulation on a touch panel installed in a rear display in order to set a focus area, an effective detection area for detecting a touch position is different between when the rear display is used and when the electronic viewfinder is used. When the rear display is used, the effective detection area is set to coincide with the entire display screen, and when the electronic viewfinder is used, the effective detection area is set to be reduced to an area of a part of the display screen of the rear display.
US12061759B2
Disclosed herein is a touch sensing device including a first touch controller configured to transmit and receive data, wherein the first touch controller includes a clock terminal and a plurality of input/output terminals, and ternary data is transmitted and received through the clock terminal and at least two terminals among the plurality of input/output terminals of the first touch controller, and binary data is transmitted through the remaining input/output terminals.
US12061756B2
A touch sensing unit includes first touch electrodes and second touch electrodes disposed on in a touch sensor area which includes a round portion having a curvature. A driving line is connected to a first touch electrode among the first touch electrodes are disposed in the round portion of the touch sensor area. A sensing line is connected to a second touch electrode among the second touch electrodes disposed in the round portion of the touch sensor area. The driving line and the sensing line intersect each other.
US12061754B2
A stylus includes a first transmission circuit, a second transmission circuit, and a control circuit which controls the first and second transmission circuits according to a first transmission mode in which the control circuit controls the first transmission circuit to transmit a first downlink signal from a tip electrode and controls the second transmission circuit to not transmit a second downlink signal from a tail electrode, a second transmission mode in which the control circuit controls the first transmission circuit to not transmit the first downlink signal from the tip electrode and controls the second transmission circuit to transmit the second downlink signal from the tail electrode, and a third transmission mode in which the control circuit controls the first transmission circuit to transmit the first downlink signal from the tip electrode and controls the second transmission circuit to transmit the second downlink signal from the tail electrode.
US12061746B2
An interactive simulation system with a stereoscopic image and a method for operating the system are provided. The system includes a three-dimensional display and a control host. The stereoscopic image display is used to display a stereoscopic image. The system includes an interactive sensor that is used to sense gesture of a user or an action that the user manipulates a haptic device so as to produce sensing data. In the meantime, the system detects eye positions of the user. The changes of coordinates with respect to the gesture or the haptic device can be determined and referred to for forming a manipulation track. An interactive instruction can be determined. The stereoscopic image can be updated according to the interactive instruction and the eye positions of the user.
US12061745B2
Gesture input with multiple displays, views, and physics is described. In one example, a method includes generating a three dimensional space having a plurality of objects in different positions relative to a user and a virtual object to be manipulated by the user, presenting, on a display, a displayed area having at least a portion of the plurality of different objects, detecting an air gesture of the user against the virtual object, the virtual object being outside the displayed area, generating a trajectory of the virtual object in the three-dimensional space based on the air gesture, the trajectory including interactions with objects of the plurality of objects in the three-dimensional space, and presenting a portion of the generated trajectory on the displayed area.
US12061739B2
A system for the generation and management of tactile sensation includes a computing subsystem. A method for the generation and management of tactile sensation includes receiving a set of inputs and processing the set of inputs. Additionally or alternatively, the method 200 can include: communicating tactile commands to a tactile interface system; operating the tactile interface system based on the tactile commands; and/or performing any other suitable processes.
US12061738B2
A method including determining a gaze direction of a user of a wearable device, capturing an image using a forward-looking camera of the wearable device, detecting a surroundings of the user based on the image, determining whether or not the user is distracted based on the gaze direction and the surroundings, and in response to determining the user is distracted, causing an operation to be performed on the wearable device, the operation configured to cause the user to change the user's attention.
US12061737B2
An image processing apparatus displaying an image of an appearance of a virtual object from a virtual camera to a head mounted display. Memories store programs including instructions for obtaining degree information indicating a degree of gaze for the virtual object of a user wearing the head mounted display and changing an optical axis position of the virtual camera. Selectively switching one of the images to another, includes a virtual image corresponding to an appearance of a virtual space from the virtual camera in which the virtual object is arranged, and a mixed image in which a captured image is overlapped by an image corresponding to an appearance of the virtual object, and the head mounted display displays the image as the display image, and changing the position of the virtual camera in the optical axis direction based on the degree information when the plurality of images is selectively switched.
US12061728B2
Provided is a technology including an apparatus and a machine-implemented method for operating a content sending apparatus attachable to a network, comprising acquiring a sequence comprising at least two content blocks; generating at least one authentication metadata block comprising at least one signed digest derived by a chaining digest technique from the sequence of content blocks; deriving a content transform encoding for each of the content blocks; and sending the at least one authentication metadata block and at least one content transform encoding to at least one of a set of recipient devices, the at least one device being operable to apply an inverse transformation to the content transform encoding and to authenticate at least one resultant content block according to the authentication metadata block.
US12061719B2
A system and method for agentless detection of sensitive data in a cloud computing environment. The method includes detecting a first data object including a data schema and a content in a cloud computing environment; detecting a second data object, having the data schema of the first data object; generating in a security graph: a first data object node representing the first data object, a second data object node representing the second data object, and a data schema node representing the data schema; storing a classification based on the content in the security graph, wherein the content is classified as sensitive data or non-sensitive data; and rendering an output based on the classification and the data schema node, in lieu of the first data object node and the second data object node, in response to receiving a query to detect a node representing a data object classified as sensitive data.
US12061709B2
A computing device, such as a server, has a sealed housing and runs one or more data extraction agents. In some embodiments, the computing device includes one or more processors and memory located inside the sealed housing, the memory stores instructions that when executed by the one or more processors causes the one or more processors to: authenticate with a data recipient system using a prestored security engine and using a shared registration secret uniquely associating the computing device with the data recipient system; retrieve an extraction job specification from an extraction job specification repository associated with the data recipient system; and using the extraction job specification, communicate to one or more client computing devices associated with a client system to extract data records from one or more data stores of the client system. Related methods are also disclosed.
US12061706B2
An access client may transmit an access request to a server, and the access request may be an example of a decryption request or an encryption request. The access request may include access information and file information for a file to be accessed. The server may validate the access information and generate an access package that includes a set of access keys and executable code. The access keys may be transmitted to the access client. The access client may execute the executable code and decrypt or encrypt the file. The file may include one or more data packs that include file access policies, ownership information, and file access logs.
US12061697B2
Detecting a malicious package associated with a software repository. A method identifies a subject package in a software repository, and extracts a feature set from the subject package. The feature set includes single-version features, including whether the subject package accesses personally identifying information, accesses specified system resource(s), uses specified application programming interface(s), includes installation script(s), and/or includes a binary, minified, or obfuscated file. The feature set also includes change features, including an amount of time since publication of a prior version of the subject package, a semantic update type, and/or how single-version feature(s) have changed since the prior version. The method provides the feature set as input to a set of classifiers, each being configured to use the feature set to generate a prediction of whether the subject package is malicious or benign. Based at least on the prediction, the method classifiers the subject package as being malicious or benign.
US12061695B2
In some examples, a storage system creates a first copy of a data volume, and receives write requests having a specified characteristic from a host system, the write requests to write data of the data volume, where the storage system is to reject the write requests having the specified characteristic and to accept write requests without the specified characteristic. The storage system maintains metadata for the first copy of the data volume, the metadata indicating blocks of the data volume that have changed since the first copy of the data volume was created. The storage system determines, using the metadata, whether an unauthorized data encryption of the data of the data volume has occurred.
US12061680B1
Electronic devices in a system may be controlled by a user. The user may have one or more wearable devices or other devices. A user's device may be used by the user in identifying a target electronic device of interest among the electronic devices in the system. The target electronic device may be identified using a gaze tracking sensor that senses the user's point-of-gaze, an orientation sensor that detects a direction in which the user's device is pointed, or other sensor circuitry. Visual feedback, audio feedback, and/or haptic feedback may be provided to the user to confirm which electronic device has been identified as a target electronic device of interest. User input may be gathered by sensors and used in adjusting operating parameters in the target electronic device of interest. Health monitoring operations and other operations may also be performed.
US12061670B2
The technology relates to methods and systems for recognition of conditions from ventilation data. The methods may include acquiring ventilation data for ventilation of a patient during a time period; generating an image based on the acquired ventilation data; providing, as input into a trained machine learning model, the generated image, wherein the trained machine learning model was trained based on images having a same type as the generated image; and based on output from the trained machine learning model, generating a predicted condition of the patient. The image may be generated by storing ventilatory data as pixel channel values to generate a human-indecipherable image.
US12061667B2
A data processing method is a data processing method in which variable measurement data transmitted from a sensor at a first cycle is computationally processed at a second cycle that is longer than the first cycle. The measurement data is acquired in a third cycle that is longer than the first cycle and shorter than the second cycle, an average value of the acquired measurement data is calculated at the second cycle, and computation processing thereof is performed.
US12061665B2
According to one embodiment, in an inverse element arithmetic apparatus, a word unit processing unit, as approximate calculation loop for extended binary GCD process, iterates a first loop in a case where a value of |r−s| is a subtraction threshold or more, and is capable of iterating a second loop instead of the first loop in a case where the value of |r−s| is smaller than the subtraction threshold. In the first loop, values of r, s, a, b, m, and n is updated and an update matrix M is generated or updated. In the second loop, the values of m and n are updated without updating the values of r, s, a, b and the update matrix M. The control unit terminates the loop of the inverse element arithmetic process in a case where a loop number of times of the inverse element arithmetic process reaches a number-of-times threshold.
US12061661B2
Provided are systems and methods for providing insights to users of a mobile application based on triggers that may be detected from within the data or externally. In one example, a method may include receiving, via a message transmitted to a uniform resource locator (URL) of a host platform, information about a user of a software application, reading a plurality of records associated with the user from the received information, the plurality of records comprising data and a plurality of timestamps, respectively, generating derived data based on the data included in the plurality of records, converting the plurality of timestamps into a single timing identifier that represents all of the plurality of timestamps, and transmitting, to a computing system, a notification comprising the derived data and the new timing identifier.
US12061657B2
Systems and methods for identifying a user are disclosed. One aspect comprises providing an address element and a class identifier, receiving a request for a file, wherein the request comprises the address element and the class identifier, comparing the class identifier to a comparator element, providing a first file if the class identifier is within the comparator element, and providing a second file if the class identifier is outside the comparator element.
US12061655B2
Some embodiments provide a method for generating a graphical user interface (GUI) for a research system. The method receives a request from a user of the research system for information about a particular category. The method generates a chart that displays a set of events associated with the particular category over a particular period of time. The method incorporates the chart into a GUI for the particular category for transmission to the user. Some embodiments generate a list of events associated with the particular category and generate a GUI that displays the list of the events. Each event is represented in the list by a title of a document identified by the research system as representative of the event.
US12061643B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for analyzing images for generating query responses. One of the methods includes determining, using a textual query, an image category for images responsive to the textual query, and an output type that identifies a type of requested content; selecting, using data that associates a plurality of images with a corresponding category, a subset of the images that each belong to the image category, each image in the plurality of images belonging to one of the two or more categories; analyzing, using the textual query, data for the images in the subset of the images to determine images responsive to the textual query; determining a response to the textual query using the images responsive to the textual query; and providing, using the output type, the response to the textual query for presentation.
US12061642B2
Techniques for providing recommended keywords in response to an image-based query are disclosed herein. In particular, various embodiments utilize an image matching service to identify recommended search keywords associated with image data received from a user. The search keywords can be used to perform a keyword search to identify content associated with an image input that may be relevant. For example, an image search query can be received from a user. The image search query may result in multiple different types of content that are associated with the image. The system may present keywords associated with matching images to allow a user to further refine their search and/or find other related products that may not match with the particular image. This enables users to quickly refine a search using keywords that may be difficult to identify otherwise and to find the most relevant content for the user.
US12061640B2
Techniques facilitating using flow graphs to represent a data analysis program in a cloud based system for open science collaboration and discovery are provided. In an example, a system can represent a data analysis execution as a flow graph where vertices of the flow graph represent function calls made during the data analysis program and edges between the vertices represent objects passed between the functions. In another example, the flow graph can then be annotated using an annotation database to label the recognized function calls and objects. In another example, the system can then semantically label the annotated flow graph by aligning the annotated graph with a knowledge base of data analysis concepts to provide context for the operations being performed by the data analysis program.
US12061637B2
Technologies for document evaluation and identification of shared textual substrings between documents are described herein. Documents are evaluated and organized according to textual elements within the documents. A suffix index is generated from a reference document. The suffix index is used to identify common substrings of text within query documents using variable evaluation windows within the query documents. Indications of overlapping textual information between the reference document and query documents is generated as an output.
US12061634B2
Systems and methods are described herein that maintain a context in a conversational search systems. An artificial neural network accepts current and previous queries as input and outputs a value indicating whether the previous query and the current query should undergo a merge operation or a replacement operation to maintain an intent of the user. To perform a merge operation, the previous query and the current query are combined to form a search query. To perform a replace operation, a portion of the previous query is replaced with a portion of the current query.
US12061624B2
Techniques for processing commands may include: initially synchronizing a target database of volume reservation and registration information with a source database of volume reservation and registration information; while initially synchronizing the target database with the source database, enabling volume reservation and registration command processing on both a first node managing the source database and a second node managing the target database; while initially synchronizing the target database with the source database, performing first processing to service a first command that is any of a reservation command and a registration command for a first volume; and after initially synchronizing the target database with the source database, using the target database of the second node when servicing reservation and registration commands received at both the first node and the second node.
US12061623B2
A system can selectively synchronize content based on synchronization settings. In some examples, a client stores a local tree representing a local set of content items associated with an account on a content management system, the local tree including respective local nodes corresponding to the local set of content items. The client stores a remote tree representing a remote set of content items associated with the account, the remote set being stored at the content management system and including respective remote nodes corresponding to the remote set of content items. The client receives a synchronization setting disabling local storage of the content item. In response, the client deletes a local copy of the content item, removes a corresponding local node from the local tree, and adds, to a remote node on the remote tree, an attribute indicating that local storage of the content item has been disabled.
US12061615B2
Methods of operating a search engine may include calculating multi-modal document vector models for each of a plurality of electronic documents, training category-specific, search query-specific ranking models with respective machine learning algorithms based on those document vector models, and applying each of those models to further instances of the same search query to rank the documents responsive to that search query.
US12061612B1
A platform receives an input document from a user device and automatically determines a semantic signature for the input document based on a probabilistic distribution of rare words within the input document. The platform automatically scrapes at least one Internet database for additional documents and webpages, determining semantic signatures for each document or webpage. Based on similarity of semantic signatures, the platform automatically constructs and displays a graphical network of documents, wherein each document is represented as a node and similarity of semantic signatures is used to determine the locations of edges between nodes. The graph automatically groups nodes by communities and selects nodes in different communities to promote serendipity of results.
US12061607B2
A method and a system for high-throughput distributed computing of computational jobs, comprise setting up a data storage system and a grid of user devices that offer computational capacity. Customer entities upload in a customer platform first job specification parameters, and then the full job data. A partitioning scheme is selected based on the job specification and on the grid status, that is periodically updated by querying the user devices. Based on the partitioning scheme, the job data are split on the fly in input chunks, that are included in executable tasks and assigned to different user devices. To this end, devices may be selected based on computing capacity and availability parameters, and on a priority level selected for the job. Output chunks are generated by executing the tasks, and after verification of timely arrival of all the required output chunks, they are assembled as a complete job result, for download by the customer.
US12061606B1
This disclosure describes systems, devices, and techniques for tracking changes to a base record, such as a database. An example method includes identifying a change associated with a first entry in the base record and identifying a time of the change. A corresponding change entry, indicating the first entry and the time of the change in the base record, can be stored in a change record. The change record can be a database that can be queried by external systems to retrieve updated data about changes to the base record. One or more external systems can update derived records by retrieving, from the change record, the latest updated data associated with the source base record within a specified time frame or based on a last retrieved change entry ID. Likewise, one or more external auditing systems can retrieve, from the change record, all applied changes to the source base record.
US12061600B2
An example operation may include one or more of storing a batch scoring engine and an application programming interface (API) for the batch scoring engine, receiving a trigger to perform a batch prediction process, reading input data from a source data store and executing, via the batch scoring engine, one or more predictive models on the input data to generate a predictive output and metadata associated with the predictive output, storing the predictive output and the metadata in a target data store, and updating the API with a location of the predictive output within the target data store and a location of the metadata within the target data store.
US12061586B2
A system for clustering data into corresponding files comprises one or more processors and a memory. The one or more processors is/are configured to: 1) determine to cluster a set of data into a set of files; 2) determine a set of split points in a corresponding set of dimensions of the set of data to determine the set of files, wherein each file of the set of files has an approximate target size; and 3) store one or more items of the set of data into a corresponding file of the set of files based at least in part on the set of split points. The memory is coupled to the one or more processors and configured to provide the processor with instructions.
US12061583B1
Systems and techniques for processing data using data pipelines. For instance, a first version of data may be read from one or more databases for processing by a data pipeline. Stages of the data pipeline may then process the data, such as by transforming, validating, or changing the data, in order to generate additional versions of the data. These versions of the data are passed through the subsequent stages of the data pipeline. Additionally, metadata may be generated for one or more stages of the data pipeline, where the metadata represents information describing the processing by the one or more stages. This metadata may also be passed through the subsequent stages of the data pipeline. Based on the last stage of the data pipeline processing the data, the versions of the data along with the metadata may then be written into the one or more databases.
US12061575B2
Embodiments for providing adaptive namespace verification with high efficiency. The verification process is used in modern filesystems to check the integrity of key data structures, such for backup systems where providing thorough and efficient mechanisms for verification is critical. Embodiments accelerate the verification process by selectively applying continuous, differential, and integral verification techniques for startup and runtime repair purposes to overcome present problems for system capacities that exceed the petabyte range and impose significant time requirements using existing verification methods. Embodiments work with both single-node and distributed filesystems.
US12061572B2
Systems, methods, and computer-readable media are disclosed for data blocking for application platforms are disclosed. An application platform may comprise a plurality of systems. A system may store data having a residence period. Upon expiration of the residence period, the data may be blocked from further processing. The plurality of systems may comprise multiple leading systems. Each leading system may have at least one dependent system. The plurality of systems may be grouped into system groups comprising a leading system and at least one dependent system. Data blocking may be triggered from the leading system to the dependent systems for each system group. An interim blocking mode for determining which systems have data that need to be blocked, and an overall blocking mode for performing the data blocking may be provided.
US12061570B2
A control circuit accesses a memory having stored therein data for a three-dimensional model in a first file format (such as, for example, an OBJ file format). The control circuit correlates components of the three-dimensional model in the first file format to corresponding codes, and then expresses the three-dimensional model as data for the three-dimensional model in a second file format (such as, for example, an RVT file format) that is different from the first file format as a function of the aforementioned corresponding codes.
US12061568B2
A two-wire interface (300) for connecting a first device (106) and a second device (108). The two-wire interface (300) is operable in a handshaking mode and a data transfer mode. In the handshaking mode the first wire (302) of the interface (300) is driven by the first device (106) and the second wire (304) of the interface (300) is driven by the second device (108) so that the first (106) and second (108) devices can perform a handshaking sequence. In the data transfer mode one of the first wire (302) and the second wire (304) is driven by one of the first (106) and second (108) devices to provide a clock signal, and the other wire is driven by either the first device (106) or the second device (108) depending which device is transmitting data. Accordingly, the two-wire interfaces (300) are operable in two modes (e.g. handshaking mode and data transfer mode) and one of the wires (302, 304) of the interface (300) may be driven by a different device in the two modes.
US12061566B2
This application provides an IO request processing method, used in an external device. The external device includes a processor and a first hardware interface, and the first hardware interface is an interface that supports a PCIe protocol. The external device communicates with a physical host through the first hardware interface. The method includes: The processor synchronizes, through the first hardware interface, queue information in storage space of a virtual machine running on the physical host to storage space of the external device, where the queue information includes one or more input/output IO requests; and the processor sends the one or more IO requests to a storage server or a network server for processing. According to this application, all hardware resources of the physical host can be used to provide virtual machine services for users, thereby improving utilization of hardware resources of the physical host.
US12061558B2
Methods, systems, apparatuses, and computer program products are provided for protecting data in a memory of an integrated circuit (IC). A process token is obtained in a special purpose IC from a host that is external to and communicatively connected to the special purpose IC. The process token is stored in a first memory portion of the special purpose IC. In response to receiving a processing request from the host, the processing request is processed, and data generated by processing the processing request is written in a second memory portion of the special purpose IC. When a read request is received to read the data in the second memory portion, a determination is made whether the read request includes a read token that matches the previously stored process token. If the read token matches the process token, the data in the second memory portion may be returned to the host.
US12061556B2
Systems, apparatus and methods are provided for determining whether data accessed by the command in a storage system is hot or cold. An apparatus may include a first interface to be coupled to a host and a storage controller configured to: receive a command that contains an address in a data storage system; generate a set of hash addresses for the address; for each hash address of the set of hash addresses: obtain a stored hotness score associated with the hash address, update the stored hotness score to generate an updated hotness score associated with the hash address, and determine that the updated hotness score is above a hotness threshold; and determine that the address is hot.
US12061555B1
A load/store circuit performs a first lookup of a load virtual address in a virtually-indexed, virtually-tagged first-level data cache (VIVTFLDC) that misses and generates a fill request that causes translation of the load virtual address into a load physical address, receives a response that indicates the load physical address is in a non-cacheable memory region and is without data from the load physical address, allocates a VIVTFLDC data-less entry that includes an indication that the data-less entry is associated with a non-cacheable memory region, performs a second lookup of the load virtual address in the VIVTFLDC and determines the load virtual address hits on the data-less entry, determines from the hit data-less entry it is associated with a non-cacheable memory region, and generates a read request to read data from a processor bus at the load physical address rather than providing data from the hit data-less entry.
US12061538B2
The present disclosure provides new and innovative systems and methods for continuous testing of microservice applications. In an example, a computer-implemented method includes obtaining changes to source code, determining at least one related microservice related to the source code, determining at least one related microservice test related to the at least one microservice, executing automated tests to validate the source code, executing the at least one related microservice test to validate the at least one related microservice, generating test outcome data based on the automated tests and the at least one related microservice test, and providing a notification based on the test outcome data.
US12061537B2
Systems and techniques are provided for testing software changes and determining a repeatability of software tests. An example method can perform software tests at different timepoints, each software test being based on a test scenario comprising a test simulation environment configured to test a software; determine one or more software tests from the software tests having a variation in test scores that exceeds a divergence threshold, the one or more software tests comprising at least one test scenario; rerun a software test a number of times, the software test configured to test changes to a code of the software, the changes to the code being associated with the software test and/or the at least one test scenario; and determine, based on test scores generated by the software test performed the number of times, a repeatability score for the software test on the changes to the code of the software.
US12061531B2
The systems and methods may use machine learning models to process device data of user devices and determine device usage behaviors for the users of the user devices based on the device data. The systems and methods may provide relatable insights for the device usage behaviors in a user-friendly manner. The systems and methods may provide actional recommendations that users may take in response to the insights provided to promote healthy device usage behaviors or to prevent or reduce the device usage behavior. The systems and methods may also provide recommendations with access to information or other content related to the device usage behavior.
US12061526B2
Techniques are disclosed relating to a database system includes worker nodes operable to perform transactions and director nodes operable to ensure transactional consistency for the transactions. A worker node may receive a request to perform a transaction involving writing a record. The worker node may then issue, to director nodes of the database system, a request for information that facilitates performance of an operation for the transaction. A director node may determine whether to approve the request based on whether the operation could cause transactional inconsistency in the database system. The worker node may proceed to perform the operation for the transaction in response to receiving approval responses from a majority of the director nodes, with none of the received responses indicating a disapproval of the transaction.
US12061525B2
Techniques are provided for a snapshot difference interface integrated into an object store data management container. The snapshot difference interface is capable of interpreting an object format and snapshot file system format of snapshots backed up to an object store within objects formatted according to the object format. The snapshot difference interface can identify differences between snapshots, such as files that changed between the snapshots, while the snapshots are still resident within the object store. Because the snapshot difference interface does not retrieve the snapshots from the object store, security is improved, resource and network consumption is reduced, there is less of an impact upon client I/O processing, and a catalog of the snapshots can be more efficiently built and recovered in the event of corruption.
US12061524B2
A streamlined approach analyzes block-level backups of VM virtual disks and creates both coarse and fine indexes of backed up VM data files in the block-level backups. The indexes (collectively the “content index”) enable granular searching by filename, by file attributes (metadata), and/or by file contents, and further enable granular live browsing of backed up VM files. Thus, by using the illustrative data storage management system, ordinary block-level backups of virtual disks are “opened to view” through indexing. Any block-level copies can be indexed according to the illustrative embodiments, including file system block-level copies. The indexing occurs offline in an illustrative data storage management system, after VM virtual disks are backed up into block-level backup copies, and therefore the indexing does not cut into the source VM's performance. The disclosed approach is widely applicable to VMs executing in cloud computing environments and/or in non-cloud data centers. The illustrative content indexing is accomplished without restoring the VM data files being indexed to a staging location.
US12061518B2
Methods, devices, and systems related to storing parity data in dynamic random access memory (DRAM) are described. In an example, a method can include generating, at a controller, parity data based on user data queued for writing to a non-volatile memory device, receiving the parity data at a DRAM device from the controller and writing the parity data to the DRAM device, receiving the user data at a non-volatile memory device from the controller and writing the user data to the non-volatile memory device, reading the user data from the non-volatile memory device via the controller, and receiving the parity data at the controller from the DRAM device.
US12061510B2
The computer system responds to a first trigger event to enter a partial off state in which a boot cycle is required to return to a working state. A device plugged into a serial bus port can be charged in the partial off state. A configuration register or runtime environment controls whether the computer system enters the partial off state in response to a trigger event. The computer system stays in the partial off state until another trigger event returns the computer system to the working state. In some implementations, the computer system leaves the partial off state and enters the shutdown state after an unplug event, a predetermined amount of time after an unplug event, a predetermined amount of time after entering the partial off state, a predetermined amount of time after charging of a device is complete, or any combination of such events.
US12061505B2
An electronic apparatus includes a first component and a second component. The first component is configured to connect to a processing device containing a power storage module, and the second component is configured to connect to an extension device. In a first state, the electronic apparatus connects to the processing device and the expansion device. An external power supply provides power to the processing device through the first component, and provides power to the expansion device. In a second state, the electronic apparatus connects to the processing device and the expansion device. In response to the external power supply being cut off, power is supplied to the expansion device through the second component. The processing device is powered by its power storage module. After the electronic apparatus switches from the first state to the second state, the connection state of the expansion device and the processing device is capable of being maintained.
US12061500B2
A communication system includes a substrate, a plurality of antennas disposed on the substrate, and a radio frequency (RF) tag. A distance between the RF tag and at least one antenna among the plurality of antennas is detected based on a signal emitted by the RF tag and received by the at least one antenna.
US12061493B2
A low power hybrid reverse (LPHR) bandgap reference (BGR) and digital temperature sensor (DTS) or a digital thermometer, which utilizes subthreshold metal oxide semiconductor (MOS) transistor and the PNP parasitic Bi-polar Junction Transistor (BJT) device to form a reverse BGR that serves as the base for configurable BGR or DTS operating modes. The LPHR architecture uses low-cost MOS transistors and the standard parasitic PNP device. Based on a reverse bandgap voltage, the LPHR can work as a configurable BGR. By comparing the configurable BGR with the scaled base-emitter voltage, the circuit can also perform as a DTS with a linear transfer function with single-temperature trim for high accuracy.
US12061486B2
Disclosed are an area cleaning planning method for robot walking along the boundary, a chip and a robot. The area cleaning planning method includes: on a laser map which is scanned and constructed by a robot in real time, the robot is controlled to walk along the boundary in a predefined cleaning area framed at the current planning starting point position, so that the robot does not cross out the predefined cleaning area in the process of walking along the boundary; meanwhile, according to the division condition of the room cleaning subareas that conform to the preset wall environment condition in the predefined cleaning area, the robot is controlled to walk along the boundary in a matched area, when the robot walks along the boundary in the matched area and returns to the planning starting point position, the robot is controlled to perform planned cleaning in the matched area.
US12061485B2
A method and apparatus for enhancing aviation safety, ensuring that unmanned aircraft remain well clear of other flying objects, are disclosed. A control station acquires a direction of a path of a flying object and periodically transmits requests to a transponder of the flying object to acquire specific data. Upon receiving a response to a request, a range of the flying object from the control station is determined. Using data acquired from each three consecutive responses, the displacement magnitude, the speed, and angular displacements of the flying object are determined. The method assesses potential crossing of a protection zone surrounding a protected aircraft based on most recent acquired data.
US12061480B2
A mobile robot can be caused to move according to a planned trajectory. The mobile robot can be a vehicle. Information about agents in an environment of the mobile robot can be received from sensors. At a first time, a spatiotemporal graph can be produced. The spatiotemporal graph can represent relationships among the agents in the environment. The mobile robot can be one of the agents in the environment. Information from the spatiotemporal graph can be input to neural networks to produce information for a mixture of affine time-varying systems. The mixture of affine time-varying systems can represent an evolution of agent states of the agents. Using the mixture of affine time-varying systems and information associated with the first time, a prediction of the agent states at a second time can be calculated. The mobile robot can be caused to move according to the planned trajectory determined from the prediction.
US12061478B2
Various technologies described herein pertain to sharing of detection of active emergency vehicles within an autonomous vehicle fleet. Information specifying detection of an active emergency vehicle at a first location in an environment is received. The active emergency vehicle is detected based upon sensor inputs of a first autonomous vehicle in an autonomous vehicle fleet. A second autonomous vehicle, at a second location, in the autonomous vehicle fleet is identified as being approached by the active emergency vehicle based on the information specifying the detection of the active emergency vehicle at the first location and the second location of the second autonomous vehicle. A remote assistance session for the second autonomous vehicle is caused to be initiated based on the second autonomous vehicle being identified as being approached by the active emergency vehicle. The second autonomous vehicle is controllable by a remote operator during the remote assistance session.
US12061471B2
A wearable remote control device 1 for controlling a movable equipment 10 includes a wearable carrier 2 adapted for being worn on a user's hand, a control interface 3 configured for converting user's input into instructions; a communication module 4 configured for sending the instructions receivable by the movable equipment 10, an actuation interface 5, and a tracking module 6 configured for being actuated by the actuation interface 5. The actuation interface 5 includes an actuation module 51 adapted for being actuated by the user's hand, and a gesture sensing module 52 configured for detecting a predetermined hand gesture. Upon the actuation module 51 is actuated, the actuation interface 5 provides a tracking signal 61 receivable by the movable equipment 10 for determining a traveling path with respect to movements of the wearable remote control device 1.
US12061467B2
A data processing apparatus includes a processor. The processor generates visualization data for displaying estimation results of manufacturing conditions based on estimation results and relationship data. The relationship data includes first relationship data as a relationship between first manufacturing conditions recorded during an analysis, and second relationship data as a relationship between second manufacturing conditions corresponding. The processor divides the estimation results of the manufacturing conditions into a first group based on the first relationship data, and into a second group based on the second relationship data. The processor generates the visualization data based on a change in manufacturing condition relationship between the first group and the second group.
US12061456B2
An electrical safety device is described which includes a socket arranged to receive an electrical plug of an electrical appliance to connect a current supply to the electrical appliance, a thermal sensor arranged to detect the surface temperature of an electrical plug when received in the socket and a processor in communication with the thermal sensor, the processor configured to determine when the sensed surface temperature exceeds a predetermined threshold. The invention also includes an electrical safety system comprising the electrical safety device configured to communicate with a remote device. The device and system provide early detection of electrical faults and hazards to reduce the risk of fires.
US12061453B2
One embodiment of the present disclosure is a system. The system includes one or more memory devices having instructions stored thereon that, when executed by one or more processors, cause the one or more processors to perform operations. The operations include: obtaining first data indicating operating parameters of a server of a building management system (BMS), obtaining second data regarding indicating operating parameters of at least one of a supervisory controller or a field controller of the BMS, obtaining third data regarding indicating operating parameters of one or more edge building devices, and calculating a performance index value for the BMS based on an aggregate of the first data, the second data, and the third data.
US12061448B2
An example operation includes one or more of directing, by a transport, another transport in need of a first amount of charge to an off-grid stationary battery, providing, by the transport, a second amount of charge to the off-grid stationary battery, and notifying, by the transport, the another transport to retrieve the first amount of charge, wherein the first amount of charge is less than the second amount of charge.
US12061441B2
Toners are provided which may comprise toner particles, a colorant, and optionally, a wax, wherein the toner particles comprise a resin comprising a polymerization product of reactants comprising a dioxane/dioxolane monomer and a vinyl co-monomer, wherein the dioxane/dioxolane monomer is an ester of (meth)acrylic acid with an alcohol comprising a dioxane moiety, an ester of (meth)acrylic acid with an alcohol comprising a dioxolane moiety, or both.
US12061440B2
The present invention provides a method for producing a toner for electrostatic-image development comprising: a dispersing step of performing a dispersing treatment in which a cavitation effect is obtained on a color resin particle containing a binder resin, a colorant, a charge control agent, and a release agent in an aqueous dispersion medium so as to obtain a dispersion of the color resin particle; and a heating step of performing a heat treatment on the dispersion of the color resin particle at a temperature of equal to or more than a glass transition temperature of the color resin particle and 95° C. or less for a heating time of 5 minutes or more and 10 hours or less.
US12061428B2
According to one embodiment, the temperature control device is a temperature control device for controlling temperature of a temperature controlled target to which heat is propagated from a heater by supplying power to the heater, the device including: a temperature estimation unit; a duty generation unit; and a signal generation unit. The temperature estimation unit estimates the temperature of the temperature controlled target based on the duty value. The duty generation unit generates the duty value based on the temperature estimation result by the temperature estimation unit, the temperature detection result of the temperature controlled target by the temperature sensor, and the target temperature. The signal generation unit outputs an energization pulse for controlling the power supplied to the heater based on the duty value.
US12061416B2
A photocurable composition can comprise a polymerizable material, a fullerene or fullerene derivative in an amount of at least 0.2 wt % and not greater than 5.0 wt %, and a photoinitiator and may be adapted for AIP or NIL processing. A photo-cured layer made from the photocurable composition can have an improved thermal stability in comparison to a photo-cured layer made from the same photocurable composition except not containing a fullerene or fullerene derivative.
US12061415B2
A method for producing a composition, the method being for producing a composition using a stirring device provided with a stirring tank and a stirrer, includes a mixing step of charging a resin, an acid generator, and a solvent into the stirring tank, and a stirring step of stirring the mixture accommodated in the stirring tank, using the stirrer, in which a ratio c of a content of the acid generator to a total mass of the mixture is 0.3% to 2.5% by mass, the stirrer is provided with a rotatable stirring shaft, a plurality of support parts attached to the stirring shaft, and a plurality of stirring elements attached to each of end parts of the plurality of support parts, the shape and the arrangement of the stirring elements are specified, and the positions of the plurality of stirring elements are specified so as to satisfy a specific Expression (1).
US12061413B2
An elevating mechanism includes a base member, a first movable member, a second movable member, a first magnetic member, and a second magnetic member, the first movable member is movably disposed on the base member, the second movable member is movably disposed on the base member, the first magnetic member disposed on the first movable member, the second magnetic member corresponds to the first magnetic member and is disposed on the second movable member, when the second movable member is in a holding position, the first magnetic member and the second magnetic member are attracted to each other.
US12061407B2
Beam steering device such as optical phased array (OPA) is a key component in applications of solid-state LIDAR and wireless communication. The traditional single-layer OPA results in a significant energy loss due to the substrate leakage caused by the downward coupling from the grating coupler structure. In the present disclosure, we have investigated a structure based on multi-layers Si3N4/SiO2 platform that can form a 3D OPA to emit the light from the edge of the device with a high efficiency, a 2D converged out-coupling beam will be end-fired to the air. The high efficiency and wide horizontal beam steering are demonstrated numerically, the influence of vertical crosstalk, the delay length, number of waveguide layers, and the fabrication feasibility are also discussed.
US12061406B2
A lens module in an embodiment includes a first plate having therein a first cavity; a second plate overlapping the first plate in a vertical direction, the second plate having therein a second cavity; a first liquid disposed in the first cavity; and a second liquid disposed in the second cavity, wherein a cross-section obtained by cutting the first cavity in a horizontal direction perpendicular to the vertical direction has a polygonal shape, and wherein a cross-section obtained by cutting the second cavity in the horizontal direction has a circular shape.
US12061405B2
A method includes receiving first dimensions of an electrochromic device and second dimensions of one or more obstructions of the electrochromic device. The method further includes generating, based on the first dimensions and the second dimensions, an obstruction map that indicates at least one of an obstructed portion or an unobstructed portion of the electrochromic device. The method further includes determining, based the obstruction map, a first desired tinting state of the electrochromic device. The method further includes causing a current tinting state of the electrochromic device to correspond to the first desired tinting state.
US12061392B2
Provided is a liquid crystal display device that has a wide reproduced color gamut without noticeable color unevenness even if it is an image display device that shows an steep emission spectrum in the red region, in particular, even if it comprises a light source having a steep emission spectrum in the red region, such as a KSF phosphor, as a backlight light source. The image display device comprises an image display cell and at least one polarizer, wherein the at least one polarizer is a polarizer in which light incident on the polarizer has a plurality of peak groups in the range of 600 to 650 nm, and the at least one polarizer comprises a polarizing element-protection film having a 45-degree light source fit index (FI(45)) of 0.4 or more and 0.62 or less as determined by the following formula 1:
FI(45)=Wd/[Wc/(Rob(45)/Wc)] formula 1.
US12061389B2
An embodiment of the application discloses a liquid crystal display device. In the liquid crystal display device, the backlight module includes a backlight module including a conductive back frame; a display panel including a liquid crystal cell and a first polarizer, wherein the first polarizer is disposed on a side of the liquid crystal cell facing the backlight module, and the first polarizer includes a conductive structure layer, a first base layer, and a polarizing layer disposed on the backlight module in sequence; and a conductive component electrically connected to the conductive back frame and the conductive structure layer.
US12061382B2
A progressive ophthalmic lens adapted to a wearer in given wearing conditions having an addition and fulfilling an acuity performance criterion determined by: defining a set of at least three different vision distances including at least a first vision distance greater than or equal to 4 m, a second vision distance greater than or equal to 0.6 m and smaller than or equal to 2 m and a third vision distance smaller than or equal to 0.5 m, each vision distance being associated with an acuity loss threshold value and an acuity area threshold value, providing an acuity model defining acuity loss as a function of lens power and resulting astigmatism, determining of each vision distance using the acuity model the area of gaze directions for which the acuity loss is below the associated acuity loss threshold value.
US12061378B2
An imaging apparatus includes a photographing optical lens assembly and an image sensor. The photographing optical lens assembly includes a plurality of lens elements. The plurality of lens elements includes, in order from an object side to an image side, a first lens element, a second lens element and a last lens element. Each of the lens elements has an object-side surface facing the object side and an image-side surface facing the image side. At least one of the lens elements is plastic and at least one of the lens elements has at least one inflection point. There is at least one variable axial distance between adjacent lens elements thereof.
US12061375B1
A window reflector or heliostat is disclosed that is reversibly installed onto a window sill in order to reflect a view of the sun or sunlight into a room in a building. Window reflector or heliostat is a reflective member that is reversibly rigidly attached to a window sill on a window in a room. Window reflector or heliostat is an ultra-lightweight specially shaped biplanar reflective member with a reflectivity of 95 percent or greater at ninety degree incidence. Biplanar reflective member may be a one-piece assembly or a two-piece assembly with adjustable hinges. Window reflector or heliostat is reversibly attachable to the window sill using hook or loop attachment strips or window sill attachment fasteners.
US12061367B2
An apparatus arranged for deflecting an optical component for alignment purposes of the optical component with a further optical component, wherein the apparatus comprises a plurality of adjacently placed elongate carriers, extending mutually parallel to each other in a longitudinal direction, wherein two adjacently placed elongate carriers have a spacing between them for receiving a first optical component such that the received optical component rests against two adjacently placed elongate carriers, wherein the two elongate carriers have slopes such that the spacing between the two adjacently placed elongate carriers is smaller at a bottom side compared to the spacing at a top side of the carriers, wherein the carriers comprise piezoelectric material configured to deflect the carriers in a direction perpendicular to the longitudinal direction by actuating the piezoelectric material.
US12061358B2
A method for manufacturing an optical fiber emitting plasma light includes a coating removal step of removing a coating of an optical fiber; a photocatalyst application step of applying a photocatalyst to an end surface of a core layer of the optical fiber from which the coating has been removed through the coating removal step; and a molding step of molding the end surface of the core layer into a curved surface by applying a laser to the core layer of the optical fiber applied with the photocatalyst through the photocatalyst application step. The method for manufacturing an optical fiber including the above processes may be effectively used for therapy such as plasma disc coagulation therapy (PDCT) by converting the applied laser light into plasma light.
US12061354B2
A backlight module and a display device. The backlight module includes: a back plate, wherein the back plate has a bottom plate and a plurality of side plates, the side plates cooperate with the bottom plate to form an accommodating space, and the side of each of the side plates facing the accommodating space is provided with a groove having an opening facing the accommodating space; and a mold frame, includes bezels in one-to-one correspondence with the plurality of side plates; in each group of a side plate and a bezel, the bezel includes a clamping part, a supporting part and a limiting part, the clamping part is located at a side of the limiting part away from the accommodating space, and is embedded into the groove to clamp with the groove.
US12061353B2
A backlit module for a backlit keyboard is provided. The backlit module includes a lighting board. The lighting board includes a substrate and an electronic device layer. The electronic device layer is disposed on the substrate. The electronic device layer includes a plurality of key circuit groups. Each of the key circuit groups corresponds to a key group of the backlit keyboard, and includes one or more light sources and a resistor. When the key circuit group includes a plurality of light sources, the light sources are arranged in parallel. The one or more light sources correspond to one or more key of the key group. The resistor is arranged in series with the one or more light sources.
US12061350B2
Some embodiments of an apparatus may include: a plurality of light sources, wherein each of the plurality of light sources is configured to emit a respective light beam; one or more diffractive layers; and an optical mask configured to be synchronized to an illumination of the respective light beams. Some embodiments of a method may include: emitting a light beam from each of a plurality of light emitting sources to generate a plurality of light beams; diffracting each of the plurality of light beams to generate a plurality of diffracted light beams; and synchronizing an optical mask to the plurality of diffracted light beams.
US12061342B2
A two-dimensional optical waveguide, a virtual and real optical beam combiner, and an AR device. A surface of a substrate is divided into an in-coupling region, a folding area, and an out-coupling region. The folding area is provided with a defect area and at least two line defects, and the defect area extends from the in-coupling region toward a side away from the in-coupling region. The line defects have one end in contact with the defect area, and another end extending to the out-coupling region. The at least two line defects are distributed along an axis of the defect area. A photonic crystal is provided along a periphery of the defect area and the line defects. The photonic crystals includes multiple scattering rods having an axis perpendicular to a surface of the folding area.
US12061337B2
This disclosure relates to the field of head-up display (HUD) technology, and more particularly to an HUD system with a transparent nano film for image display. Specifically, an HUD system including ultra-thin glass is provided in the disclosure. The HUD system includes a projection light source, and laminated glass, and a transparent nano film. The transparent nano film includes at least two metal layers. The projection light source is configured to generate P-polarized light. The laminated glass provided with the transparent nano film has a maximum reflectivity Rmax and a minimum reflectivity Rmin for the P-polarized light that has the incident angle ranging from 45° to 72°, where Rmax/Rmin ranges from 1.0 to 2.0.
US12061335B2
A light source unit used for a vehicular head-up display includes a prism-shaped multi-reflection member and a substrate. The multi-reflection member has: an entrance surface; an emission surface; and a reflective surface connecting the entrance surface and the emission surface. The substrate faces the entrance surface and is provided with a plurality of light sources mounted in a matrix. A ratio Ra=A/B or a ratio Rc=a/b is larger than a ratio Rb=C/D, where A and B is the number of the light sources provided in a longer and shorter direction of the entrance surface, respectively, C and D is a longer and shorter dimension of the emission surface, respectively, and a and b is the sum of lengths of light-emitting surfaces of the plurality of light sources in the longer and shorter direction of the entrance surface, respectively.