Provided herein is a system and method for heat exchange of a vehicle. The system comprises an enclosure disposed on the vehicle. The enclosure comprises a vent at a base of the enclosure. The enclosure houses one or more sensors. The enclosure comprises a fan disposed at a base of the enclosure. The heat exchange system comprises an deflector disposed on the vehicle outside the enclosure and configured to direct an airflow into the vent of the enclosure. The heat exchange system comprises a motor configured to: generate electricity from the airflow and selectively supply electricity to operate the fan. The heat exchange system comprises a controller configured to adjust the deflector and regulate an amount of electricity supplied from the motor to the fan.
A cover for a sunken enclosure includes a mounting part for mounting it to a sunken enclosure with which it is used such that the cover is movable between a closed position in which it closes an open top of the enclosure and is substantially level with a surface intersected by the open top, and an open position in which it is displaced from the surface and exposes an internal area of the enclosure, and in which the cover includes an antenna for transmitting and receiving radio waves.
A dual display device is provided, which includes a housing, a first display screen, a flexible display screen, and a rotating assembly. The housing includes a plurality of vertical walls and a bottom wall, the plurality of vertical walls include a second vertical wall. The first display screen is mounted in the housing at a first predetermined distance from the bottom wall, and a first edge of the first display screen is spaced apart from the second vertical wall by a second predetermined distance. The rotating assembly is rotatably disposed in an opening in an axial direction of the rotating assembly.
The present invention relates to a bending adjustment apparatus using a curved bar, a bendable electronic device including the same, and a method for adjusting bending of the electronic device. The bending adjustment apparatus according to the present invention includes: a guide unit attached to a flat panel member made of a flexible material; at least one curved bar extending in a curved shape and rotatably installed in the guide unit; and a power transmission drive unit configured to rotate the curved bar so as to adjust a tensile force applied to the flat panel member corresponding to a curved shape of the curved bar. Accordingly, the degree of bending of the panel may be controlled by adjusting an angle formed by the curved direction of the curved bar with the panel in a state in which the bent-type curved bar is coupled to the flat panel member such as a display panel, and the curvature of the panel may be adjusted to a desired degree by controlling the rotation of the curved bar to an arbitrary angle.
A system for controlled motion of circuit components to create reconfigurable circuits comprising: a support; a substrate operatively associated with the support; actuators operatively associated with the support configured to physically move circuit components and to move the circuit components into physical and electrical contact with the substrate; the substrate comprising at least one conductive segment arranged to electrically connect circuit components when electrical contacts of circuit components are placed in contact with at least one conductive segment; and control circuitry configured to control the first and second actuators to thereby position the circuit components relative to the substrate; whereby circuit function is determined by the selection of circuit components and the location and orientation of circuit components relative to the substrate and conductive segments to create a reconfigurable circuit.
The present invention relates to a method for formation of a redistribution layer using photo-sintering and to the redistribution layer formed by the method. The method for forming a redistribution layer using photo-sintering includes printing, on a substrate, a liquid electrode pattern for a redistribution layer; coating a transparent polymer on the substrate and the pattern; photo-sintering the electrode pattern using photonic energy; and evaporating an organic substance contained in the liquid electrode pattern via the photo-sintering to remove the polymer on a top face of the electrode pattern to form a redistribution layer as the sintered electrode pattern.
A method of manufacturing a printed board, the method comprising: a first step of preparing a laminate having a base member in which a plurality of layers of glass cloths and a plurality of resin layers are alternately laminated, a first metal layer attached to one surface of the base member, and a second metal layer attached an opposite surface of the base member; a second step of forming a protective layer removable with a predetermined solvent on each of the first metal layer and the second metal layer; and a third step of irradiating the laminate on which the protective layer is formed with a laser beam to thereby form a through-hole penetrating in a thickness direction of the laminate.
Systems, methods, and computer-readable media are disclosed for ring-shaped devices with voice integration. In one embodiment, an example device may include an antenna element that at least partially forms an outer surface of the ring-shaped device, an outer shell coupled to the antenna element, an inner shell coupled to the outer shell, a curved battery disposed along a first side of the ring-shaped device, and a flexible printed circuit assembly coupled to the curved battery and disposed along a second side of the ring shaped device.
A printed circuit board includes a core layer having a first through-portion, a coil structure disposed in the first through-portion and comprising a support member, a first coil pattern in a planar spiral form disposed on one surface of the support member, and a body comprising a magnetic substance, wherein the support member and the first coil pattern are accommodated in the body, a first build-up layer covering at least a portion the core layer and disposed in at least a portion of the first through-portion, a first wiring layer disposed on one surface of the first build-up layer, and a first via layer passing through at least a portion of the first build-up layer and connected to the first wiring layer. The first via layer comprises a first wiring via connecting at least a portion of the first wiring layer to the first coil pattern.
A printed circuit board includes: an insulating layer having one surface and the other surface; metal layers respectively disposed on the one surface and the other surface of the insulating layer; a through-hole penetrating through the insulating layer and the metal layers; a first plating layer disposed in a center portion of the through-hole in a thickness direction thereof; and a plug disposed in the through-hole.
A method includes the steps of obtaining a frame from an image sensor, the frame comprising a number of pixel values, detecting a change in a first subset of the pixel values, detecting a change in the second subset of the pixel values near the first subset of the pixel values, and determining an occupancy state based on a relationship between the change in the first subset of the pixel values and the second subset of the pixel values. The occupancy state may be determined to be occupied when the change in the first subset of the pixel values is in a first direction and the change in the second subset of the pixel values is in a second direction opposite the first direction.
The inventive concept relates to illumination equipment for underwater photography and/or videography. The operating structure of the inventive concept achieves such an illumination of the environment, items, and living beings under water that affords optimum color at optimum distances for perception by an average person. The illumination device comprises a plurality of light emitters, which are configured to illuminate the environmental area of the illumination equipment. The illumination equipment includes at least one device for spectrum measurement that is configured to acquire information about the optical spectrum of the ambient illumination within the environmental area, and control means for modifying the emissions of the light emitters based on the acquired information about the optical spectrum. The light emitters may be at least one or more of red, blue, green, and white light emitters. The light spectrum is measured using an RGB-sensor formed by at least three illuminance measurement sensors.
A retrofit LED driver is for connecting to a high frequency ballast and for driving a LED load. A switch arrangement is used to couple the driver output power to the LED load or isolate the output power from the LED load. Voltage regulation is used when the output power is isolated from the LED load, and current regulation is used when the output power is coupled to the LED load. The voltage regulation is used so as to increase an output impedance as seen from the high frequency ballast by introducing an additional impedance of non-LED light source, when the output power coupled to the LED light source is less than a threshold, for example in deep dimming mode or standby mode instructed by the user. In this way, the effective impedance of the lamp is increased, which enables switching noise to be reduced, meanwhile the overall LED output power is not increased, as desired by the user.
A smart headlamp system and methods of use thereof are provided herein. A computer-implemented method includes automatically measuring orientation values attributed to a lighting system device worn by a human user, wherein the lighting system device comprises one or more lighting sources; and automatically modulating one or more of the lighting sources based on the measured orientation values.
A cooker includes a heating chamber configured to accommodate an object to be heated, a heater configured to heat the object to be heated accommodated in the heating chamber, heating controller (14) configured to control the heater for heating, an image capturing unit configured to capture an image inside the heating chamber, and mark detector (28) configured to detect a specific mark from the image captured by the image capturing unit. Heating controller (14) disallows or allows heating by the heater, based on a result of detection by mark detector (28).
A heuristic approach to configuration and/or planning for wireless networks is disclosed herein. In one embodiment, statistics relating to mobile device cell usage are collected and monitored. The statistics may include UE measurements (RSRP/RSRQ), UE location, number of connection requests, duration of connectivity, average traffic load associated with the users, channel utilization, and other statistics. Based on statistical analysis of the data collected, neural network analysis, data fitting, or other analysis, adjustments to cell coverage parameters such as handover thresholds, inactivity timer values, contention window size, inter-frame duration, transmit power, DRX cycle duration, or other parameters may be identified.
A method by a user equipment (UE) is described. The method includes receiving by the RRC entity of the UE, a PUCCH release request from a lower layer of the UE, and applying the default physical channel configuration for a scheduling request configuration for a concerned secondary cell, upon receiving the PUCCH release request from the lower layers of the UE. The PUCCH release request is notified by a Medium Access Control (MAC) entity of the UE in a case that a time alignment timer expires, the time alignment timer is associated with a secondary timing advance group (sTAG) and the concerned secondary cell belongs to the sTAG.
This application provides a data transmission method, an access network device, and a terminal. The method includes: receiving, by a first terminal, first instruction information from a first access network device, where the first terminal accesses the first access network device, and the first instruction information is used to trigger the first terminal to connect to a second terminal; connecting, by the first terminal, to the second terminal based on the first instruction information; and performing, by the first terminal, data transmission with a second access network device by using the second terminal, where the second access network device is configured to transmit data between the first access network device and the first terminal. In this way, the first access network device and the second access network device can both provide a data transmission service for the first terminal, thereby improving communication quality of the first terminal.
A user equipment is configured to be connected to a first cellular communication network and a second cellular communication network. The user equipment comprises: a communication interface configured to transmit a first message to the second communication network, when the user equipment is connected to the first communication network and is triggered to connect additionally to the second communication network, wherein the first message comprises information about the first communication network.
A control method for an information processing apparatus includes transmitting, by a first communication unit, information about an access point to which a second communication unit is connected, to a communication apparatus to which the first communication unit is connected. In a case where the information about the access point to which the second communication unit is connected is received, the communication apparatus connects to and communicates with the access point to which the second communication unit is connected by the second wireless communication method.
A relay communication method and a relay communications apparatus and system, for receiving, by a relay terminal, a first message sent by an access network device, where the first message includes configuration information of a first bearer; and configuring, by the relay terminal, an adaptation layer logical entity for the first bearer based on the first message, where the first bearer is a bearer between the relay terminal and the access network device, and the adaptation layer logical entity is used to distinguish between data of the relay terminal and data of a remote terminal or between data of different remote terminals.
A method and apparatus may include receiving configuration signaling from a network node to use a resource pool. The apparatus transmits using contention-based transmission. The method also includes selecting a preamble zone combination from the resource pool. The method may also include transmitting a preamble to the network node using the selected preamble zone combination. A preamble sequence index is used to identify the user equipment.
The present invention discloses a data transmission method and a terminal. In the method, the terminal supports transmissions with different TTL The method comprises: a base station instructing the terminal to use, on the basis of a target time unit of a target carrier wave, a first TTI for transmitting first data for semi-persistent scheduling and a second TTI for transmitting a second data for dynamic scheduling; and determining, on the basis of respective positions in the target time unit of a first time resource occupied for transmitting semi-persistent scheduling and of a second time resource occupied for transmitting dynamic scheduling, to transmit at least one of the first data and the second data, thereby achieving dynamic scheduling and semi-persistent scheduling using different TTIs.
Provided in an embodiment of the present invention are an uplink transmission method, and a terminal device capable of realizing uplink transmission at existence of multiple scheduling request (SR) configuration information items. The method includes: a terminal device receiving, from a network device, multiple scheduling request (SR) configuration information items, each SR configuration information item comprising a maximum transmission count of a corresponding SR; and the terminal device performing, according to the multiple SR configuration information items, processing of physical uplink control channel (PUCCH) resources corresponding to the multiple SR configuration information items.
Disclosed in the embodiments of the present disclosure are a communication method and a terminal device. The method includes determining, by a terminal device according to a first logical channel with to-be-transmitted data and an available uplink resource of the terminal device, whether to trigger a scheduling request (SR).
Provided are a method for a terminal for carrying out uplink communication in a wireless communication system, and an apparatus using the method. The method receives an uplink communication-related parameter independently configured for each analog beam, and carries out the uplink communication on the basis of the parameter. If the uplink communication is carried out using a particular analog beam, then an uplink communication-related parameter configured on the particular analog beam is applied to the uplink communication.
Embodiments of the present application provide a communication method, a terminal device and a network device. The method includes: starting, by a terminal device, a preconfigured timer; and monitoring, by the terminal device, resource preemption indication information transmitted by a network device in a preconfigured target frequency monitoring area within a duration of the timer, where the resource preemption indication information is used to indicate a resource that is preempted by other traffic in an evolved mobile broadband traffic (eMBB) resource, the eMBB resource is a time-frequency resource used to schedule eMBB traffic, the other traffic is different from the eMBB traffic. The embodiments of the present application can inform a terminal device of a preempted eMBB resource flexibly within a duration of a timer by using the resource preemption indication information.
An apparatus, system and method are provided for transmitting data from logical channel queues over a telecommunications link, each of the logical channel queues capable of being associated with quality of service attributes, the method including determining available resources for transmission over the telecommunications link in a frame; selecting one of the logical channel queues based on a first one of the quality of service attributes; packaging data from the selected one of the logical channel queues until one of: a second one of the quality of service attributes for the selected one of the logical channel queues is satisfied, the available resources are used, or the selected one of the logical channel queues is empty; and repeating the selecting step and the packaging step for remaining ones of the logical channel queues.
The present specification provides a method for transmitting a PUCCH in a wireless communication system. The method for a terminal transmitting a PUCCH, according to the present specification, comprises a step for transmitting a PUCCH to a base station by using a plurality of uplink beams, wherein the PUCCH is transmitted via uplink beams that are different per specific resource unit, wherein the specific resource unit may represent a resource unit for transmitting the PUCCH by the same beams.
The present technology provides a computer-implemented method and system for performing frequency selective scheduling between a user equipment (UE) and a base station. The UE selects a sub-band within a predetermined system bandwidth based on observed radio conditions. The UE then communicates the selected sub-band to the base station. The base station then selects a LTE resource block having a frequency range falling within the sub-band. The selected resource block is then used for communication between the base station and the UE. The process may be repeated at a frequency related to the channel coherence.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may operate in a multi-transmission/reception point (TRP) mode, where the multi-TRP mode includes monitoring a plurality of control channels and where each of the plurality of control channels may be associated with a TRP. The UE may operate in a first control channel monitoring state of the multi-TRP mode, where the UE may be configured to monitor a first control channel of a first TRP. The UE may identify an indication to switch from the first control channel monitoring state to a second control channel monitoring state of the multi-TRP mode. The UE may switch, based on the indication, to the second control channel monitoring state, where the UE may be configured to monitor the first control channel of the first TRP and monitor a second control channel of the second TRP.
Design of control resource sets (CORESETs) is disclosed for new radio (NR) unlicensed (NR-U) operations with subband access. A default CORESET may be defined for multiple or all subbands within the allocated NR system bandwidth where each subband is covered by a sub-CORESET. When a decoding candidate of the set of decoding candidates spans the boundary of multiple sub-CORESETs, a base station may either remove the overlapping decoding candidate from the set of decoding candidates, shift the decoding candidate into the next location fully within a sub-CORESET, or continue transmission of the decoding candidate while puncturing the portion on the inaccessible subband. In the puncturing option, a user equipment (UE) would perform additional blind decoding in each subband according to the associated sub-CORESET. In additional aspects, after beginning of a transmission opportunity, the UE uses the knowledge of accessible subbands for fast CORESET switching via broadcast or UE-specific signaling.
A paging configuration method includes: judging whether a present system load level of a present cell is greater than a preset load threshold or not; and when the present system load level is lower than or equal to the preset load threshold, sending first configuration information to each UE in the present cell, the first configuration information including multiple Paging Occasions (POs), a first effective PO set in the multiple POs, an identifier of UE and an identifier of an effective PO corresponding to the UE in the first effective PO set.
A method for monitoring paging is provided. The method is performed by a user equipment (UE) and includes actions of receiving a first Physical Downlink Control Channel (PDCCH) addressed to a first Radio Network Temporary Identifier (RNTI), and stopping monitoring a second PDCCH addressed to a second RNTI if the first PDCCH includes a paging stop indicator, where the second RNTI is the same as the first RNTI.
Embodiments are directed to automatic location of access points in a network. An embodiment of one or more non-transitory computer-readable storage mediums includes instructions for transmitting a request from a computing device to multiple access points in a network to determine a distance between each pair of access points of the multiple access points; receiving at the computing device the determined distances between each pair of access points; generating a proximity matrix containing the determined distances between each pair of access points; solving the proximity matrix to automatically generate a set of locations for the multiple access points; and orienting the generated set of locations for the multiple access points based on known locations of one or more anchor points in a subset of the access points.
A method, apparatus, and computer-readable medium are provided for wireless communication at a Road Side Synchronization Device (RSSD). The RSSD receives, from a first neighbor device, a first Sidelink Synchronization Signal (SLSS). The RSSD synchronizes in time/frequency with the first neighbor device, and transmits a second SLSS. The second SLSS is based on a synchronized timing and a synchronized frequency with the first neighbor device.
Aspects of the present disclosure provide methods, apparatuses, and embodiments for transmitting time critical uplink (UL) control information (e.g., beam failure indication, buffer status report, and scheduling request) without first obtaining UL timing synchronization with a network. Therefore, UL communication latency may be reduced by removing the signaling overhead involved in performing a full random access procedure to obtain UL synchronization prior to UL transmission.
A wireless device transmits a first preamble via a first sub-band. The wireless device determines to perform a first preamble retransmission based on receiving no response to the first preamble. The wireless device selects, for the first preamble retransmission, a second sub-band. Based on the second sub-band being different from the first sub-band, the wireless device determines that a transmission power of the first preamble retransmission may be based on a same value of a power ramping counter used for transmitting the first preamble. The wireless device transmits, based on the transmission power, a second preamble for the first preamble retransmission via the second sub-band.
An apparatus is disclosed for concurrent wireless communication and object sensing. In an example aspect, the apparatus includes one or more antennas and a wireless transceiver coupled to the one or more antennas. The wireless transceiver is configured to transmit, via the one or more antennas, a communication and sensing signal during a given uplink time slot. The communication and sensing signal comprises an uplink signal associated with the given uplink time slot and a radar signal. The radar signal temporally overlaps at least a portion of the uplink signal.
Various solutions for reducing power consumption with wake-up mechanism with respect to user equipment and network apparatus in mobile communications are described. An apparatus may receive a configuration to monitor a wake-up indication (WUI) on predetermined occasions. The apparatus may monitor the WUI according to the configuration. The apparatus may determine whether the WUI is received. The apparatus may monitor a physical downlink control channel (PDCCH) in an event that the WUI is received.
A wireless communication device includes a memory, and a processing circuitry coupled to the memory. The processing circuitry is to process a wake-up radio (WUR) frame transmitted by an Access Point (AP), the WUR frame comprising a medium access control (MAC) header and a frame body, the MAC header comprising a Frame Control field, an Address field, and a Type Dependent (TD) Control field, wherein the Frame Control field comprises a Type field; determine, based on a value of the Type field, that the WUR frame is a WUR Discovery frame; determine an identifier (ID) of the AP from the WUR Discovery frame; and in response to a determination that the WUR frame is a WUR Discovery frame, cause a Primary Connectivity Radio (PCR) corresponding to the wireless communication device to communicate with the AP based on the WUR Discovery frame.
Methods and apparatuses for redirecting a wireless transmit/receive unit (WTRU) to a dedicated core network (CN) node are described. An apparatus is configured to initiate a Service Request with a non-dedicated network node. The apparatus is configured to receive a special identifier in response to the Service Request, which indicates the apparatus should be redirected to a dedicated CN node based on subscription information. Radio access network resources associated with the apparatus may be released and the apparatus may then perform a tracking area update (TAU) request which is then forwarded to the dedicated CN node.
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. In addition, a method of operating a terminal in a wireless communication system includes: receiving idle-mode measurement configuration from a base station; in response to the terminal entering an idle mode, performing idle-mode measurement, based on the measurement configuration; in response to the terminal entering a connected mode, producing a measurement result, based on the result of performing the measurement; and reporting the measurement result to the base station, wherein another measurement result for a carrier frequency, which does not support subcarrier spacing (SCS) supported by the terminal, among the carrier frequencies included a carrier frequency list included in the measurement configuration is not reported.
A method for transmitting information and a terminal device are disclosed by the embodiments of the present application, where the method includes: receiving, by a terminal device, first information transmitted by a network device at an nth time unit, or transmitting, by the terminal device, the first information to the network device at the nth time unit, where the first information is used to indicate prolonging or stopping of an active Time of DRX; determining, by the terminal device, whether to report CSI and/or SRS to the network device at an (n+m+q)th time unit, where m is determined based on a scheduling timing sequence set and/or an ACK/NACK feedback timing sequence set, and the scheduling timing sequence set and the ACK/NACK feedback timing sequence set respectively comprise multiple values, where q is any integer greater than or equal to 0.
A method, a device and an apparatus for selecting a user signature vector, and a storage medium are provided. The method includes: acquiring a measurement result of an actual channel state of a terminal; determining a measurement result interval to which the measurement result belongs, based on the measurement result and a preset measurement threshold; determining a candidate user signature vector set corresponding to the measurement result interval to which the measurement result belongs, based on a preset correspondence between measurement result intervals and user signature vector sets, where the candidate user signature vector set includes one or more user signature vectors; and selecting the user signature vector from the candidate user signature vector set.
Aspects of the disclosure are directed toward intelligently selecting the operating parameters of wireless access points (WAPs) deployed in a wireless environment so as to minimize or at least reduce interference in that wireless environment. A WAP continually measures the characteristics of the wireless channels used in the wireless environment and obtains measurements of channel metrics for those channels. The WAP stores the channel metric measurements as a channel metric history and analyzes the channel metric history to determine correlations between the channel metric measurements and various timeframes. The WAP selects one or more of its operating parameters based on the channel metric history and the correlations identified. Operating parameters include the radio frequency band and channel to transmit on. A centralized control server may also receive, store, and analyze channel metric histories from multiple WAPs and issue instructions to those WAPs identifying values for their respective operating parameters.
Provided herein are apparatus and methods for radio frequency (RF) signal boosters. In certain implementations, a multi-band signal booster is provided for boosting the uplink and downlink channels of at least a first frequency band and a second frequency band. In certain configurations, the downlink channels of the first and second channels are adjacent, and the signal booster includes a first amplification path for boosting the uplink channel of the first frequency band, a second amplification path for boosting the uplink channel of the second frequency band, and a third amplification path for boosting both downlink channels of the first and second frequency bands.
In order for supporting separate ciphering at an MeNB (20) and an SeNB (30), the MeNB (20) derives separate first and second keys (KUPenc-M, KUPenc-S) from a third key (KeNB). The first key (KUPenc-M) is used for confidentially protecting first traffic transmitted over U-Plane between the MeNB (20) and a UE (10). The first key (KUPenc-M) may be the same as current KUPenc or a new key. The second key (KUPenc-S) is used for confidentially protecting second traffic transmitted over the U-Plane between the UE (10) and the SeNB (30). The MeNB (20) sends the second key (KUPenc-S) to the SeNB (30). The UE (10) negotiates with the MeNB (20), and derives the second key (KUPenc-S) based on a result of the negotiation.
Systems and methods for performing carrier aggregation in wireless sidelink communications are disclosed herein. In one embodiment, a method performed by a first node is disclosed. The method comprises: obtaining configuration information related to sidelink data transmission between the first node and at least one second node, wherein the configuration information comprises one or more rules related to carrier aggregation for the sidelink data transmission, wherein the one or more rules comprise information related to a reliability level associated with the sidelink data transmission; and transmitting the sidelink data to the at least one second node on a plurality of carriers based on the configuration information.
A roaming platform is disclosed herein. The roaming platform may receive, via a first communication protocol, an authentication request associated with a user equipment (UE), wherein the UE is subscribed to communicate via a first radio access technology of a home network, and wherein the authentication request is associated with enabling the UE to communicate via a visitor network that utilizes a second radio access technology. The roaming platform may identify an identifier associated with the UE in the authentication request. The roaming platform may determine, based on the identifier, a serving component of the home network that is configured to serve the UE. The roaming platform may obtain, from the serving component, authentication information associated with the UE, wherein the authentication information is obtained via a second communication protocol. The roaming platform may provide, based on the authentication information, an authentication response to the authentication request.
Systems and methods for computer-aided, session-based operational and organizational responses to asynchronously occurring events. A “session” is a collection of client-server connections, each client connection being an endpoint device in a pool of devices under the control of the members of a defined operational response team cooperating to address an event. The session provides an organizational framework for information sharing, including using context roles to identify the proper recipients for data and messages. The information and data is shared to participating recipients in the session in real-time as the operational response is conducted, and as new data and information is generated, that data is added to the session with a timestamp. Once the response is concluded, the sessions can be closed, encapsulating the data, which can then be “played” back to re-experience the response as it played out, such as for audit, analysis, and review purposes.
A device receives sensor data for a group of user equipment (UE) that are located within or on a structure. The device determines, based on a set of measured barometric pressures identified by the sensor data, a set of relative altitudes that identify altitudes of the group of UEs relative to each other. The device determines, based on at least a portion of the sensor data and relative altitude data that identifies the set of relative altitudes, and for each UE of the group of UEs, a floor on which the UE is located. The device causes, based on determining respective floors on which the UEs of the group of UEs are located, a data structure to store a mapping of each UE to the respective floors. The device performs one or more actions based on the mapping.
Disclosed herein identifies audiences of mobile devices that behave a like a seed group of devices. That is, the behave alike group are those devices that move in similar patterns and visit the similar locations with a similar frequency as the devices of the seed group. Similarity is based on correlative similarity in having visited matching categories of location styles identified via mapping data (e.g., devices that visit national parks at a similar frequency). Correlative similarity is performed using a machine learning model trained via a follow the regularized leader proximal.
Aspects of the subject disclosure may include, for example, a network device that comprises a processing system including a processor and a memory storing instructions that, when executed by the processing system, facilitate performance of operations. The operations include obtaining timing advance data regarding a communication device served by the network; the timing advance data is collected by a network element coupled to the network device, and the network element communicates with the communication device using control-plane signaling. The timing advance data is processed using location data regarding the network element to determine a geolocation of the communication device. The geolocation is stored at a storage device; the network device and storage device are included in a secure portion of the network. The geolocation is provided to equipment of a network customer accessing the secure portion of the network via a secure interface. Other embodiments are disclosed.
A device for manipulating an incident acoustic wave to generate an acoustic output is described wherein the device comprises a plurality of unit cells arranged into an array, at least some of said unit cells being configured to introduce time delays to an incident acoustic wave at the respective positions of the unit cells within the array of unit cells, such that said plurality of unit cells define an array of time delays to thereby define a spatial delay distribution for manipulating an incident acoustic wave to generate an acoustic output. The array of time delays may be re-configured to vary the spatial delay distribution of the device in order to generate different acoustic outputs. Also described are methods for designing or configuring such devices.
An electronic device is disclosed. According to an embodiment of the disclosure, the electronic device comprises a housing including a plate defining a first face of the electronic device and a side portion extending along an edge of the plate and defining a side face of the electronic device, a speaker including a sound outlet disposed in a support portion of the housing extending from the side member to an inner space of the electronic device, the sound outlet disposed in a direction facing the first face, a sheet disposed between the plate and the speaker, and an acoustic duct defined in part by the sheet and the support portion, spaced apart from the plate, and extending from the sound outlet of the speaker to the side face.
A computing device includes a housing and a microphone module. The microphone module may be connected to the housing and selectively manipulated between an attached and detached state. In an attached state, the microphone of the microphone module is operatively linked to one or more electrical components of the housing. In a detached state, the microphone is disconnected from the one or more electronic components.
The present disclosure relates to a display apparatus, especially having a display panel generating sounds. A display apparatus according to the present disclosure includes: a display module; a back cover at a rear surface of the display module; a compartment provided inside the back cover; a fixing element provided inside the compartment; a sound generating unit inserted into the compartment and installed by the fixing element; and an adhesive element attaching an upper surface of the sound generating unit and the rear surface of the display module.
An apparatus for providing community driven content includes at least one sensor for recording sensor data, a network interface, a memory, and a processor connected to the sensor, the network interface, and the memory. The processor is configured to record usage history for engagement with the apparatus by a first user over a period of time and receive the sensor data from the at least one sensor for actions by the first user over the period of time. The processor determines user preferences for the first user based on the usage history and the sensor data, and determines whether a second user is available for interaction with the first user. The processor then outputs the suggested action, at a predetermined time, to at least one connected display device or audio device.
A method of session-based DASH operations can include receiving a media presentation description (MPD) referencing a session-based description (SBD) and indicating a key name during a media access session. The SBD includes a first repeating pattern element that includes a first sequence of timed key values of the key name. The first repeating pattern element indicates that the first sequence of the timed key values of the key name is repeated along a timeline or an orderline. A first key value of the key name corresponding to a timing or a segment number of a current segment of a sequence of segments can be determined based on the first repeating pattern element in the SBD. A request for the current segment can be transmitted to a media content server. The request includes a pair of the key name and the first key value.
This patent document describes techniques are related to providing an entertainment to passengers on a commercial passenger vehicle. In one aspect, a method for providing an entertainment to passengers on a commercial passenger vehicle comprises: receiving a request, from a first passenger on the commercial passenger vehicle, to allow the first passenger to provide a live video, the live video obtained by capturing, in real time, an activity associated with the first passenger on the commercial passenger vehicle; receiving one or more requests, from one or more additional passengers on the commercial passenger vehicle, to view the live video; receiving the live video from the first passenger; and distributing the live video to the additional passengers.
The disclosure relates to an in-loop filter apparatus for video coding, which is configured for processing a reconstructed frame corresponding to a current frame for generation of a filtered reconstructed frame, wherein the reconstructed frame comprises a plurality of pixels, each pixel being associated with a pixel value. The in-loop filter apparatus comprises a processing unit configured to: partition the reconstructed frame into a plurality of overlapping and/or non-overlapping 2D pixel blocks; generate for each 2D pixel block a 2D spectrum by applying a 2D transform to the 2D pixel block, wherein the 2D spectrum comprises a plurality of spectral components; generate for each 2D pixel block a filtered 2D spectrum by multiplying each spectral component with a respective gain coefficient, wherein the respective gain coefficient depends on the respective spectral component and/or one or more neighboring spectral components of the respective spectral component and one or more filtering parameters; generate for each 2D pixel block a filtered 2D pixel block by applying an inverse 2D transform to the filtered 2D spectrum; and generate the filtered reconstructed frame on the basis of the plurality of filtered 2D pixel blocks.
A method for multiple transform selection (MTS) is provided. A video decoder receives data from a bitstream for a block of pixels to be decoded as a current block of a current picture of a video. The decoder sets a zero-out indication based on one or more non-zero coefficient indications of subblocks of the current block. When the zero-out indication indicates that a zero-out region has no non-zero coefficient, the decoder parses the bitstream for an MTS index. When the zero-out indication indicates that the zero-out region has at least one non-zero coefficient, the decoder sets the MTS index to a default value without parsing the MTS index from the bitstream. The decoder selects a transform mode according to the MTS index for the current block. The decoder reconstructs the current block by using the selected transform mode.
An image coding method bitstream includes: determining a maximum number of a merging candidate which is a combination of a prediction direction, a motion vector, and a reference picture index for use in coding of a current block; deriving a first merging candidate; determining whether or not a total number of the first merging candidate is smaller than the maximum number; deriving a second merging candidate when it is determined that the total number of the first merging candidate is smaller than the maximum number; selecting a merging candidate for use in the coding of the current block from the first merging candidate and the second merging candidate; and coding, using the maximum number, an index for identifying the selected merging candidate, and attaching the coded index to the bitstream.
An image decoding method according to the present invention includes reconstructing a residual block by inverse-quantizing and inverse-transforming an entropy-decoded residual block, generating a prediction block by performing intra prediction on a current block, and reconstructing an picture by adding the reconstructed residual block to the prediction block, wherein generating the prediction block includes generating a final prediction value of a prediction target pixel included in the current block based on a first prediction value of the prediction target pixel and a final correction value calculated by performing an arithmetic right shift on a two's complementary integer representation for an initial correction value of the prediction target pixel by a binary digit of 1. Accordingly, upon image encoding/decoding, computation complexity may be reduced.
A device for decoding video data receives the video data, determines a scaling parameter for a block of the video data; and scales the block in a video decoding loop using the scaling parameter to increase a dynamic range for luminance values of the block. A device for encoding video data partitions the video data into blocks; determines a scaling parameter for a block of the video data; and scales the block in a video encoding loop using the scaling parameter to decrease a dynamic range for luminance values of the block.
A video hardware engine with multi-threading functionality is disclosed. The video hardware engine includes a video hardware accelerator unit and a controller. The controller is coupled to the video hardware accelerator unit. The controller operates in an encode mode and a decode mode. In the encode mode, the controller receives a plurality of frames and encode attributes associated with each frame of the plurality of frames. The encode attributes associated with a frame of the plurality of frames is processed to generate encode parameters associated with the frame. The video hardware accelerator unit is configured to process the frame based on the encode parameters to generate an output. The output of the video hardware accelerator unit is processed to generate a compressed bit-stream and an encode status. In decode mode, the controller receives a compressed bit-stream and decode attributes and generates a plurality of frames and a decode status.
A method for video bitstream processing, comprising: determining that a first portion of a data unit of the video bitstream exceeds beyond one or multiple borders of a second portion of the data unit of the video bitstream; and performing at least one of: extended quad tree (EQT) partitioning, flexible tree (FT) partitioning, or generalized triple tree (GTT) partitioning of the first portion of the data unit based on the determination that the first portion exceeds beyond the border.
Devices, systems and methods for digital video coding, which include geometric partitioning, are described. An exemplary method for video processing includes making a decision, based on a priority rule, regarding an order of insertion of motion candidates into a motion candidate list for a conversion between a current block of video and a bitstream representation of the video, wherein the current block is coded using a geometry partition mode; and performing, based on the decision and the motion candidate list, the conversion.
Systems and methods are disclosed herein for generating virtual reality scenes from a textual document. The textual document is parsed to identify a plurality of text portions corresponding to a plurality of scenes. Each of the plurality of text portions is analyzed to identify a plurality of nouns and a plurality of related verbs. A virtual reality (VR) scene including a plurality of VR objects depicted as performing a set of actions is generated for each of the plurality of text portions, based on the nouns and related verbs identified in the corresponding text portion. Each VR scene includes at least one portal which a user may interact with to view another VR scene and the set of actions in a VR scene may be repeated while the VR scene is being viewed.
An output control apparatus is communicable with a communication apparatus through a communication network. The communication apparatus includes a first image capturing device configured to capture a subject at a remote site to acquire a first image and a second image capturing device configure to capture a part of the subject to acquire a second image. The output control apparatus includes circuitry to: receive the first image transmitted from the communication apparatus; output the received first image so as to be displayed on a display; receive, from the communication apparatus, the second image acquired by capturing a part of the subject corresponding to a display position of the first image displayed on the display; output the received second image so as to be displayed on the display; and control the display to display the first image and the second image that are output.
A CMOS type semiconductor image sensor module wherein a pixel aperture ratio is improved, chip use efficiency is improved and furthermore, simultaneous shutter operation by all the pixels is made possible, and a method for manufacturing such semiconductor image sensor module are provided. The semiconductor image sensor module is provided by stacking a first semiconductor chip, which has an image sensor wherein a plurality of pixels composed of a photoelectric conversion element and a transistor are arranged, and a second semiconductor chip, which has an A/D converter array. Preferably, the semiconductor image sensor module is provided by stacking a third semiconductor chip having a memory element array. Furthermore, the semiconductor image sensor module is provided by stacking the first semiconductor chip having the image sensor and a fourth semiconductor chip having an analog nonvolatile memory array.
The present disclosure relates to an imaging element, a driving method, and electronic equipment that enable imaging to be performed at higher speed. The imaging element includes a pixel array in which a plurality of pixels are arranged in a matrix shape, an AD converter that performs AD conversion in parallel on pixel signals that have been output from the plurality of pixels for each column of the plurality of pixels arranged in the pixel array, and a reference signal generator that generates a reference signal that the AD converter refers to when the AD converter performs AD conversion on a pixel signal for an identical pixel signal, the reference signal having a waveform that includes a slope having a constant gradient. Then, when the AD converter performs, on the identical pixel signal, multi-sampling for performing sampling during a P-phase period and sampling during a D-phase period at least once or more, the reference signal generator generates a reference signal in which, from among a plurality of slopes during the D-phase period, a sampling period of a second slope has been set to be shorter than a sampling period of a first slope. The present technology is applicable, for example, to a CMOS image sensor including a column-parallel ADC.
An imaging device includes a plurality of pixels including a first pixel and a second pixel, and a differential amplifier including a first amplification transistor, a second amplification transistor, and a first load transistor. The first load transistor receives a power source voltage. The imaging device includes a first signal line coupled to the first amplification transistor and the first load transistor, a second signal line coupled to the second amplification transistor, and a first reset transistor configured to receive the power source voltage. A gate of the first reset transistor is coupled to the first load transistor. The first pixel includes a first photoelectric conversion element and the first amplification transistor, and the second pixel includes a second photoelectric conversion element and the second amplification transistor.
A camera system includes a camera, a processor, and a memory. In response to a first commissioning signal, the camera system records a first image comprising a token in a first position. In response to a second commissioning signal, the camera system records a second image comprising the token in a second position. In response to a third commissioning signal, the camera system records a third image comprising the token in a third position. The camera system computes a field of interest boundary for a visual field of the camera system based on the first position, the second position, and the third position.
An aerial vehicle is configured to process an image captured by an imaging device, and to identify a portion of the image that is likely to appear in images subsequently captured by the imaging device based on the motion of the aerial vehicle. A control unit aboard the aerial vehicle generates instructions for controlling such motion and provides the instructions to the imaging device. Based on such instructions, the imaging device processes the image to identify a portion of the image that will appear within a field of view of the imaging device following the motion, and selects a shutter speed, an aperture, a level of gain, or another attribute of the imaging device based on the portion of the image, in order to optimize the quality of an image subsequently captured by the imaging device.
A camera module is provided, including a lens driving mechanism, a lens unit, a circuit board, and an image sensor. The lens unit is disposed on the lens driving mechanism. The image sensor is disposed on the circuit board. The circuit board includes a metal member, an insulation layer, and a metal wire. The insulation layer is disposed between the metal member and the metal wire, and the metal wire is electrically connected to the image sensor. The lens driving module can drive the lens unit to move relative to the image sensor. The image sensor can catch the light through the lens unit.
A vehicular camera module includes a lens barrel having a plurality of optical elements accommodated therein, a front camera housing portion, and a rear camera housing portion mated with the front camera housing to form a housing that encases an imager printed circuit board and a processor printed circuit board. A heat transfer element is disposed between and in thermal conductive contact with the imager printed circuit board and a rear wall of the rear camera housing. The heat transfer element extends through an aperture of the processor printed circuit board. Circuitry of the camera module is electrically connected to electrical connecting elements that electrically connect to a wire harness of a vehicle when the camera module is disposed at the vehicle. Heat generated by operation of the vehicular camera module is drawn from the imager printed circuit board to the rear camera housing portion via the heat transfer element.
An image reading apparatus has: electrodes that come into contact with a medium during transport; charge detection circuits, each of which corresponds to one of the electrodes; a reader, and a controller. The controller executes inclination inference processing for calculating the inclination of the medium with respect to a transport path as an inferred inclination value according to a signal from each charge detection circuit, inclination detection processing for deriving the inclination of the medium with respect to the transport path as a detected inclination value according to the result of reading by the reader, and correction value deriving processing for storing a correction value based on the difference between the detected inclination value and the inferred inclination value in a storage section. In inclination inference processing with the correction value stored in the storage section, the inferred inclination value is calculated in consideration of the correction value.
A request processing apparatus includes a selecting section and an outputting section. The selecting section selects, from multiple pieces of photo data obtained through shooting during an event, one or more pieces of photo data consistent with a request accepted before or during the event. The outputting section outputs the one or more pieces of photo data selected by the selecting section.
A method for creating a textual summary of a call includes transcribing speech to text in real time using a speech-to-text generating unit configured for execution upon one or more data processors, automatically matching, in real-time, text to predetermined intents and extracted entities using an intent recognizing unit for execution upon the one or more data processors, automatically mapping the predetermined intents and extracted entities into a call summary using one or more mapping functions, and displaying the call summary using an agent user interface for execution upon the one or more data processors. A contact center call summarization system may include a contact center communication device, a speech-to-text generating unit, an intent recognizing unit, and an agent user interface.
Systems, methods, and computer-readable media for managing movement states of an electronic device are provided that may leverage pass data from a pass application when determining a current or future movement state of an electronic device.
A Base Station (BS), a method, and device are provided for data transmission. The BS is deployed in a radio access network constructed on the basis of a first mobile communication technology standard. The BS includes: a user plane entity and an aggregation adaptation layer function entity. The user plane entity is configured to receive user plane data in a first format, and send the user plane data in the first format to the aggregation adaptation layer function entity. The aggregation adaptation layer function entity is configured to convert the user plane data in the first format into user plane data in a second format, and send the user plane data in the second format to a BS in a radio access network constructed on the basis of the second mobile communication technology standard.
A server for managing data, according to various embodiments, may comprise: communication circuitry for receiving a data request from at least one electronic device; a cache for storing a plurality of update data according to an update time; and a processor for, when the data request is received from the electronic device, searching the cache for update data for a first period starting from a previous data request time to the time of receiving the data request, and transmitting at least one updated data of the first period to the electronic device.
The present disclosure provides a method and an apparatus for acquiring remote-procedure-call (RPC) member information, an electronic device and a storage medium, and relates to the field of micro-services technologies in cloud services. The method includes: pushing, by nodes of a RPC cluster, respective local member lists of the nodes of the RPC cluster to each other, and merging, by each node of the RPC cluster, a received member list with a current local member list while performing deduplication until member lists of the nodes of the RPC cluster are synchronized.
A computer-implemented method for controlling content distribution includes forwarding information associated with a user to a device operated by the user, the information being configured for use in selecting content from any of multiple content providers for a content distribution to the user. The method includes receiving, in response to the information, an edit of the information forwarded from the device. The edit identifies a first content provider and including a first modification of the content distribution regarding the first content provider. The method includes storing the edit in association with the information such that the first modification is taken into account in the content distribution. The method can be implemented using a computer program product tangibly embodied in a computer-readable storage medium.
Various embodiments of systems, apparatus, and/or methods are described for selectively obscuring a rendering of a media stream. In one implementation, the method includes receiving a media stream with a receiving device, receiving event data associated with the media stream, generating identification data based at least in part on the event data, presenting the media stream and identification data on a presentation device, receiving at least one participant selection from a user interface device, retrieving participant information based on the at least one participant selection, and presenting the participant information on the presentation device.
An event processing system is provided for providing resilient message processing using asynchronous communications. The event processing device includes a processor and a memory. The event processing device is in communication with a publisher microservice and subscriber microservices. The processor is configured to receive an event including a collection of data from the publisher microservice. The processor is also configured to process the event to identify a recipient microservice. The processor is configured to update a queue with a queue entry for each of the at least one recipient microservices for the event. Each queue entry is associated with a priority. The processor is also configured to attempt to transmit the event to each of the at least one recipient microservices until a transmission confirmation message is received. The processor is further configured to update the queue by removing the queue entry for which the transmission confirmation message is received.
There are provided a molded product manufacturing system that can be easily adapted to IoT and an apparatus for taking out a molded product that can promote adaptation of the molded product manufacturing system to IoT. A molded product manufacturing system includes an injection molding machine, an apparatus for taking out a molded product, and one or more peripheral devices arranged around the apparatus to operate together during operation of the apparatus. The apparatus includes a communication unit operable to transmit internal data to an external server via a communication network. The communication unit of the apparatus transmits external data, which is output from the one or more peripheral devices, to external servers together with information on a die.
Techniques for management of Internet of Things (IOT) devices are disclosed. IOT devices may be manufactured with a pre-installed software development kit (SDK) (e.g., in firmware or other storage). At initial startup time (e.g., after device placement), IOT devices may execute the firmware code as provided by the SDK to connect to a corporate network or other network-based control environment, such as a cloud-based service provider infrastructure. Once connected, IOT devices may participate in enterprise computing applications as a consumer or provider of information. Updates to IOT devices and their SDKs may be periodically provided. Virtual IOT devices may be used as placeholders or emulators for unavailable or future IOT devices, such that enterprise applications may be configured and executed without an actual physical IOT device in existence. Virtual IOT devices may also be used to assist with overall device provisioning.
Generating, by a cloud-based system, a plurality of data infrastructure slices, each of the plurality of data infrastructure slices including a respective service; storing, by the cloud-based system, the plurality of data infrastructure slices; selecting, by the cloud-based server, at least two data infrastructure slices of the plurality of stored data infrastructure slices; generating, by the cloud-based system in response to the selection of the at least two data infrastructure slices of the plurality of data infrastructure slices, a data infrastructure stack comprising the selected stored data infrastructure slices, the data infrastructure stack capable of being executed in different third-party entity accounts of an on-demand cloud-computing platform; and deploying, by the cloud-based system, the data infrastructure stack in a particular third-party entity account of the on-demand cloud-computing platform.
A resource management system is disclosed herein that quickly and dynamically tailors application resource provisioning to real-time application resource consumption. The resource management system may service application requests using resources selected from a pool of servers, the pool of servers including a mixture of virtual server resources and serverless instance resources. The serverless instance resource may comprise software objects programmed using a machine image reflecting one or more states of a virtual application server booted using application-specific program code. Supporting an application using serverless instances enables dynamic scaling of application resources to support real-time application servicing loads.
Concepts and technologies disclosed herein are directed to service correlation across hybrid cloud architecture to support container hybridization. According to one aspect of the concepts and technologies disclosed herein, an overlay network can instantiate a message bus between a first cloud network and a second cloud network. The overlay network can receive, via the message bus, a request from the second cloud network for a container image stored in a containerized application asset repository of the first cloud network. The overlay network can retrieve, via the message bus, the container image from the containerized application asset repository. The overlay network can provide, via the message bus, the container image to the second cloud network for creating a container based upon the container image.
A system for managing a virtualized computing system is disclosed. The system enables a user of a mobile device to efficiently track and manage computing resources via a management application that includes a graphical user interface that is designed to be operated using a conventional terminal (e.g., via a mouse and keyboard). The system may receive commands from the user of the mobile device in a first format and translate the commands into a second format that can be executed by a management application. Embodiments of the present disclosure further enable a management application to verify and securely communicate with users via existing communications services (e.g., social networking services) without expending additional resources to develop custom, secure interfaces for multiple mobile software and hardware platforms.
Methods and systems for intelligent use of off-peak bandwidth are disclosed. An example method can comprise receiving a request for content from a user device. The content server can transmit the content to the user device. Upon receiving a teardown command to suspend transmission of the content, after transmitting a first portion of the content to the user device, the content server can determine that playback of the content is likely to be resumed at a peak time. The content server can then pre-position a second portion of the content proximate to the user device prior to the peak time.
Disclosed are various embodiments providing automated management of security operations centers. In one embodiment, a correlation and decision engine correlates event data generated by a plurality of monitoring services with a plurality of alerts generated by a plurality of threat intelligence services. The engine then adjusts at least one rule of one or more threat intelligence services with respect to at least one event based at least in part on a corresponding frequency of at least one of the plurality of alerts meeting a threshold, where the adjusted alert(s) are associated with the event(s).
A method and system for classification of cyber-threats is provided. The method includes receiving a request for classifying a cyber-threat detected by a cyber-security system, wherein the request includes initial information about the detected cyber-threat; enriching the initial information about the detected cyber-threat to provide textual information about at least one perceived threat related to the detected cyber-threat; and classifying each of the at least one perceived threat into a security service, wherein the classification is performed based on the respective textual information.
Methods and systems for detecting and correcting anomalies include ranking sensors in a cyber-physical system according to a degree of influence each sensor has on a measured performance indicator in the cyber-physical system. An anomaly is detected in the cyber-physical system based on the measured performance indicator. A corrective action is performed responsive to the detected anomaly, prioritized according to sensor rank.
Techniques are disclosed for providing dynamic threat treatment for a software defined networking (SDN) environment. In one example, a software defined networking controller comprises one or more processors, wherein the one or more processors are configured to: determine that a security device of a network has detected a threat; apply the threat to a threat treatment model, wherein the threat treatment model is generated based on threat treatment information that includes one or more steps used to resolve previous instances of the threat or previous instances of similar threats; and generate one or more treatment processes to resolve the threat based on the threat treatment model.
A least-privilege permission or permissions is automatically assigned to a client application in order to ensure that the client application is able to perform the bare minimum actions on a resource. The client application accesses the protected resource using a web API. The determination of the least-privilege permission(s) is based on actions previously performed on the resource by the client application. The identity provider monitors the actions performed on a resource by the client application and determines the bare minimum permission needed for the client application.
Techniques to provide secure access to a cloud service are disclosed. In various embodiments, enterprise mobility management (EMM) data associated with a set of enterprise users of mobile devices associated with an enterprise is received. Cloud service data associated with use of a cloud service of the cloud service provider by users associated with the enterprise is received and correlated with the EMM data. Usage of the cloud service by said users associated with the enterprise is analyzed, including one or both of access of the cloud service using one or more unmanaged devices and access of the cloud service using one or more unmanaged mobile apps.
Disclosed is a method of authorizing a user for accessing a server and/or for receiving of an on-line service and the steps of: capturing biometric data of the user using the sensor on a ME; forming from the biometric data a biometric template on the IDS and storing the biometric template on the MED; and via the IDS allowing access to a server by the user providing to the IDS, via the MED, matching biometric data and a biometric template. On the MED, a local check can be made for a match between biometric data of the user that are captured using the sensor on the MED and biometric data read out of the memory.
Embodiments described include systems and methods for slogan based sharing of network application objects. The method may include executing a network application on behalf of a client application executed by a first client device. The client application may include an embedded browser. The method may include receiving from the client application a selection of an object of the network application to be shared with a second client device. The method may include selecting a unique sequence of words from a pre-defined list of words, associating the unique sequence of words with the selected object of the network application, transmitting the unique sequence of words to the first client device, and receiving the unique sequence of words from the second client device. The method may include, responsive to receipt of the unique sequence of words from the second client device, accessing the selected object of the network application.
The present embodiments relate to entry and management of identifiers and credentials. The present embodiments display a credential affordance that, upon selection, provides a credential-assistance user interface for enabling swift access to various credential and management options. The credential affordance can be displayed based on a determination by electronic device that a webpage includes a text entry field associated with a set of one or more restricted resources (e.g., document and/or webpage).
The disclosure describes systems, methods and devices relating to a sign-on and management hub or service for users of multiple internal, external or Software-as-a-Service (SaaS) software applications (Apps), with options for centralized management and sharing of accounts without needing to provide login credentials to individual users.
Systems and methods are provided for exchanging messages between gateways. The systems and methods include operations for: storing, in a first gateway located in a first geographical region of a plurality of geographical regions, data that associates a plurality of users with the plurality of geographical regions; receiving, by the first gateway, a message directed to a given user of the plurality of users; determining, based on the data, that a second geographical region of the plurality of geographical regions is associated with the given user; and transmitting, by the first gateway, the message to a second gateway located in the second geographical region.
At a sending electronic device, from a remote location, an indication is received of an environment at a receiving mobile electronic device to which the sending electronic device is to send a message. It is determined how to send the message from the sending electronic device to the receiving mobile electronic device, based on the indication of the environment at the receiving mobile electronic device. The message is sent from the sending electronic device to the receiving mobile electronic device in accordance with the determining step.
Technologies for network interface controllers (NICs) include a compute sled and an accelerator sled in communication over a network. The accelerator sled configures a virtual switch endpoint associated with a remote direct memory access (RDMA) server instance that is associated with a field-programmable gate array (FPGA) of the accelerator sled. The accelerator sled updates local software defined networking (SDN) tables with a virtual tunnel associated with the virtual switch endpoint and a remote compute sled. A virtual switch of the accelerator sled switches virtual tunnel traffic from the remote compute sled to the RDMA server instance, which transfers data to or from the FPGA. The compute sled also updates a local SDN table with the virtual tunnel, and a virtual switch of the compute sled switches virtual tunnel traffic to or from the accelerator sled. Other embodiments are described and claimed.
A method of data switching. Data is received by at least one input port of a crosspoint switch. The crosspoint switch configurably casts the data to at least one output port of the crosspoint switch. Each output port of the crosspoint switch is connected to a respective input of a logic function device such as an FPGA. The logic function device applies a logic function to data received from each output port of the crosspoint switch, such as address filtering or multiplexing, and outputs processed data to one or more respective logic function device output interfaces. Also, a method of switching involving circuit switching received data to an output while also copying the data to a higher layer function.
The present disclosure provides a method for executing a QoS policy and a network device, where the method includes: before a packet entering the network device goes through a preset forwarding process, it is determined whether the packet matches a flow template according to a property of the packet; if the packet matches the flow template, a session structure of a network session corresponding to the packet is acquired, a QoS dedicated structure is added to a tail of the session structure, a QoS policy corresponding to the flow template is acquired, the QoS policy is compiled to obtain policy information, and the policy information is filled to the QoS dedicated structure; and after the packet goes through the preset forwarding process, the policy information in the QoS dedicated structure is added to the packet, so that a switching chip of the network device executes the QoS policy.
Systems and methods for load balancing in a network are disclosed. An illustrative method includes receiving network telemetry data corresponding to network paths of a plurality of coexisting multipaths, performing an adaptive load balancing process by determining whether a network path from the plurality of coexisting multipaths is an adequate network path based on the network telemetry data, and in response to determining the network path is an adequate network path, selecting the network path for a network flow.
A data communication system includes a host computing system, a data communication network, and a mission context routing (MCR) system. The host computing system is configured to receive a user request to exchange data between the host computing system and a destination communication device. The data communication network is configured to establish at least one network path to facilitate data exchange between the host computing system and the destination communication device. The MCR system is configured to determine route connection data based on an input selected from a group that includes the user request in context of the activity a user is performing, and an operational context of a network owner entity. Accordingly, the MCR system establishes a designated network path among a plurality of different available network paths of the data communication network based at least in part on the route connection data.
Technology is described for edge computing management with multiple latency options. An application orchestration service may identify service distribution zones of a service provider environment that provide a connection between a mobile network and computing resources capable of executing portions of distributed applications used by devices connected to the mobile network. The application orchestration service may determine whether a network path latency between the devices and the computing resources satisfy latency constraints for the portions of the distributed applications. The application orchestration service may orchestrate which computing resources in the service distribution zones handle application processing by the portions of the distributed applications for the devices connected to the mobile network.
A Network Functions Virtualization (NFV) system reads, from a data bus coupled to the NFV system, Virtual Network Function (VNF) parameters published to the data bus by a new VNF. The NFV system publishes, to the data bus based on the VNF parameters, instructions to multiple components of the NFV system defining which VNF capabilities of the new VNF are to be managed, controlled, or monitored by which of the multiple NFV system components. The multiple components of the NFV system control, manage, or monitor the new VNF based on the published instructions. The data bus can include a Data Movement as a Platform (DMaaP) system that publishes and subscribes to streams of records.
A disclosed method may include (1) collecting telemetry data that represents a state of a network device during a live operating session, (2) deriving, from the telemetry data, a set of steps for reproducing the state of the network device during the live operating session based at least in part on a set of rules, (3) generating, based at least in part on the set of steps, a playback decision tree that, upon execution, facilitates (A) reproducing the state of the network device during the live operating session and (B) debugging the state of the network device, and then (4) performing a debug operation that executes the playback decision tree via a network diagnostic tool such as a healthbot. Various other systems, methods, and computer-readable media are also disclosed.
A network switch may be debugged by creating a virtual instance of the switch. Configuration data of the network switch may be retrieved, the configuration data including lists of the rules and groups configured on the switch. An isolated virtual environment may be created, and a virtual switch may be provisioned on the isolated virtual environment. The virtual switch may be configured with the configuration data of the network switch, including the rules and groups configured thereon. Diagnostic data corresponding to the switch may be obtained from the virtual switch.
A cyber-threat detection system that maintains consistency in local configurations of one or more computing nodes forming a cluster for cyber-threat detection is described. The system features a distributed data store for storage of at least a reference configuration and a management engine deployed within each computing node, including the first computing node and configured to obtain data associated with the reference configuration from the distributed data store, From such data, the management engine is configured to detect when the shared local configuration is non-compliant with the reference configuration, and upload information associated with the non-compliant shared local configuration into the distributed data store. Upon notification, the security administrator may initiate administrative controls to allow the non-compliant shared local configuration or modify the shared local configuration to be compliant with the reference configuration.
Described herein are systems and methods for communication in an IoT system. The systems and method utilize a single grammar to communicate data from controller to sensor and points in between. In one embodiment, the systems and method are utilized in a debug mode, where the grammar is in a human-readable format. In a further embodiment, the human-readable grammar is a markup language, composed of tags and metadata.
Systems, methods and computer software are disclosed for providing 2G/3G communication over 4G/5G distributed unit (DU) in a virtual Radio Access Network (RAN) architecture.
A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
Suitable hopping patterns designed to alleviate degradations of SRSs are provided herein. When a UE (12, 14, 200) transmits multiple SRS within the same time resource (e.g., slot), the UE is configured with an SRS hopping pattern (including an SRS bandwidth) based on at least a UE configuration bandwidth. In one exemplary embodiment, a node (12, 14, 200), e.g., a UE (14, 200) or a network node (12, 200) of a wireless network (10), controls the SRS configurations for SRS transmissions by the UE (14, 200) via one or more resource blocks. The SRS configuration comprises a hopping pattern and a first (e.g., hopping) bandwidth associated with the SRS transmissions. The node (12, 14, 200) determines the first bandwidth, and determines a second (e.g., configuration) bandwidth associated with a configuration of the UE (14, 200). The node (12, 14, 200) determines the SRS configuration for the UE (14, 200) responsive to the first and second bandwidths, and configures the UE (14, 200) according to the determined SRS configuration to control SRS transmissions by the UE (14, 200).
The present disclosure provides an indication method, including: determining first transmission resources related to a transmission channel for a large-scale channel parameter or a group of large-scale channel parameters, and transmitting configuration information about the first transmission resources to a terminal device via first signaling, the first transmission resources being transmission resources for K downlink reference signals, K being a positive integer; and selecting second transmission resources from the first transmission resources in accordance with a transmission parameter used by the transmission channel, and transmitting indication information about the second transmission resources to the terminal device via second signaling, the second transmission resources being transmission resources for L downlink reference signals, L being a positive integer, and K being greater than or equal to L.
A data authentication system stores a data fingerprint representing data distributed from a data source to a data recipient, allowing the data recipient to authenticate the data. The data authentication system receives, from a data source, a first data fingerprint that represents a digital entity distributed by the data source to a data recipient. A representation of the first data fingerprint is sent for storage on a blockchain. A request is received from a data recipient to authenticate the digital entity, where the request includes a second data fingerprint that represents the digital entity as distributed to the data recipient. The data authentication system authenticates the second data fingerprint against the stored first data fingerprint to verify that the data recipient received authentic data.
An authentication method, an authentication apparatus, and an authentication system for the communications field are described. The authentication includes receiving, by a communications network element, a request from a user equipment (UE) comprising a first identifier that is an international mobile subscriber identity (IMSI). The communication network element, in response to the request, sends the first identifier to a home subscriber server. The communications network element, upon authenticating the UE successfully, sends a second identifier to a key management center (KMS) to facilitate the KMS generating a subscriber private key corresponding to the second identifier and sending the subscriber private key to the communications network element. The communications network element thereafter sends the subscriber private key to the UE.
A blockchain configuration may be used to store a distributed ledger for information security and accessibility. One example method of operation may include determining a proof-of-work via a device and using a predefined set of nonce values when determining the proof-of-work, storing the proof-of-work on a blockchain, and broadcasting the proof-of-work as a broadcast message.
Using various embodiments, methods and systems for securing user data are described. In one embodiment, a system includes a server side application accessing a service key from a conventional key vault and an escrowed key which can then be used to compute a key to the key using which information can be encrypted. Other embodiments include using a timer service to further safeguard secure user information.
Method, system or Universal Integrated Circuit Card (UICC) for provisioning a UICC with a new key. The UICC contains an initial subscriber key shared between the UICC and an authentication center. A new key is exchanged between the UICC and the authentication center using a communication between the UICC and the authentication center authenticated using the initial subscriber key. The new key is used in place of the initial subscriber key for further communications with the UICC.
Systems and methods include establishing a cryptographically secure communication between an application module and an audio module. The application module is configured to execute on an information-handling machine, and the audio module is coupled to the information-handling machine. The establishment of the cryptographically secure communication may be at least partially facilitated by a mutually trusted module.
There are provided a terminal device, a base station device, and an integrated circuit that enable a base station device and a terminal device to determine parameters related to uplink signals or uplink reference signals and to perform efficient communication. A terminal device that transmits a demodulation reference signal associated with a physical uplink shared channel to a base station device includes determining a sequence group number on the basis of a value of a parameter configured by a higher layer, determining the sequence group number on the basis of a physical layer cell identity, and generating a sequence of the demodulation reference signal on the basis of the sequence group number, wherein the sequence group number is determined on the basis of the physical layer cell identity in a case where a transmission on the physical uplink shared channel corresponding to a downlink control information format to which CRC parity bits scrambled by a Temporary C-RNTI are attached is performed in a random access procedure.
According to one embodiment, a wireless communication device includes a receiver, a controller and a transmitter. The receiver receives a terminal identifier of a first terminal being a target for downlink frequency multiplexing transmission from another wireless communication device, and receives information identifying, of a plurality of frequency components, a first frequency component allocated to the first terminal. The controller selects, of a plurality second terminals belonging to the wireless communication device, a second terminal having a terminal identifier same as that of the first terminal and allocates the first frequency component to the selected second terminal. The transmitter transmits a header at a band including the plurality of frequency components, the header including the terminal identifier of the selected second terminal in a first field corresponding to the first frequency component, and transmits a first frame addressed to the selected second terminal via the first frequency component.
The present application proposes a blockchain node synchronization method and device using a trust mechanism. The method comprises: acquiring data throughput history data of each node in a routing table of a node to be synchronized; acquiring synchronization success rate history data of each node in the routing table of the node to be synchronized; acquiring a total difficulty value of a blockchain currently stored by each node in the routing table of the node to be synchronized; determining a credibility of each node in the routing table according to the data throughput history data, the synchronization success rate history data, and the total difficulty value of the blockchain; and selecting, according to the credibility of each node, a target node for synchronization, and synchronizing, according to blockchain data stored by the target node, the node to be synchronized.
Disclosed is a method by which a transmission device transmits data on the basis of a sound signal in a wireless communication system, the method including transmitting a sound packet corresponding to transmission data, with the sound packet including at least one sound symbol, the sound symbol including at least one sound sub-symbol, a plurality of sound symbol types are supported in the wireless communication system, and each of the plurality of sound symbol types is mapped to a preset data value.
Methods and systems for a distributed optical transmitter with local domain splitting are disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator via one or more delay lines, and generating electrical signals in voltage domains utilizing the domain splitters for modulating the optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
A system and method for efficient optical signal amplification with system monitoring features are provided. For example, an optical repeater may include two different 4-port thin-film gain flattening filters (TF-GFFs), which may be connected to provide a high-loss loop-back (HLLB) path in the optical repeater for system monitoring. The 4-port TF-GFF may have four different ports and may integrate the functionalities of a conventional GFF and a coupler into a single component, thereby increasing power efficiency of the optical repeater.
A method, device, and computer-readable medium provide for establishing, by a repeater device, a communication channel with a fixed wireless access (FWA) device; receiving, by the repeater device, reference signals from a wireless station; forwarding, by the repeater device, the reference signals to the FWA device; transmitting, by the repeater device, a first uplink signal from the FWA device using a first transmission power level to the wireless station, wherein the first transmission power level is a predetermined value; receiving, in response to the first uplink signal, transmit power control (TPC) command parameters from the FWA device via the communication channel; adjusting, by the repeater device and based on the first TPC command parameters, the first transmission power level from the predetermined value to an adjusted value; and transmitting, at the adjusted transmission power level, a second uplink signal from the FWA device to the wireless station.
Wireless communications systems and methods related to determining an improved beam weight for UL and/or DL transmissions are provided. A wireless communication device transmits uplink-downlink beam reciprocity information and receives via an antenna array of the wireless communication device, a plurality of downlink beam reference signals based on a beam selection. The wireless communication device receives a downlink communication signal using a reception beam configured based on an adjusted plurality of weights. Additionally, the wireless communication device adjusts a plurality of weights for the antenna array based on the received plurality of downlink beam reference signals and the UL-DL beam reciprocity information.
Methods, systems, and devices for wireless communications are described. The method includes receiving a transmission parameter of a second wireless network, scanning, based on the transmission parameter, for transmission activity of the second wireless network using a set of beams generated in accordance with a beamforming codebook, and opportunistically communicating with a second wireless device of the first wireless network using the beamforming codebook based on the scanning.
A device with near-field communications (NFC) capabilities is provided. A housing may include first and second segments and a support plate separated from the segments by a slot. A first inductor may be coupled between the first segment and the plate. A second inductor may be coupled between the second segment and the plate. A transceiver may have a first signal terminal coupled to the first segment over a first path and a second signal terminal coupled to the second segment over a second path. The transceiver may convey differential signals in an NFC band over a loop path for an NFC antenna that includes the first conductive path, the first segment, the first inductor, a portion of the plate between the first and second inductors, the second inductor, the second segment, and the second conductive path. This may optimize wireless performance and volume for the NFC antenna.
A method and system of communicating between a plurality of nodes are provided. The plurality of nodes are part of a cooperative broadcast multi-hop network that employs broadcast flood routing and multi-hop transmission using a direct-sequence spread-spectrum (DSSS) waveform.
An electronic device is disclosed. The electronic device may include an antenna for transmitting and receiving a signal in an RF frequency band, and an RF circuit for processing the signal in the RF frequency band. The RF circuit may include an Rx path for transferring a first signal received through the antenna, a Tx path for transferring a second signal output from an amplifier to the antenna, and a coupler for transferring at least a part of the second signal obtained in the Tx path to the Rx path. In addition, various embodiments understood from the specification are possible.
A method comprising: obtaining a first radio signal and a second radio signal, determining a first envelope signal based on the first radio signal and a second envelope signal based on the second radio signal, determining a preview envelope signal based on the first envelope signal and the second envelope signal, determining a common clipping gain signal based on the preview envelope signal, determining a first clipping gain signal based on the common clipping gain signal and a first weighing factor, determining a second clipping gain signal based on the common clipping gain signal and a second weighing factor, performing a first crest factor reduction for the first radio signal utilizing the first clipping gain signal, and performing a second crest factor reduction for the second radio signal utilizing the second clipping gain signal.
An apparatus and a method for constituent code processing in polar successive cancellation list (SCL) decoding and a method thereof. The apparatus includes a processor configured to determine a number of r candidate paths, wherein r is an integer; determine path metrics PMtj of a codeword j for each candidate path t; and select r most probable paths based on the path metrics PMtj. The method includes determining q indicies min1, min2, . . . , minq of least reliable bits in the constituent code, wherein q is a number; determining a number of r candidate paths, wherein r is an integer; determining path metrics PMtj of a codeword j for each candidate path t; and selecting r most probable paths based on the path metrics PMtj.
A sub-sampling phase-locked loop includes a first phase output unit sub-sampling an output clock of a digitally-controlled oscillator and outputting a sign bit corresponding to a voltage-domain phase and a second phase output unit outputting a gain bit corresponding to a time-domain phase based on a pulse width set according to the output clock and a threshold time set according to the reference clock.
Disclosed are methods, systems and devices for distribution of a timing signal among operational nodes of a circuit device comprising one or more circuit dies. In one implementation, a timing signal distribution network may transmit a timing signal to one or more operational circuit nodes formed on a circuit die and a clock circuit may generate a first clock signal for transmission as the timing signal to the one or more operational circuit nodes. A switch circuit may apply a second clock signal for transmission as the timing signal in lieu of the first clock signal if the circuit die is integrated at least one of the one or more other circuit dies. In another implementation, timing signals received at timing signal terminals of at least two of two or more of operational circuit nodes may be synchronized independently of the timing signal distribution network.
A slew rate control circuit is disclosed. The slew rate control circuit includes an input port to receive an input signal, a transmitter to transmit the input signal to an output port and an impedance control circuit coupled between the transmitter and the output port. The impedance control circuit has an adjustable impedance that is configured to be adjusted during a rise and a fall of the input signal using a trim code and an one shot pulse.
A switching circuit includes a first transmission terminal, a second transmission terminal, a third transmission terminal, and a variable impedance circuit. The first and the second transmission terminals coupled to a common node form a first transmission path. The third transmission terminal coupled to the common node forms a second transmission path with the first transmission terminal. The variable impedance circuit has a first terminal coupled between the common node and the third transmission terminal, and a second terminal coupled to a first reference potential terminal. When the first transmission path transmits a first signal, a first frequency bandwidth range provided by the variable impedance circuit is determined according to a first frequency of the first signal so that the variable impedance circuit provides low impedance in the first frequency bandwidth range, and the first frequency bandwidth range covers the first frequency.
A piezoelectric thin film resonator includes: a substrate; a piezoelectric film located on the substrate; a lower electrode and an upper electrode facing each other across at least a part of the piezoelectric film; and an insertion film that is inserted between the lower electrode and the upper electrode, is located in an outer peripheral region within a resonance region where the lower electrode and the upper electrode face each other across the piezoelectric film, is located in a region that is located outside the resonance region and surrounds the resonance region, is not located in a center region of the resonance region, and includes a first part, which is located in the resonance region and has a first film thickness, and a second part, which is located outside the resonance region and has a second film thickness, the first film thickness being less than the second film thickness.
A differential amplifier circuit includes: a control current source supplying a control current; paired bipolar transistors; an a variable resistance circuit including: a series circuit of a first resistor and a second resistor having an identical resistance, the series circuit electrically connected between a first terminal and a second terminal of the variable resistance circuit; a first field effect transistor (FET) having a source and a drain being electrically connected to emitters of the paired bipolar transistors, respectively; and a second FET having a drain, a gate being electrically connected to the drain thereof, the gate of the first FET, and a control terminal of variable resistance circuit, a source being electrically connected to a connection node between the first resistor and the second resistor, wherein the control current source adjusts the control current to allow transconductance of the second FET to be kept constant.
An apparatus is disclosed for processing a signal with a divided amplifier. In example implementations, an apparatus includes a first portion of an amplifier, a first port interface, a second port interface, and a switch matrix. The first port interface includes a first transformer; a second portion of the amplifier, which is coupled to the first transformer; and a first switch component that is coupled to at least one of the first transformer or the second portion of the amplifier. The second port interface includes a second transformer and a second switch component that is coupled to the second transformer. The switch matrix is coupled between the first switch component and the first portion of the amplifier and between the second switch component and the first portion of the amplifier. The switch matrix is also coupled between the second portion of the amplifier and the first portion of the amplifier.
This application describes an amplifier circuit (200) with a forward signal path with a class-D output stage (102) for generating a driving signal (Sout) based on a digital input signal (Sin). The amplifier has a first feedback path for providing a first digital feedback signal (Sfb1) based on the driving signal and a second feedback path for providing a second digital feedback signal (Sfb2) from a digital part of the forward signal path. The digital input signal (Sin) is combined with a selected feedback signal (Sfbs). The amplifier circuit is selectively operable in a first mode, in which the first feedback signal is used as the selected feedback signal, and in a second mode, in which the second feedback signal is used as the selected feedback signal. A calibration module (204) is operable to calibrate the first feedback path to reduce any DC offset when the amplifier circuit is operating in the second mode.
A calibration apparatus is used for calibrating characteristics of a power amplifier (PA) in a transmitter. The calibration apparatus includes an adaptive bias generator circuit that is used to track an envelope of an input signal received by control terminals of transistors of the PA and generate an adaptive bias voltage to the control terminals of the input transistors in response to the envelope of the input signal.
A device includes a MEMS resonator and oscillator circuit coupled to the MEMS resonator. The circuit includes a first transistor having a first control terminal and first and second current terminals, and a second transistor having a second control terminal and third and fourth current terminals. The circuit includes a resonator coupling network configured to inductively couple MEMS resonator terminals to the first and third current terminals, and to couple the first and third current terminals. The circuit includes a control terminal coupling network configured to couple the first and second control terminals, and to reduce a voltage swing at the first and second control terminals relative to a voltage swing at the first and third current terminals. The circuit includes a second terminal coupling network configured to couple the second and fourth current terminals. A second terminal coupling network resonant frequency is approximately that of MEMS resonator.
Implementations of a system for sensing rotor position of a PMSM may include: a controller which may be coupled with the PMSM. The controller may be configured to apply a plurality of voltage vectors to the PMSM to generate a plurality of sensing signals from a stator of the PMSM in response. A comparator may be coupled to the PMSM configured to receive and to compare each one of the plurality of sensing signals with a threshold voltage. A rise time measurement circuit may calculate a plurality of rise times using the plurality of sensing signals in response to receiving a signal from the comparator. The rotor-angle estimation circuit may be configured to identify from the plurality of rise times a shortest rise time and a voltage vector corresponding with the shortest rise time and thereby identify the position of the rotor of the PMSM.
A motor control apparatus that is configured to perform a power distribution control on three-phase coils of a brushless motor and that is configured to perform a rotation control of a rotor includes: a plurality of switching elements that are arranged to be capable of switching a current which is allowed to flow through the coils; a plurality of sensors that are configured to detect a rotation position of the rotor; and a control part that is configured to output a drive signal for controlling a power distribution pattern of each switching element according to a position detection signal which is obtained by correcting a position detection signal as an output of the plurality of sensors by using a predetermined correction coefficient, wherein the control part is configured to add a correction angle that corresponds to a difference between the position detection signals before and after correction of a predetermined sensor among the plurality of sensors to a setting value of an advance angle of the power distribution control and select an output pattern that includes a plurality of power distribution patterns and that is used when selecting the power distribution pattern, from a plurality of different output patterns in accordance with the advance angle to which the correction angle is added and a power distribution angle of the power distribution control.
A motor driver control system is configured for connection to a plurality of motors, the motor control system includes a motor driver command module, and the motor driver command module is configured to: access information related to one or more operating metrics of the plurality of motors; analyze the information to determine whether a maintenance condition exists in any of the plurality of motors; and if a maintenance condition exists in any of the plurality of motors: prevent electrical power from reaching any of the plurality of motors, identify which one or more of the plurality of motors has the maintenance condition, disconnect the one or more identified motors from the motor driver control system, and restore electrical power to all of the plurality of motors other than the identified motors after disconnecting the one or more identified motors.
In the present uninterruptible power supply apparatus (U1), in a power failure of a commercial AC power supply (41), a switch (1) is turned off to electrically cut off the commercial AC power supply (41) from an AC input filter (2), and when DC voltage (ΔE=Ep−En) that is the difference between terminal-to-terminal voltages (Ep, En) of first and second capacitors (C1, C2) exceeds a threshold voltage (ETH), first and second IGBT devices (Q1, Q2) or third and fourth IGBT devices (Q3, Q4) included in the converter (3) are turned on and off to reduce DC voltage (ΔE).
A converter assembly has a rectifier receiving an external alternating voltage of a specified feed frequency, an inverter, and a DC link with a DC link capacitor electrically between the rectifier and the inverter. An absorption circuit, which is connected in parallel with the DC link capacitor, forms a series resonance circuit and is of low impedance at a series resonance frequency twice the feed frequency. The absorption circuit forms a parallel resonance circuit together with the DC link capacitor and has high impedance at a parallel resonance frequency. A damping absorption circuit, connected in parallel with the DC link capacitor and the absorption circuit, includes an ohmic resistor and is magnetically coupled to the absorption circuit. A voltage dropping at the absorption circuit at the parallel resonance frequency is transformed by the magnetic coupling to the damping absorption circuit. The resistor damps the parallel resonance of the absorption circuit.
A power converter circuit includes an input configured to receive an input voltage and an output configured to provide an output voltage; a main converter coupled between a main converter input and the output and comprising a first winding and a second winding that are inductively coupled; and an auxiliary converter comprising an auxiliary converter input coupled to a third winding and an auxiliary converter output, wherein the third winding is inductively coupled with the first winding and the second winding. The auxiliary converter output is coupled between the input and the main converter input.
It is an object of one or more embodiments of the present disclosure to provide a Multiple-Inductor Multiple-Output (MIMO) switching converter to supply several different output voltages. The combination of this MIMO converter with a booster circuit supplies one or more individual cores with current that bypasses the parasitic network. The booster circuit has a wider bandwidth or a faster response when compared to the main MIMO switching converter. The MIMO booster circuit can supply a number of cores with only a single set of shared inductors. The main advantages include a lower component count and a reduced printed circuit board footprint to support multiple cores in a Multiple-Inductor Multiple-Output. The present disclosure makes use of the low duty-cycle of the power peaks and the low statistical likelihood of these peaks occurring for all cores simultaneously.
A method for operating an electronic switch in a power converter and a control circuit for operating an electronic switch in a power converter are disclosed. The method includes: driving an electronic switch coupled to an inductor in a power converter in successive drive cycles each including an on-time and an off-time, wherein the off-time includes a demagnetization time period in which the inductor is demagnetized and a delay time, and wherein an end of the delay time is dependent on the occurrence of a predefined number of signal pulses of a pulse signal. The pulse signal includes a first portion that represents local minima of a voltage across the switch and, a second portion that includes signal pulses obtained by timely extrapolating the pulse signal of the first portion.
An AC capacitor is coupled to a totem-pole type PFC circuit. In response to detection of a power input disconnection, the PFC circuit is controlled to discharge the AC capacitor. The PFC circuit includes a resistor and a first MOSFET and a second MOSFET coupled in series between DC output nodes with a common node coupled to the AC capacitor. When the disconnection event is detected, one of the first and second MOSFETs is turned on to discharge the AC capacitor with a current flowing through the resistor and the turned on MOSFET. Furthermore, a thyristor may be simultaneously turned on, with the discharge current flowing through a series coupling of the MOSFET, resistor and thyristor. Disconnection is detected by detecting a zero-crossing failure of an AC power input voltage or lack of input voltage decrease or input current increase in response to MOSFET turn on for a DC input.
A surgical retractor assembly for providing surgical exposure. The surgical retractor assembly consists of multiple ring segments connected by adjustable ratchet mechanisms to form a complete ring. The ratchet mechanisms are attached to tissue retractor blades which provide exposure of the wound when expanded, without the requirement of a direct connection/attachment to an operating table. The tissue retractor blades are attached in a manner which is adjustable and facilitates the ability of the overall surgical retractor assembly (ring segments and connectors) to be raised or lowered with respect to the patient. The ring segments also allow attachments of additional retractor blades or other surgical retractor accessories for additional surgical exposure.
Displacement devices comprise a stator and a moveable stage. The stator comprises a plurality of coils shaped to provide pluralities of generally linearly elongated coil traces in one or more layers. Layers of coils may overlap in the Z-direction. The moveable stage comprises a plurality of magnet arrays. Each magnet array may comprise a plurality of magnetization segments generally linearly elongated in a corresponding direction. Each magnetization segment has a magnetization direction generally orthogonal to the direction in which it is elongated and at least two of the magnetization directions are different from one another. One or more amplifiers may be connected to selectively drive current in the coil traces and to thereby effect relative movement between the stator and the moveable stage.
In a first aspect, a method of performing maintenance operations in an electrical machine is provided. The method comprises positioning the rotor in a first position; disconnecting electrical windings, removing one or more segments of an electrical conductor ring and positioning the rotor in a second position without connecting the removed segments of the electrical conductor ring. In a further aspect, a method of operating an electrical machine is also provided. In yet a further aspect, it is provided an electrical machine comprising an electrical conductor ring having a releasable segment.
The present invention relates to an electrical machine comprising a rotor (10) and a stator, rotor (10) being formed by assembling a rotor body (4) and a rotor shaft (1). According to the invention, rotor shaft (1) is knurled and the outside diameter of rotor shaft (1) is greater than the inside diameter of rotor body (4), by a value ranging between 0.05 mm and 0.3 mm. The present invention further relates to a method of manufacturing such an electrical machine.
An electric motor assembly for railway drive. The motor assembly comprises: an electric drive motor; a ventilation and cooling device for ventilating and cooling the electric drive motor through cooling air; and a draining device to drain the ventilation and cooling air flow. The draining device is provided with a silencer device for the cooling air flow. The silencer device comprise at least one straight channel to reduce the turbulent flow into a substantially laminar flow of the out-flowing ventilation and cooling air. Furthermore, the draining device comprises a scroll, which consists of two separate arched channels in order to avoid the formation of stationary vortices. The two arched channels communicate with one another, from the fluidic point of view, only in a common outlet area for the ventilation and cooling air.
A winding support (100) that serves to at least partially accommodate a stator coil of a stator, whereby the winding support (100) has a plurality of protrusions (1, 2, 3, 4, 5, 6) that can each be inserted in an insertion direction (E) into a cavity that is formed by two adjacent stator pole teeth of a laminated core of the stator, whereby at least one of the protrusions (1, 3, 5) has a different length in the insertion direction (E) than at least one of the other protrusions (2, 4, 6).
A motor includes a stator and a rotor provided inside the stator. The stator includes a stator core, and a coil made of aluminum and wound around the stator core in distributed winding. The rotor includes a rotor core, and a first number of permanent magnets mounted in the rotor core. The coil of the stator is covered with varnish. The first number is greater than or equal to 6, and is less than or equal to 10. Each of the first number of permanent magnets of the rotor contains neodymium, iron, boron and dysprosium, and has a dysprosium content of 0% to 4% by weight.
A power generating apparatus includes a power supply, a first sub-end circuit, a second sub-end circuit and an integrated signal generator. The first and second sub-end circuits respectively generate first and second sub-end standby power. The first sub-end circuit receives a first integrated control signal. The second sub-end circuit receives a second integrated control signal. The first sub-end circuit cuts off the first sub-end standby power according to the first integrated control signal and turns on the first sub-end standby power again after a first delay time. The second sub-end circuit cuts off the second sub-end standby power according to the second integrated control signal, and turns on the second sub-end standby power again after a second delay time. The integrated signal generator generates the first and second integrated control signals.
The present disclosure provides an energy conversion system and method for generating electricity directly from heat by phase transformation of ferroelectric materials without any external power sources. The energy conversion system includes an electric circuit comprising a phase-changing capacitor and a charge reservoir. The phase-changing capacitor has a dielectric layer comprising a phase-transforming ferroelectric material. When the phase-changing capacitor is initialized and subjected to thermal cycles through a transformation temperature of the phase-transforming ferroelectric material, the polarization of the dielectric layer undergoes an abrupt change between a ferroelectric phase and a paraelectric phase such that a current flow between the phase-changing capacitor and the charge reservoir via a load thereby converting heat into electrical energy. The present energy conversion method does not require any external bias fields during the energy conversion.
A battery with a battery management system is capable of charging the battery with recaptured energy from an energy regeneration device. The battery management system charges the battery with the energy regeneration device if the output voltage from the energy regeneration device is larger than the charging voltage of the battery.
Systems and methods are provided for operating lithium ion devices by setting an operative capacity below a rated capacity value of the lithium ion device, and operating the lithium ion device at the set operative capacity by decreasing a lower voltage cutoff value during discharging and/or by increasing an upper voltage cutoff level during charging—to support operation at the set operative capacity. The systems and methods may utilize residual lithium in device components such as anodes, cathodes, electrolyte etc. or combinations thereof, and/or external lithiation to increase the cycling lifetime of the lithium ion devices, to adapt to user preferences and expected use profiles, and to simplify device status indications to the user. Advantageously, relatively simple circuitry is required to implement the provided methods and systems, and achieve customizable operation of the lithium ion devices.
A wireless charging system includes an induction coil to generate a magnetic field attached to a housing that has a hole in a surface to accept a grip. A user inserts a grip attached to an electronic device with a receiver circuit, including a receiver coil, into the hole bringing the receiver coil into contact with the magnetic field generated by the induction coil. The magnetic field induces a current in the receiver coil which is used to charge the electronic device. In certain instances, the housing is secured to another surface by an attached mount. Moreover, in certain instances the electronic device is supported by a portion of the hole's perimeter supporting the grip or a securing mechanism holding the grip inside the hole.
Provided is a modular, scalable and decentralized high voltage battery system that employs signaling and communications between a plurality of battery modules of the system without a central battery management controller. Via signaling mechanisms, each battery module of the plurality of battery modules of the system can perform precharging, discharging, charging, and safety functions in a manner that is extensible regardless of a number of battery modules in the system in series and in parallel and in a manner that does not require significant operator intervention.
The present disclosure proposes a decomposition-coordination voltage control method for wind power to be transmitted to a nearby area via flexible DC. The method includes: initializing parameters; sending the parameters to wind power farms; for each of the wind power farms, establishing a voltage control optimization sub-model; solving the voltage control optimization sub-model to obtain a first optimal result; for the control center, establishing a voltage control optimization main model; solving the voltage control optimization main model to obtain a second optimal result; calculating a determination index based on the first optimal result and the second optimal result; and determining whether the determination index is convergent to an admissible value, if no, updating the parameters and returning to establishing the voltage control optimization sub-model.
In one example, an arc fault circuit interrupter (AFCI) is provided. The AFCI may include a plurality of current arc signature detection blocks configured to output a plurality of corresponding current arc signatures, and a processor. The processor may be configured to receive each of the plurality of current arc signature from each of plurality of current arc signature detection blocks, respectively, and generate a first trigger signal. The processor may be further configured to assess each of the current arc signatures, determine whether an arc fault exists based on the assessment, and generate the first trigger signal if an arc fault is determined to exist. A method for detecting an arc fault is also provided.
A wall-mounted enclosure assembly utilizes insertable door mounting components that allow the enclosure door to be easily mounted to the enclosure main housing without the use of tools and in a manner that easily sets the door installation depth to match the depth of the surrounding drywall. After the enclosure main housing is mounted in the wall, insertable mounting components that serve as hinges and latches for the door are inserted into slots formed on the vertical sides of the main housing. The insertable mounting components can be inserted to a desired depth but cannot be withdrawn from the slots until a release tab is pressed. The installation depth of the hinges and latches is correctly set to match the thickness of the drywall merely by inserting the insertable mounting components until a stopping surface on the components abuts the drywall.
An AlGaInPAs-based semiconductor laser device includes a substrate, an n-type clad layer, an n-type guide layer, an active layer, a p-type guide layer composed of AlGaInP containing Mg as a dopant, a p-type clad layer composed of AlInP containing Mg as a dopant, and a p-type cap layer composed of GaAs. Further, the semiconductor laser device has, between the p-type guide layer and the p-type clad layer, a Mg-atomic concentration peak which suppresses inflow of electrons, moving from the n-type clad layer to the active layer, into the p-type guide layer or the p-type clad layer.
In one aspect, an optical system for delivering light into an optical fiber is disclosed, which comprises a phosphor-converted white light source for generating white light, a red light emitting diode (LED) for generating red light, and a light-delivery system for delivering at least a portion of said white light and said red light into an input port of an optical fiber.
An apparatus (such as a laser-based system) and method for providing optical pulses in a broad range of pulse widths and pulse energies uses a pulse slicer which is configured to slice a predefined portion having a desired pulse width of each of the one or more output optical pulses from a laser oscillator, in which timings of a rising edge and a falling edge of each sliced optical pulse relative to a time instance of a maximum of the corresponding each of the one or more output optical pulses from the laser oscillator, are chosen at least to maximize amplification efficiency of the optical amplifier, which may be located after the pulse slicer, and to provide the one or more amplified output optical pulses each having the desired pulse energy and pulse width.
A waterproof connector includes a first terminal module, a second terminal module, a covering module and an outer shell. The first terminal module includes a first insulating body and a number of first terminals. The second terminal module includes a second insulating body and a number of second terminals. The first insulating body is provided with a first hollow groove. The second insulating body is provided with a second hollow groove. The outer shell is provided with a top surface. The top surface is provided with a first glue pouring port communicating with the second hollow groove. The waterproof connector is provided with a first sealant poured into the first hollow groove, and a second sealant poured into the second hollow groove. The second sealant and the first sealant are two pieces. As a result, the waterproof performance of the waterproof connector is improved.
A high speed connector includes an insulated shelter for accommodating at least one main body. The main body includes at least one terminal group integrated with the main body by having two opposing sides thereof to extend out of the main body, in which the two opposing sides are defined as a contact portion and a welding portion, respectively. The terminal group further includes a plurality of terminals. The insulated plastic element has a slot for enclosing up terminal group, and a height of a section in the slot is larger than a thickness of the plurality of terminals, so that at least one gap can be formed in the slot. By having the gap, dielectric coefficients and electromagnetic properties around the terminals can be adjusted to reduce the crosstalk effects upon the signal terminals. In addition, an insulated plastic element is also provided.
In various embodiments, compact connector designs may be provided that have reduced board pitch (e.g., 1.80 mm, 1.50 mm, 1.27 mm, etc.), but are still capable of accommodating large electrical conductors (e.g., 1.4 mm, 1.1 mm, 0.9 mm, etc.). In this manner, PCB footprint may be reduced (e.g., by 50% when a staggered connector configuration is used), while adequate current carrying capacity may be maintained (e.g., 2 A, 3 A, 4 A, etc.). Additionally, or alternatively, one or more other advantages may be achieved, such as ruggedness (e.g., vibration endurance), error proofing, configuration flexibility, ease of manufacturing, ease of assembly, and/or lowered costs.
An electrical coupling transfers electrical signals between a camera head and a cable and comprises a first part associated with the camera head and a second part associated with the cable and connectable to the first part. The coupling establishes contact between connectors of the first and second parts. The first part comprises a first connection position for reception of the second part, and a second connection position for reception of the second part. The connectors of the first and second parts comprise dot shaped connectors and elongated connectors. One of the first and second parts comprise the dot shaped connectors, and the other one comprises the elongated connectors. Each dot shaped connector is associated with one of the elongated connectors, and the connectors are arranged such that each dot shaped connector connects with an associated elongated connector in both the first connection position and the second connection position.
The object is to provide a technology that can prevent a spring electrode from being dissolved and broken upon a short circuit in a semiconductor chip. A spring electrode includes a main body. The main body is a tubular conductor, and varies in diameter in a longitudinal direction so that a side surface has bellows. Since the main body of the spring electrode does not include an edge portion, the local concentration of a short-circuit current that flows through the spring electrode upon a short circuit in a semiconductor chip can be reduced. This can prevent the spring electrode from being dissolved and broken.
In some embodiments, connecting a component to a substrate by adhesion to an oxidized solder surface includes: forming one or more conductive solder connections between the component and one or more conductive portions of the substrate; adhering the component to an oxidized surface of a solder portion applied to the substrate.
A cable assembly comprising a connector with a termination that enables high density and high signal integrity. Shields of cables are terminated to a paddle card via a conductive structure attached to a surface of the paddle card. The signal conductors of the cables are terminated to pads on the paddle card that are exposed within openings of the conductive structure. Such a structure creates a ground structure per cable that provides low insertion loss and low crosstalk, even when multiple cables are aligned side by side and terminated in one or more rows. The cables may be drainless, enabling a large number of cables, such as eight cables, to be packed within the width of a paddle card specified in high density standards such as QSFP-DD or OSFP. The cables may nonetheless have large diameter signal conductors, enabling 2.5 or 3 meter assemblies with less than 17 dB insertion loss.
A first sheet metal is provided with slits. Elastic pieces having flat shapes are each formed between the slits adjacent to each other, and both ends of each of the elastic pieces are connected with both ends of an adjacent one of the elastic pieces. A second sheet metal is provided with protrusions each of which is protruded toward a corresponding one of the elastic pieces.
An electronic device is provided. The electronic device includes a housing, and a printed circuit board (PCB) disposed in an inner space of the housing and includes at least one first conductive contact exposed at least partially and electrically connected to a wireless communication circuit; and an antenna structure disposed on the PCB, including at least one first antenna element and at least one second conductive contact exposed at least partially and electrically connected to the at least one first antenna element. The at least one first conductive contact is electrically connected to the at least one second conductive contact when the antenna structure is combined with the PCB. The wireless communication circuit is configured to form a directional beam through the at least one first antenna element.
A phased array antenna system comprises a feeding network which includes power combiners/dividers and an amplitude tapering system. The phased array antenna system comprises a plurality of antenna elements coupled to the feeding network. The amplitude tapering system is configured to generate amplitude coefficients and apply an amplitude tapering function on a transmitted or received radio frequency signal. The amplitude tapering function comprises a combination of a least two disparate amplitude tapering functions.
A broadband group antenna, comprising a plurality of antenna elements and an earth plane element, wherein the antenna elements are arranged in a common plane on top of the earth plane element and connected to a microwave transceiver unit via conductors provided in channels that extend through the earth plane element in a direction perpendicular to a main extension plane of the earth plane element, the antenna elements are arranged in a matrix pattern comprising first rows extending in a first direction and second rows extending in a second direction perpendicular to said first direction, wherein the antenna elements are in alignment with each other in said first rows and in said second rows.
An antenna device is provided for a vehicle. The antenna device includes a substrate, an antenna element and a capacitor part. The substrate includes a pair of main surfaces which face opposite sides each other. The antenna element includes a metal plate part which is disposed over and separated from one of the main surfaces, and a metal leg part which extends from the metal plate part toward the substrate. The capacitor part is electrically connected to the metal plate part through the metal leg part and includes two or more capacitors connected in series.
A waveguide feed substrate and a manufacturing method thereof, and an antenna system and a manufacturing method thereof are provided. The waveguide feed substrate comprises: a first base substrate provided with a receiving groove; and a waveguide feeder embedded in the receiving groove and provided with a first side disposed at a bottom of the receiving groove, a second side disposed opposite to the first side, a third side disposed on a first side wall of the receiving cell, and a fourth side disposed on a second side wall of the receiving cell; wherein an opening is disposed in the second side, and an upper surface of the second side is flush with an upper surface of the first base substrate.
The present invention provides an omnidirectional antenna and an electronic device. The omnidirectional antenna includes a dielectric substrate, a first metal sheet and a second metal sheet that are printed on a surface of the dielectric substrate, wherein the first metal sheet is rectangular, the second metal sheet is in a strip shape with one wide end and one narrow end, the first metal sheet and the second metal sheet are arranged in a coaxial manner and spaced one another, and the wide end of the second metal sheet is close to the first metal sheet.
An apparatus for exchanging liquid crystal (LC) between two areas of an antenna array and method for using the same are disclosed. In one embodiment, the antenna comprises an antenna element array having a plurality of radiating radio-frequency (RF) antenna elements formed using portions of first and second substrates with a liquid crystal (LC) therebetween, and a structure between the first and second substrates and outside the area of the RF antenna elements to collect LC from an area between the first and second substrates forming the RF antenna elements due to LC expansion.
A method for a wireless communication device including configuring an antenna including antenna circuitry to receive or transmit wireless signals; feeding a radio frequency signal into the antenna circuitry; providing a housing comprising a plurality of edges, wherein the edges comprise a top edge, a bottom edge, and two side edges, wherein a first edge of the housing comprises a conductive strip, a first slot, and a second slot, and wherein the first edge is the top or bottom edge; providing an input/output port adjacent to the first edge of the housing; and locating the conductive strip, which comprises a portion of the antenna, entirely between the first slot and the second slot, wherein a length of each of the first slot and the second slot extends across the first edge of the housing and is oriented perpendicular to a major axis of the conductive strip.
Disclosed is an electronic device, which includes a housing, a display that is exposed through a first region of a front surface of the housing, a first antenna radiator that is positioned within the housing, and a communication circuit that is positioned within the housing. The display includes a pixel layer including pixels and a conductive sheet layer under the pixel layer. The conductive sheet layer includes a first conductive region, a second conductive region, and a slit interposed between the first conductive region and the second conductive region. The first antenna radiator is electrically connected with the first conductive region of the conductive sheet layer. The communication circuit receives a signal in a specified frequency band through the first antenna radiator and the first conductive region. Above this, various embodiments figured out through the specification are possible.
The present disclosure provides an antenna package structure and an antenna packaging method. The package structure includes an antenna circuit chip, a first packaging layer, a first rewiring layer, an antenna structure, a second metal connecting column, a third packaging layer, a second antenna metal layer, and a second metal bump. The antenna circuit chip, the antenna structure, and the second antenna metal layer are interconnected by using the rewiring layer and the metal connecting column.
An antenna package comprising a chip package including a plurality of feed lines, a first half antenna subassembly electrically coupled to the feed lines, and a second half antenna subassembly electrically coupled to the feed lines, wherein the first and second half antenna subassemblies point away from each other in a direction substantially perpendicular to the chip package. The antenna subassemblies may be millimeter (mm) wave antennas covering from approximately 24 to 43.5 GHz. The antenna subassemblies include a flex substrate formed from printed circuit boards (PCB) or flex-film PCB.
Batteries are described that include a cathode material, and anode material, and a polymeric material that separates the cathode material from the anode material. The polymeric material has hydroxide ion conductivity of at least about 50 mS/cm, and a diffusion ration of hydroxide ions to at least one type of metal ion of at least about 10:1. Also described are methods of making a battery that include forming a layer of polymeric material between a first electrode and second electrode of the battery. In additional methods, the polymeric material is coated on at least one of the electrodes of the battery. In further methods, the polymeric material is admixed with at least one of the electrode materials to make a composite electrode material that is incorporated into the electrode.
This disclosure details exemplary electrical architectural layouts for distributing high voltage power within electrified vehicles. An exemplary battery pack associated with an electrical architectural layout of an electrified vehicle may include an enclosure assembly that houses one or more battery arrays. The battery arrays may be efficiently arranged relative to one another inside the enclosure assembly to establish an open channel within the enclosure assembly. A high voltage wiring harness may be routed through an interior of the battery pack within the open channel. The exemplary electrical architectural layouts of this disclosure may be employed within all-wheel drive, rear-wheel drive, or front-wheel drive electrified vehicles.
A rechargeable battery and a battery module are provided. According to embodiments, a rechargeable battery includes: an electrode assembly including a first electrode, a second electrode, and a separator; a case accommodating the electrode assembly therein and including an open side; a cap plate coupled to the open side of the case; and a terminal portion arranged on the cap plate to be electrically connected to the electrode assembly, and the terminal portion is slidable in a direction on the cap plate.
A battery module includes: a cell laminated body; a first and a second end plates which are provided at both end portions of the cell laminated body; and a sensor device which is mounted on a mounting surface and detects the voltage of each cell in the cell laminated body. The sensor device includes: a sensor device body; and a sensor fixing portion which is fixed to the first end plate by a fastening member. In the perpendicular direction, an end surface of the fastening member is located to be lower than or equal to an end surface of the sensor device body, the mounting surface of the cell laminated body is located to be lower than a bottom surface of the sensor fixing portion, and an end surface of the first end plate is located to be lower than the mounting surface of the cell laminated body.
Provided is a battery pack and a power system including the same. The battery pack includes a battery module having a positive electrode terminal and a negative electrode terminal, a first connector having a first power terminal connected to the positive electrode terminal, a second power terminal connected to the negative electrode terminal and a first auxiliary terminal, a first resistor having a first end electrically connected to ground and a second end electrically connected to the first auxiliary terminal, a switching unit installed between the negative electrode terminal and the second power terminal, and a control unit. The control unit is configured to operate in any one of a wakeup state and a sleep state according to a voltage of the first resistor.
A fuel cell device may be realized by including a fuel cell module including a container and a fuel cell housed in the container; a plurality of auxiliary machines for operating the fuel cell module; and an exterior case that houses the fuel cell module and the auxiliary machines, wherein at least one auxiliary machine of the plurality of auxiliary machines may be an upper auxiliary machine which is located on an upper side of the fuel cell module, and the fuel cell device may further include a fan located on the upper side of the fuel cell module.
The invention relates to a distribution structure (10) for providing at least one reaction gas, in particular a gas mixture containing oxygen (O2), for a fuel cell (100) or an electrolyser, having a first structure element (11) and a second structure element (12), wherein the first structure element (11) and the second structure element (12) are designed and arranged with respect to one another such that: a distribution area (15) for the reaction gas is formed between the first structure element (11) and the second structure element (12); a plurality of feed channels (16) branch off from the distribution area (15) and are orientated substantially perpendicular to the distribution area (15); and a plurality of discharge channels (17) are formed below the second structure element (12) and are orientated parallel to the distribution area (15).
The disclosure relates to solid oxide fuel cell (SOFC) anode materials that comprise various compositions of chromate based oxide materials. These materials offer high conductivity achievable at intermediate and low temperatures and can be used to prepare the anode layer of a SOFC. A method of making a low- or intermediate-temperature SOFC having an anode layer comprising a chromate based oxide material is also provided.
This application describes an electrode material comprising particles of an electrochemically active material dispersed in a polymer binder, where the polymer binder is an acidic polymer or a mixture comprising a binder soluble in an aqueous solvent or a non-aqueous solvent (e.g. NMP) and an acidic polymer. The application also further relates to processes for the preparation of the electrode material and electrodes containing the material, as well as to the electrochemical cells and their use.
The present invention provides a high-performance lithium-containing organic sulfur electrode material and a preparation method of an integrated flexible electrode. According to the present invention, 1,3-diisopropenyl benzene with diene bonds and Li2S6 are used as precursors to react to generate the lithium-containing organic sulfide Poly (Li2S6-r-DIB) through an in-situ polymerization method. The synthesized lithium-containing organic sulfide Poly (Li2S6-r-DIB) can be directly attached to a flexible conductive carbon cloth to prepare the integrated flexible electrode due to its good viscosity when heated to a certain temperature. The obtained flexible electrode has the advantages of high capacity, high flexibility, stable structure and the like.
According to one embodiment, an electrode includes a current collector and an active material-containing layer. The active material-containing layer contains a titanium-niobium composite oxide. A cross-section of the active material-containing layer includes a first cross-section from the current collector to length 0.5t with respect to a thickness t of the active material-containing layer, and a second cross-section from length 0.5t to length t from the current collector. An area ratio S1 occupied by the titanium-niobium composite oxide within the first cross-section, and an area ratio S2 occupied by the titanium-niobium composite oxide within the second cross-section satisfy 0.8
A display device includes a display panel including a first area and a second area, a first end of the display panel being in the first area and a second end of the display panel being in the second area, wherein the second area extends away from the first area in a first direction, and the second end of the display panel protrudes from the first end of the display panel 1 in a second direction perpendicular to the first direction. a polarizing plate on the display panel, a first end of the polarizing plate being located in the first area overlapping the first end of the display panel in a plan view and an organic layer on the display panel in the second area, the organic layer extending away from the polarizing plate in the second direction, an end of the organic layer overlapping the second end of the display panel in a plan view.
The present disclosure provides a packaging cover plate, a method for manufacturing the same and a light emitting diode display, the packaging cover plate includes a cover plate body and a groove structure disposed on a first surface of the cover plate body, wherein the cover plate body comprises a flexible ceramic material, and the groove structure is filled with an adhesive material and a thermally conductive material. The packaging cover plate provided by the present disclosure has a bending property while having a barrier to water and oxygen, and does not undergo a shape change due to thermal expansion and contraction under a change of the ambient temperature. In addition, the present disclosure can improve the adhesion between the package cover plate and the packaging adhesive and improve the heat dissipation effect.
A flexible substrate is provided. The flexible substrate includes a flexible base substrate made of a flexible material. The flexible base substrate has a plurality of gaps and a plurality of solid non-gap portions, at least two adjacent solid non-gap portions of the plurality of solid non-gap portions being interconnected. The flexible base substrate includes a strengthening layer in the plurality of solid non-gap portions, the strengthening layer including a strengthening material having a Young's modulus greater than a Young's modules of the flexible material.
The present disclosure is related to a method of manufacturing an array substrate. The method of manufacturing an array substrate may include forming an auxiliary cathode on a base substrate, forming a layer of magnetic material on a first surface of the auxiliary cathode, forming an emission layer in a display area of the array substrate, a part of the emission layer on the layer of the magnetic material on the first surface of the auxiliary cathode, and removing the part of the emission layer and the layer of magnetic material from the first surface of the auxiliary cathode.
Embodiments of the present invention are directed to forming a planar Resistive Random Access Memory (RRAM) device with a shared top electrode. In a non-limiting embodiment of the invention, a first trench having a first width and a second trench having a second width less than the first width are formed in a dielectric layer. A bottom liner is formed on sidewalls of the first trench. The bottom liner pinches off the second trench. A top liner is formed on sidewalls of the bottom liner in the first trench. The top liner is formed such that a portion of the bottom liner at a bottommost region of the first trench remains exposed. The exposed portion of the bottom liner is removed, and a memory cell material is formed in the first trench.
A device includes a first conductive via plug, a first electrode, a storage element, a second electrode, a spacer, a barrier structure, a first dielectric layer. The first electrode is over the first conductive via plug. The storage element is over the first electrode. The second electrode is over the storage element. The spacer has a bottom portion extending along a top surface of the first electrode and a standing portion extending from the bottom portion and along a sidewall of the second electrode. The barrier structure extends from the bottom portion of the spacer and along a sidewall of the standing portion of the spacer. The first dielectric layer is substantially conformally over the spacer and the barrier structure.
A phase-change memory cell is formed by a heater, a crystalline layer disposed above the heater, and an insulating region surrounding sidewalls of the crystalline layer. The phase-change memory cell supports programming with a least three distinct data levels based on a selective amorphization of the crystalline layer.
A light-emitting device has a light-emitting element including first and a second semiconductor light-emitting structures, each having a first and a second electrode, and a substrate supporting the light-emitting element. The substrate has an interconnection layer having a first interconnection portion comprising a first land, a second interconnection portion comprising second and third lands, and a third interconnection portion comprising a fourth land, and a first reflective member covering a portion of the interconnection layer. A portion of the first land is coupled to the first electrode of the first semiconductor light-emitting structure. A portion of the second land and a portion of the third land are coupled to the second electrode of the first semiconductor light-emitting structure and the first electrode of the second semiconductor light-emitting structure, respectively. A portion of the fourth land is coupled to the second electrode of the second semiconductor light-emitting structure.
A display device is provided. The display device includes a substrate, a plurality of signal lines disposed on the substrate, and a plurality of display units disposed on the substrate. At least one of the signal lines includes a main line, a plurality of first branch lines electrically connected to the main line, and a plurality of second branch lines electrically connected to the main line. At least one of the display units includes a plurality of main pads, a plurality of redundant pads, and a light-emitting device electrically connected to the main pads. At least one of the main pads is electrically connected to at least one first branch line, and at least one of the redundant pads is electrically connected to at least one second branch line.
A display device includes: a substrate; a plurality of pixels on the substrate, and each of the pixels including first to third sub-pixels each including at least one light emitting diode configured to emit light; and a color conversion layer including first to third color conversion patterns respectively corresponding to the first to third sub-pixels, each of the first to third color conversion patterns configured to transmit the light or convert the light into light of a different color. The light emitting diode of each of the first to third sub-pixels is coupled to a first electrode and a second electrode. At least one of the first to third color conversion patterns includes a perovskite compound.
A semiconductor light emitting element includes: an n-type semiconductor layer made of an n-type aluminum gallium nitride (AlGaN)-based semiconductor material provided on a substrate; an active layer made of an AlGaN-based semiconductor material provided on the n-type semiconductor layer; a p-type semiconductor layer provided on the active layer; and a covering layer made of a dielectric material that covers the n-type semiconductor layer, the active layer, and the p-type semiconductor layer. Each of the active layer and the p-type semiconductor layer has a sloped surface that is sloped at a first angle with respect to the substrate and is covered by the covering layer. The n-type semiconductor layer has a sloped surface that is sloped at a second angle larger than the first angle with respect to the substrate and is covered by the covering layer.
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The solid state lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure.
A method for manufacturing LED devices is provided. The method comprises forming an epitaxial layer on a starter substrate, the epitaxial layer having a first surface that interfaces with the starter substrate and a second surface opposite to the first surface; establishing an adhesive bond between the second surface of the epitaxial layer and a carrier substrate having a pre-determined light transmittance; etching away the starter substrate; etching away part of the epitaxial layer to form a plurality of light emitting diode (LED) dies on a third surface of the epitaxial layer opposite to the second surface; establishing one or more conductive bonds between selected one or more LED dies, from the plurality of LED dies, and a backplane; weakening the adhesive bond between the second surface of the epitaxial layer and the carrier substrate; and moving the carrier substrate away from the backplane.
A marking method for applying a unique identification to each individual solar cell stack of a semiconductor wafer, at least comprising the steps: Providing a semiconductor wafer having an upper side and an underside, which comprises a Ge substrate forming the underside; and generating an identification with a unique topography by means of laser ablation, using a first laser, on a surface area of the underside of each solar cell stack of the semiconductor wafer, the surface area being formed in each case by the Ge substrate or by an insulating layer covering the Ge substrate.
A process for fabricating a hybrid optical detector, includes the steps of: assembling, via an assembly layer, on the one hand an absorbing structure and on the other hand a read-out circuit, locally etching, through the absorbing structure, the assembly layer and the read-out circuit up to the contacts, so as to form electrical via-holes, depositing a protective layer on the walls of the via-holes, producing a doped region of a second doping type different from the first doping type by diffusing a dopant into the absorbing structure through the protective layer, the region extending annularly around the via-holes so as to form a diode, depositing a metallization layer on the walls of the via-holes allowing the doped region to be electrically connected to the contact.
A solar cell has a P-type silicon substrate in which one main surface is a light-receiving surface and another main surface is a backside, a dielectric film on the backside, and an N-conductivity type layer in at least a part of the light-receiving surface of the P-type silicon substrate, wherein the P-type silicon substrate is a silicon substrate doped with gallium, and the backside of the P-type silicon substrate contains a diffused group III element. This provides a solar cell with excellent conversion efficiency provided with a gallium-doped substrate, and a method for manufacturing the same.
A method for detecting infrared electromagnetic radiation and for converting same into an electrical signal, an optoelectronic component, in particular an organic infrared detector for (near) infrared detection, and use thereof for detecting an electromagnetic signal in the wavelength range of 780 nm to 10 μm, are provided.
A semiconductor device includes a substrate, a first poly-material pattern, a first conductive element, a first semiconductor layer, and a first gate structure. The first poly-material pattern is over and protrudes outward from the substrate, wherein the first poly-material pattern includes a first active portion and a first poly-material portion joined to the first active portion. The first conductive element is over the substrate, wherein the first conductive element includes the first poly-material portion and a first metallic conductive portion covering at least one of a top surface and a sidewall of the first poly-material portion. The first semiconductor layer is over the substrate and covers the first active portion of the first poly-material pattern and the first conductive element. The first gate structure is over the first semiconductor layer located within the first active portion.
According to one embodiment, a semiconductor device includes a substrate, a plurality of insulating films and a plurality of electrode films provided alternately on the substrate. The semiconductor device further includes a first insulating film, a first charge storage film, a third insulating film, a second charge storage film, a second insulating film, and a first semiconductor film that are sequentially provided along at least one side surface of each of the electrode films. The first charge storage film includes either (i) molybdenum, or (ii) titanium and nitrogen, and the second charge storage film includes a semiconductor film.
Aspects of the disclosure provide a fin field effect transistor (FinFET) incorporating a fin top hardmask on top of a channel region of a fin. Because of the presence of the fin top hardmask, a gate height of the FinFET can be reduced without affecting proper operations of vertical gate channels on sidewalls of the fin. Consequently, parasitic capacitance between a gate stack and source/drain contacts of the FinFET can be reduced by lowering the gate height of the FinFET.
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).
An amplifier is provided. The amplifier includes a first resistor electrically connected to the input terminal, a second resistor electrically connected to the output terminal, a switch including a metal-oxide-semiconductor field-effect transistor (MOSFET) and electrically connected to one end of the second resistor, and a switch control processor configured to electrically connect the gate terminal of the MOSFET constituting the switch and the bulk terminal of the MOSFET constituting the switch to an impedance having an impedance value higher than a preset first threshold.
A memory device is provided. The device comprises a semiconductor fin with a first gate and a second gate disposed over the semiconductor fin. A third gate is positioned over the semiconductor fin and a lower portion of the third gate is disposed between the first and second gates.
A transistor includes a trench formed in a semiconductor substrate with the trench having a first sidewall and a second sidewall. A gate region includes a conductive material filled in the trench. A drift region having a first conductivity type is formed in the semiconductor substrate adjacent to the second sidewall. A drain region is formed in the drift region and separated from the second sidewall by a first distance. A dielectric layer is formed at the top surface of the semiconductor substrate covering the gate region and the drift region between the second sidewall and the drain region. A field plate is formed over the dielectric layer and isolated from the conductive material and the drift region by way of the dielectric layer.
According to an embodiment, a semiconductor device 1 includes a semiconductor substrate 50 including an upper surface, a trench electrode 22 provided inside a trench 20 formed on the upper surface, and a trench insulating film 21 provided between the trench electrode 22 and the semiconductor substrate 50. The semiconductor substrate 50 includes a first semiconductor layer of a first conductivity type, a lower end of the trench electrode 22 reaching the first semiconductor layer, a deep layer 19 of a second conductivity type partially provided on the first semiconductor layer in contact with the trench insulating film 21, a second semiconductor layer of the second conductivity type provided on the first semiconductor layer and on the deep layer 19 in contact with the trench insulating film 21, and a third semiconductor layer of the first conductivity type provided on the second semiconductor layer above the deep layer 19.
The disclosure discloses a display panel and a display device, and the display panel includes: a substrate; a display area, including a plurality of signal lines on a first side of the substrate; a bending area, including a plurality of connection lines on a second side of the substrate; and a wiring area, including a plurality of lead wires for transmitting display signals on a third side of the substrate; where the plurality of connection lines electrically connects the plurality of signal lines and the plurality of lead wires; the bending area includes fourth sides of the substrate; and the second side of the substrate is intersected with the fourth sides of the substrate; where the fourth sides of the substrate includes at least one transitional side, and the at least one transitional side is concaved toward the connection lines of the bending area.
A display device includes a base layer on which a display area and a non-display area are defined, a circuit layer including a first power electrode and driving circuits, which are disposed in the non-display area, a first planarization layer in which a first opening through which the first power electrode is exposed is defined and which covers the driving circuits, a second power electrode disposed on the first planarization layer to contact the first power electrode that is exposed through the first opening and overlapping at least a portion of the driving circuits, and a second planarization layer disposed on the first planarization layer to cover a portion of the second power electrode and having a groove part in an area overlapping the first planarization layer and the second power electrode in a plan view.
Disclosed are an organic light emitting display device to improve optical efficiency and prevent deterioration in reliability of thin film transistors, and a method of manufacturing the same. The organic light emitting display device includes a mirror wall which is disposed on a substrate such that the mirror wall surrounds a light emitting area of each sub-pixel where a light emitting element is disposed, thus preventing total reflection of light produced in the light emitting element and improving optical efficiency by reflecting light travelling toward a non-emitting area to be directed to the light emitting area.
The display device includes a substrate, a display region arranged on the substrate and including a plurality of pixels, a first wiring provided on the substrate, an insulating layer overlapping a portion of the first wiring, an oxide conductive layer provided on the first wiring and electrically connected to the first wiring, a sealing layer overlapping the display region and at least an end of the oxide conductive layer and sealing the plurality of pixels, a sensor electrode provided on the sealing layer and overlapping the display region, and a second wiring passing over the at least end of the oxide conductive layer provided with the sealing layer and electrically connecting the sensor electrode and the oxide conductive layer.
A method is presented for preventing excessive cap dielectric loss in memory areas and logic areas of a device. The method includes forming a first conductive line with top via and a conductive pad over a dielectric layer, wherein the conductive pad includes a microstud, depositing a dielectric cap in direct contact with the first conductive line and the conductive pad, and constructing a top electrode, a magnetic tunnel junction (MTJ) stack, and a bottom electrode in vertical alignment with the microstud of the conductive pad.
A semiconductor device structure for sensing an incident light includes a substrate, a passivation layer and a wiring structure. The substrate has a device embedded therein. The passivation layer is disposed on the substrate, where the passivation layer has a first side and a second side opposite to the first side, the first side of the passivation layer includes microstructures disposed on the substrate, and the second side of the passivation layer is a continuous flat plane, wherein each of the microstructures has a cross-section in a shape of a triangle, trapezoid or arc. The wiring structure is disposed on the substrate, where the writing structure includes at least one contact and metal interconnection patterns respectively formed in different dielectric layers, and the at least one contact and the metal interconnection patterns are electrically connected, where the substrate is located between the passivation layer and the wiring structure.
A display panel and a manufacturing method thereof and a display device using the same are provided. The display panel includes a display region and a non-display region. The display panel includes a substrate, a plurality of thin film transistors (TFTs) and a planarization layer sequentially stacked and at least one buffer unit disposed between the planarization layer and the substrate, wherein the buffer unit is located outside the TFT. The buffer unit is positioned in the display region and used for buffering stress of the display panel during bending.
A semiconductor memory device includes a third insulating pattern and a first insulating pattern on a substrate, the third insulating pattern and the first insulating pattern being spaced apart from each other in a first direction that is perpendicular to the substrate such that a bottom surface of the third insulating pattern and a top surface of the first insulating pattern face each other, a gate electrode between the bottom surface of the third insulating pattern and the top surface of the first insulating pattern, and including a first side extending between the bottom surface of the third insulating pattern and the top surface of the first insulating pattern, and a second insulating pattern that protrudes from the first side of the gate electrode by a second width in a second direction, the second direction being different from the first direction.
Arrays of memory cells a plurality of sense lines each having a respective plurality of pass gates connected in series between a second data line and a source, and having a respective subset of unit column structures capacitively coupled to first channels of its respective plurality of pass gates, wherein, for each sense line of the plurality of sense lines, each unit column structure of its respective subset of unit column structures is connected to a respective first data line of a respective subset of first data lines.
An amplifier circuit including a semiconductor element is formed on a substrate. A protection circuit is formed including a plurality of protection diodes that are formed on the substrate and that are connected in series with each other, the protection circuit being connected to an output terminal of the amplifier circuit. A pad conductive layer is formed that at least partially includes a pad for connecting to a circuit outside the substrate. An insulating protective film covers the pad conductive layer. The insulating protective film includes an opening that exposes a partial area of a surface of the pad conductive layer, and that covers another area. A first bump is formed on the pad conductive layer on a bottom surface of the opening, and a second bump at least partially overlaps the protection circuit in plan view and is connected to a ground (GND) potential connected to the amplifier circuit.
Some embodiments include an integrated assembly having a base comprising sense-amplifier-circuitry, a first deck over the base, and a second deck over the first deck. The first deck includes a first portion of a first array of first memory cells, and includes a first portion of a second array of second memory cells. The second deck includes a second portion of the first array of the first memory cells, and includes a second portion of the second array of the second memory cells. A first digit line is associated with the first array, and a second digit line is associated with the second array. The first and second digit lines are comparatively coupled with one another through the sense-amplifier-circuitry.
A semiconductor package includes a first package substrate, a first semiconductor chip on the first package substrate, a plurality of first chip connection units to connect the first package substrate to the first semiconductor chip, an interposer on the first semiconductor chip, the interposer having a width greater than a width of the first semiconductor chip in a direction parallel to an upper surface of the first package substrate, and an upper filling layer including a center portion and an outer portion, the center portion being between the first semiconductor chip and the interposer, and the outer portion surrounding the center portion and having a thickness greater than a thickness of the center portion in a direction perpendicular to the upper surface of the first package substrate.
The invention describes a method of manufacturing an LED carrier assembly, which method comprises the steps of providing a carrier comprising a mounting surface with mounting pads arranged to receive a number of LED dies; embedding an alignment magnet in the carrier; providing a number of LED dies, wherein an LED die comprises a number of magnetic die pads; and aligning the magnetic die pads to the mounting pads by arranging the LED dies over the mounting surface of the carrier within magnetic range of the alignment magnet. The invention also describes an LED carrier assembly.
A display device includes a substrate that includes a display area and a non-display area. A driver is disposed in the non-display area, and includes a driver circuit including a transistor and a driver control line transmitting a control signal to the driver circuit. A static electricity blocking line is disposed in the non-display area and circumscribes the display area. The static electricity blocking line at least partially overlaps the driver.
The disclosure relates to the field of display technology. A display substrate motherboard and a method for manufacturing the same are disclosed. In the technical solution provided by the embodiments of the disclosure, by providing via holes formed in the film, instead of small area island-like film patterns, as stitch marks of the display substrate motherboard, a possibility of stitch mark peeling is reduced, thereby further ensuring a reliability and yield of product.
In an embodiment, a structure includes: a first integrated circuit die including first die connectors; a first dielectric layer on the first die connectors; first conductive vias extending through the first dielectric layer, the first conductive vias connected to a first subset of the first die connectors; a second integrated circuit die bonded to a second subset of the first die connectors with first reflowable connectors; a first encapsulant surrounding the second integrated circuit die and the first conductive vias, the first encapsulant and the first integrated circuit die being laterally coterminous; second conductive vias adjacent the first integrated circuit die; a second encapsulant surrounding the second conductive vias, the first encapsulant, and the first integrated circuit die; and a first redistribution structure including first redistribution lines, the first redistribution lines connected to the first conductive vias and the second conductive vias.
A chip carrier and a manufacturing method thereof are provided. The chip carrier includes a first structure layer and a second structure layer. The first structure layer has at least one opening and includes at least one first insulating layer. A thermal expansion coefficient of the first insulating layer is between 2 ppm/° C. and 5 ppm/° C. The second structure layer is disposed on the first structure layer and defines at least one cavity with the first structure layer. The second structure layer includes at least one second insulating layer, and a thermal expansion coefficient of the second insulating layer is equal to or greater than the thermal expansion coefficient of the first insulating layer.
Methods, systems, and apparatuses for a power card for use in a vehicle. The power card includes an N lead frame and a P lead frame, each having a body portion and a terminal portion. The power card includes an O lead frame having a body portion and a cooling portion. The power card includes a first power device located between the body portion of the N lead frame and the body portion of the O lead frame. The power card includes a second power device located between the body portion of the O lead frame and the body portion of the P lead frame, the O lead frame configured to receive heat from the first power device and the second power device by the body portion of the O lead frame and transfer the heat to the cooling portion of the O lead frame for heat dissipation.
The present application provides a semiconductor package and a manufacturing method thereof. The semiconductor package includes a first device, first electrical connectors, a second device and second electrical connectors. The first device is attached to a package substrate. An active side of the first device die faces toward the package substrate. The first electrical connectors connect the active side of the first device die to the package substrate. The second device die is stacked over the first device die. An active side of the second device die faces toward the package substrate. A portion of the active side of the second device die is outside an area that overlaps the first device die. The second electrical connectors connect the portion of the active side of the second device die to the package substrate.
A package includes a semiconductor carrier, a first die, a second die, a first encapsulant, a second encapsulant, a first through insulating via (TIV), and a second TIV. The semiconductor carrier has a contact via embedded therein. The contact via is electrically grounded. The first die is disposed over the semiconductor carrier. The second die is stacked on the first die. The first encapsulant laterally encapsulates the first die. The second encapsulant laterally encapsulates the second die. The first TIV is aside the first die. The first TIV penetrates through the first encapsulant and is electrically connected to the contact via. The second TIV is aside the second die. The second TIV penetrates through the second encapsulant and is electrically connected to the contact via and the first TIV.
A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die. A second prefabricated insulating film is disposed over the first prefabricated insulating film.
One example includes a method for surge-testing a gallium nitride (GaN) transistor device-under-test (DUT) that includes at least one GaN transistor device. The method includes inserting the GaN transistor DUT into a test fixture comprising an inductor such that the inductor is coupled to the GaN transistor device to form a switching power regulator. The method also includes operating the switching power regulator at a DUT operating voltage to generate an output current through the inductor based on a DUT input voltage and a duty-cycle. The method also includes controlling an excitation voltage source to provide a voltage surge-strike to the GaN transistor DUT. The method also includes measuring the output current and the DUT input voltage at least one of during and after the voltage surge-strike. The method further includes storing the measured output current and the measured DUT input voltage in a memory to specify device characteristics of the GaN transistor DUT.
A semiconductor structure and a process for forming a semiconductor structure. There is a back end of the line wiring layer which includes a wiring line, a multilayer cap layer and an ILD layer. A metal-filled via extends through the ILD layer and partially through the cap layer to make contact with the wiring line. There is a reliability enhancement material formed in one of the layers of the cap layer. The reliability enhancement material surrounds the metal-filled via only in the cap layer to make a bottom of the metal-filled via that contacts the wiring line be under compressive stress, wherein the compressive reliability enhancement material has different physical properties than the cap layer.
A method of forming a self-aligned pattern of vias in a semiconductor device comprises forming a first layer of mandrels, then forming a second layer of mandrels orthogonal to the first layer of mandrels. The layout of the first and second layers of mandrels defines a pattern that can be used to create vias in a semiconductor material. Other embodiments are also described.
Back end of line metallization structures and methods for fabricating self-aligned vias. The structures generally include a first interconnect structure disposed above a substrate. The first interconnect structure includes a metal line formed in a first interlayer dielectric. A second interconnect structure overlies the first interconnect structure. The second interconnect structure includes a second cap layer on the first interlayer dielectric, a second interlayer dielectric thereon, and at least one self-aligned via in the second interlayer dielectric conductively coupled to at least a portion of the metal line of the first interconnect structure, wherein any misalignment of the at least one self-aligned via results in the at least one self-aligned via landing on both the metal line of the first interconnect structure and the second cap layer. The second cap layer is an insulating material.
A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
Embodiments of the present disclosure are directed to a leadframe package with recesses formed in outer surface of the leads. The recesses are filled with a filler material, such as solder. The filler material in the recesses provides a wetable surface for filler material, such as solder, to adhere to during mounting of the package to another device, such as a printed circuit board (PCB). This enables strong solder joints between the leads of the package and the PCB. It also enables improved visual inspection of the solder joints after the package has been mounted.
According to an embodiment of the disclosure, a method of fabricating a carrier for a wafer level package (WLP) by using a lead frame, wherein the lead frame is fabricated by forming a trench and a post by performing first half etching on an upper surface of a base substrate comprising a conductive material, filling the first-half-etched surface with resin of an insulating material, removing the resin exposed to outside of the trench so that an upper surface of the trench and an upper surface of the resin are at a same level, and performing second half etching on a lower surface of the base substrate, in which a memory chip is attached to the lower surface of the base substrate.
A laser system includes a nonlinear optical (NLO) crystal, wherein the NLO crystal is annealed within a selected temperature range. The NLO crystal is passivated with at least one of hydrogen, deuterium, a hydrogen-containing compound or a deuterium-containing compound to a selected passivation level. The system further includes at least one light source, wherein at least one light source is configured to generate light of a selected wavelength and at least one light source is configured to transmit light through the NLO crystal. The system further includes a crystal housing unit configured to house the NLO crystal.
A wafer thinning method and a wafer structure are provided. In the wafer thinning method, a to-be-thinned wafer is provided, and the to-be-thinned wafer is grinded on a rear surface of the to-be-thinned wafer. Then, a first planarization process is performed on a rear surface of the grinded wafer to restore surface flatness of the grinded wafer, and a second planarization process is performed on a rear surface of the wafer obtained after the first planarization process is performed until a target thinned thickness is reached.
The present disclosure describes an exemplary etch process in a reactor that includes a shower head and an electrostatic chuck configured to receive a radio frequency (RF) power. The shower head includes a top plate and a bottom plate with one or more gas channels that receive incoming gases. The method can include (i) rotating the top plate or the bottom plate of the shower head to a first position to allow a gas to flow through the shower head; (ii) performing a surface modification cycle that includes: applying a negative direct current (DC) bias voltage to the shower head, applying an RF power signal to the wafer chuck; and (iii) performing an etching cycle that includes: removing the negative DC bias voltage from the shower head and lowering the RF power signal applied to the wafer chuck.
The present disclosure provides a method to adjust asymmetric velocity of a scan in a scanning ion beam etch process to correct asymmetry of etching between the inboard side and the outboard side of device structures on a wafer, while maintaining the overall uniformity of etch across the full wafer.
An apparatus, system, and method for cooling a lamp assembly is described herein. The apparatus includes an air channel and an axial slot. A flow of air is injected into the air channel of a lamp housing, wherein the lamp housing comprises at least a bulb. The axial slot is located in a reflector housing and has dimensions that enable a constant flow of air through the slot and across the bulb when a predetermined air flow is input to the air channel.
An electromagnetic device includes a coil, a fixed iron core, a movable iron core configured to reciprocate to separate from the fixed iron core by a predetermined gap when a current applied to the coil is stopped and move to the fixed iron core by an attractive force when the current is applied to the coil, and a permanent magnet. The permanent magnet is arranged so that the permanent magnet is opposed to the gap in a second direction perpendicular to a first direction and separated from the fixed iron core and the movable iron core with a space interposed therebetween. A direction of a second magnetic flux generated by the permanent magnet conforms to a direction of the first magnetic flux between opposed surfaces of the fixed iron core and the movable iron core.
A solid electrolytic capacitor having high reliability while maintaining suitable electrical characteristics, and a method for producing the same. The solid electrolytic capacitor includes a plurality of capacitor elements, an exterior body covering the plurality of capacitor elements, a contact layer metallic bonded to an anode terminal portion that is an end portion of the anode body, an anode-side electrode layer provided so as to cover the contact layer, a cathode-side electrode layer electrically connected to the cathode body, an anode-side external electrode provided on the surface of the anode-side electrode layer, and a cathode-side external electrode provided on the surface of the cathode-side electrode layer.
An electronic component includes an element body, an external electrode, and a resin film having electrical insulation properties. The element body includes a principal surface and a side surface adjacent to the principal surface. The external electrode includes a first electrode portion disposed on the principal surface and a second electrode portion disposed on the side surface. The resin film is disposed on the principal surface and is in contact with the principal surface. Each of the first electrode portion and the second electrode portion includes a conductive resin layer disposed on the element body. A conductive resin layer included in the first electrode portion is disposed on the resin film and is in contact with the resin film.
A circuit board assembly has a circuit board and a high-speed cable. The high-speed cable has two signal lines, a ground conductor, an impedance-reducing conductor, and a covering material. The signal lines, the ground conductor, and the impedance-reducing conductor are mounted through the entire high-speed cable. The covering material wraps the signal lines, the ground conductor, and the impedance-reducing conductor, and has a conductive layer and an isolation layer as an inner layer and an outer layer respectively. The conductive layer has multiple loops electrically connected to the ground conductor and the impedance-reducing conductor. Thus, the impedance in the covering material, the ground conductor, and the impedance-reducing conductor is decreased, which prevents from attenuating the signal intensity during transmission at high frequency.
This disclosure relates to a fine silver particle dispersion including: (1) 65 to 95.4% by weight of fine silver particles which have an average primary particle diameter of 10 to 190 nm and which comprise 25% by number or less of silver particles having a primary particle diameter of 100 nm or larger, (2) 4.5 to 34.5% by weight of a solvent, and (3) 0.1 to 1.0% by weight of ethyl cellulose having a weight average molecular weight of 10,000 to 120,000.
According to an embodiment, a core catcher has: a main body including: a distributor arranged on a part of a base mat in the lower dry well, a basin arranged on the distributor, cooling channels arranged on a lower surface of the basin connected to the distributor and extending in radial directions, and a riser connected to the cooling channels and extending upward; a lid connected to an upper end of the riser and covering the main body; a cooling water injection pipe open, at one end, to the suppression pool, connected at another end to the distributor; and chimney pipes connected, at one end, to the riser, another end being located above the upper end of the riser and submerged and open in the pool water.
One or more embodiments of the present invention include a computer-implemented method for generating neuronal models for personalized drug treatment selection for a patient. The method includes receiving allelic information for at least one neurophysiological coding region of a genome of the patient, and a physiological model of a disease associated with the genome. The method further includes determining a set of ion channels correlated with the allelic information, and receiving a set of phenotypic measurement ranges associated with the ion channels from the determined set. The method further includes performing a simulation to generate multiple neuronal models comprising the set of ion channels with parameter values within the corresponding phenotypic measurement ranges, and analyzing the generated neuronal models to identify components that affect the physiological model. The method further includes selecting a drug for the patient based at least in part on the identified components.
A method for automatically generating a note summarizing a conversation between a patient and a healthcare provider is disclosed. A workstation is provided with a tool for rendering an audio recording of the conversation and a display for displaying a transcript of the audio recording obtained from a speech-to-text engine. The display of the workstation includes first transcript region for display of the transcript and a second note region for simultaneous displaying of elements of a note summarizing the conversation. Words or phrases in the transcript related to medical topics relating to the patient are extracted with the aid of a trained machine learning model. The extracted words or phrases are highlighted in the transcript and displayed in the note region. Links or a mapping between the extracted words or phrases in the note region and the portions of the transcript from which the extracted words or phrases originated are provided whereby the source and accuracy of the extracted words or phrases in the note region can be verified by a user.
System and methods for providing laboratory-based authorization of genetic testing are disclosed. An order for genetic testing is received from an electronic health record (“EHR”) system at a laboratory information system (“LIS”). A prior authorization request is automatically generated at the LIS from data parsed from the order and retrieved from the EHR and sent to a prior authorization provider. If a patient responsibility amount returned to the LIS is below a threshold, testing proceeds. If the patient responsibility amount is above the threshold, an electronic call center request is generated and the patient is contacted to obtain payment. If a billing consent is not obtained, the specimen for the order is destroyed.
An atomization system and an atomization method are provided. The atomization system having an authentication mechanism includes an atomized drug container, a user device, and an atomizing device. The user device includes a communication module, an optical authentication module and a first acoustic wave communication module. The optical authentication module is configured to perform a first optical authentication operation associated with an authentication code carrier to obtain first optical authentication information, and the communication module is configured to request a cloud server to perform an authentication operation for the first optical authentication information to determine the authenticity of the atomized drug container.
A method, computer program product, and computing system for obtaining encounter information during a patient encounter; processing the encounter information to detect the execution of a physical event during the patient encounter, thus defining a detected physical event; and deriving information for the detected physical event.
A memory sub-system to track charge loss in memory cells and shifts of voltages optimized to read the memory cells. For example, a memory device can measure signal and noise characteristics of a group of memory cells to calculate an optimized read voltage of the group of memory cells. The memory sub-system having the memory device can determine an amount of charge loss in the group of memory cells, using at least the signal and noise characteristics, the optimized read voltage, and/or the bit error rate of data read using the optimized read voltage. The memory sub-system tracks changes in optimized read voltages of memory cells in the memory device based on the amount of charge loss.
A magnetic memory device includes a reading unit on a substrate, a magnetic track layer on the reading unit, the magnetic track layer including a bottom portion between first and second sidewall portions, and a mold structure on the bottom portion of the magnetic track layer, and between the first and second sidewall portions. The mold structure includes first and second mold layers alternately arranged in a first direction perpendicular to a top surface of the substrate, and the magnetic track layer includes magnetic domains and magnetic domain walls between magnetic domains, the first and second sidewall portions of the magnetic track layer including sidewall notches corresponding to the magnetic domain walls, and the bottom portion includes a bottom notch corresponding to one of the magnetic domain walls.
A semiconductor memory device includes a memory cell array including one or more memory cells each coupled between a wordline and a bitline, a sense amplifier configured to amplify a voltage of a global wordline, a wordline decoder including a plurality of wordline switches coupling the wordline and the global wordline, and a control circuit configured to control the wordline decoder and the sense amplifier.
A read path for reading data from a memory includes a sense amplifier having data (SAT) and data complement (SAC) output nodes and a latch. The latch includes an input tri-state inverter including first and second PMOS transistors connected between VDD and an intermediate node, and first and second NMOS transistors connected between VSS and the intermediate node. A gate connection of the first PMOS and NMOS transistors is connected to the SAT node; a gate connection of the second PMOS transistor is connected to a sense amplifier enable complement input; and a gate connection of the second NMOS transistor is connected to a sense amplifier enable input. The latch also includes an output driver with an input connected to the intermediate node and an output connected to a data output node. The latch thus has two gate delays between the SAT node and the data output node.
According to one embodiment, a device includes a member including a first portion having a first dimension in first direction, a second portion spaced from the first portion and having a second dimension in the first direction, a third portion between the first and second portions and having a third dimension in the first direction, and a fourth portion between the first and third portions and having a fourth dimension in the first direction; and a circuit to supply a shift pulse including first and second pulses to the member and move a domain wall in the member. The third dimension is less than the first dimension. The second and fourth dimensions are less than the third dimension. A second value of the second pulse is less than a first value of the first pulse.
A recording device includes: a recording unit that records plural objects including data and metadata related to the data on a portable recording medium, and executes a process of recording first set data, which is a set of the metadata included in the object, at every predetermined timing after recording at least one of the objects, wherein each piece of the first set data is a set of the metadata included in the object recorded after recording of immediately preceding recorded first set data.
An audio response system can generate multimodal messages that can be dynamically updated on viewer's client device based on a type of audio response detected. The audio responses can include keywords or continuum-based signal (e.g., levels of wind noise). A machine learning scheme can be trained to output classification data from the audio response data for content selection and dynamic display updates.
The present disclosure provides new variants of non-negative matrix factorization suitable for separating desired audio content from undesired audio content. In certain embodiments, a multi-dimensional non-negative representation of an audio signal is decomposed into desired content and undesired content by performing convolutional non-negative matrix factorization (CNMF) on multiple layers, each layer having a respective non-negative matrix representation. In certain embodiments, the desired content is represented by a first dictionary and the undesired content is represented by a second dictionary, and sparsity is imposed on activations of basic elements of the first or the second dictionary, wherein a degree of sparsity is controlled by setting a minimum number of components with significant activations of the first or second dictionary, respectively.
A method of analysis of an audio signal comprises: receiving an audio signal representing speech; extracting first and second components of the audio signal representing first and second acoustic classes of the speech respectively; analysing the first and second components of the audio signal with models of the first and second acoustic classes of the speech of an enrolled user. Based on the analysing, information is obtained information about at least one of a channel and noise affecting the audio signal.
A method of speaker identification comprises receiving an audio signal representing speech; performing a first voice biometric process on the audio signal to attempt to identify whether the speech is the speech of an enrolled speaker; and, if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user, performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker. The second voice biometric process is selected to be more discriminative than the first voice biometric process.
A management of user profiles comprises calculating, for each speaker model of at least one speaker model, a confidence measure representing a probability that the speaker model represents a speaker of a cluster of audio segments. A user profile associated with the speaker model is updated based on a user preference assigned to the cluster of audio segments if the confidence measure calculated for the speaker model represents a probability that is higher than a target probability. The embodiments achieve an efficient user profile management in a voice-controlled context but without the need for any dedicated enrollment sessions to train speaker models.
Systems and method of diarization of audio files use an acoustic voiceprint model. A plurality of audio files are analyzed to arrive at an acoustic voiceprint model associated to an identified speaker. Metadata associate with an audio file is used to select an acoustic voiceprint model. The selected acoustic voiceprint model is applied in a diarization to identify audio data of the identified speaker.
This disclosure describes transcribing speech using audio, image, and other data. A system is described that includes an audio capture system configured to capture audio data associated with a plurality of speakers, an image capture system configured to capture images of one or more of the plurality of speakers, and a speech processing engine. The speech processing engine may be configured to recognize a plurality of speech segments in the audio data, identify, for each speech segment of the plurality of speech segments and based on the images, a speaker associated with the speech segment, transcribe each of the plurality of speech segments to produce a transcription of the plurality of speech segments including, for each speech segment in the plurality of speech segments, an indication of the speaker associated with the speech segment, and analyze the transcription to produce additional data derived from the transcription.
A laundry scheduling device according to an embodiment of the present invention includes an input interface that receives speech including a plurality of words respectively representing a plurality of laundry items from a use, and a processor that acquires one or more features represented by each of the plurality of words by inputting speech data corresponding to the received speech to a learning model and performing word embedding, and generates a laundry schedule of the plurality of laundry items based on the one or more features represented by each of the plurality of words.
Described are techniques for tracking where user sensitive data has been sent (and optionally stored). Also described are techniques for ensuring user sensitive data is deleted, from all applicable locations, in response to a user command to delete its sensitive data. In at least some embodiments, a natural language processing system may cause a skill, in communication with but not implemented by the natural language processing system, to delete sensitive data.
The systems and methods of seamlessly connecting an internet of things (“IoT”) device to one or more intelligent voice assistants, comprising: configuring a manager module to manage an IoT device connected to a network; receiving a speech command for the IoT device at the manager module through a mobile application, a smart speaker, a web interface or any other user interface; connecting to a central Speak-to-IoT cloud service; receiving a map to connect to a customer specific Speak-to-IoT cloud service based on the customer, IoT device type and manager module; authenticating with the customer specific Speak-to-IoT cloud service; communicating and executing the speech command on the IoT device. The systems and methods further comprising adding or replacing one or more IoT device with another device type or manager module of another type.
Systems and processes for operating an intelligent automated assistant to perform intelligent list reading are provided. In one example process, a spoken user request associated with a plurality of data items is received. The process determines whether a degree of specificity of the spoken user request is less than a threshold level. In response to determining that a degree of specificity of the spoken user request is less than a threshold level, one or more attributes related to the spoken user request are determined. The one or more attributes are not defined in the spoken user request. Additionally, a list of data items based on the spoken user request and the one or more attributes is obtained. A spoken response comprising a subset of the list of data items is generated and the spoken response is provided.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating responses using task-independent conversational systems are provided. In one example method, a response to a user text input is generated by updating a state of the conversation based on the user text input, generating a conversational (task-independent) output, and determining whether to provide a conversational response based on the conversational output, or to additionally generate a task-specific output.
An acoustic liner and a method of attenuating noise are provided. The acoustic liner includes a face sheet, a back sheet spaced from the face sheet, and a core layer extending between the face sheet and the back sheet. The core layer includes a plurality of resonant cells, each resonant cell including at least one cell wall coupled to the back sheet along a cell wall base edge. The at least one cell wall extends from the back sheet at an angle toward the face sheet. The at least one cell wall further coupled to the face sheet along a cell wall top edge. The resonant cell is formed in a predetermined shape and contains a volume in a space defined by the at least one cell wall, the back sheet, and the face sheet. The cell wall base edge length is greater than the cell wall top edge length.
An air-cooled enclosure of an information handling system has a chassis that receives at least one heat-generating functional component. An air mover is positioned within the chassis to move air within the chassis to convectively cool the at least one heat-generating functional component. An acoustic resonator includes a resonator body having a cavity sized to resonate at an acoustic frequency corresponding to a selected acoustic noise frequency, such as blade passage frequency, associated with the fan. The resonator body has an opening to the cavity that is directed toward and positioned a distance from the fan to receive and attenuate acoustic noise.
The invention relates to a method for operating an interactive visibility screen on a transparent pane of a pane device, in particular in a motor vehicle. The visibility screen is generated by means of a display unit of the pane device on the pane by pixel-wise fade-in of opaque image points, wherein the image points form a coherent visibility screen area. In the method, an operational action by the user is first detected by means of a detection device, which comprises a selection of a setting range and a movement relative to the pane. Subsequently, an expansion of the visibility screen area at the setting range is set as a function of the detected movement by means of a control device.
A display driver chip includes interface circuitry, image data processing circuitry, and drive circuitry. The interface circuitry is configured to receive first frame image data for a first frame image. The image data processing circuitry includes a buffer memory configured to store at least part of the first frame image data. The image data processing circuitry is configured to supply, based on the at least part of the first frame image data stored in the buffer memory, first display data for a first display area of a plurality of display areas of a display panel having a zigzag pixel arrangement. The drive circuit is configured to drive a display element in the first display area based on the first display data.
The present disclosure provides a shift register, a driving method thereof, a gate driver circuit and a display device. The shift register includes a first control module, a scanning control module and a first output module.
The present disclosure relates to a data transmission method and device, a display screen, and a display device, and belongs to the application field of display technology. The method is applicable to a first drive chip in a display device that includes a controller, a plurality of drive chips and a data acquisition apparatus. The first drive chip is one of the plurality of drive chips and connected to the controller and the data acquisition apparatus respectively. The method includes: receiving component-related data acquired by the data acquisition apparatus; and sending backhaul data to the controller, the backhaul data including the component-related data. The present disclosure solves the problem of function singleness of the drive chip. The present disclosure is applicable to drive and control the display device.
A display device includes: a substrate including a first surface and a second surface opposing each other; a display element and a signal line on the first surface; a first wire on the second surface and electrically connected to the signal line; a cover portion on the second surface; and a first driving unit on the second surface and electrically connected to the first wire. The first wire includes a portion exposed outside the cover portion, and the first driving unit is connected to the first wire at the portion of the first wire which is exposed outside the cover portion.
Provided is a display panel and a display apparatus, the display panel includes a regular display area including first pixel units and first pixel driving circuits, and a light-transmitting display area including second pixel units and second pixel driving circuits; the first pixel units include first light-emitting devices electrically connected to the first pixel driving circuits; the second pixel units have smaller density than the first pixel units, and the second pixel units in adjacent rows are arranged in a staggered manner; the second pixel unit includes second light-emitting devices electrically connected to the second pixel driving circuits; the second pixel driving circuits electrically connected to the second light-emitting devices in at least two columns are located in the same column, and the second pixel driving circuits in the same column and connected to the second light-emitting devices in different columns are respectively connected to different data signal wires.
A GOA unit, a GOA circuit and a display panel are provided. The GOA unit includes a pull-up module, a pull-up holding module, a converting module, a pull-down holding module, and a pull-down module. Each module can be implemented with N-type TFTs. The GOA unit could generate a negative impulse waveform for internal feedback mechanism.
The present disclosure provides a panel, a manufacturing method for the same, and a terminal. The panel includes: a base substrate; at least one differential signal line group on the base substrate, each including two signal lines; and at least one ground wire group on the base substrate and on the same side of the base substrate as the at least one differential signal line group. The at least one ground wire group is in one-to-one correspondence with the at least one differential signal line group, each ground wire group includes two ground wires, and orthographic projections of the two ground wires in each ground wire group on the base substrate are on two sides of an orthographic projection of a corresponding differential signal line group on the base substrate, respectively.
A data conversion method, a display method, a data conversion device and a display device. The data conversion method includes: performing data reorganization on original pixel data corresponding to at least one row of pixels in a display panel to obtain reorganized pixel data. In any data channel, the performing data reorganization on original pixel data corresponding to at least one row of pixels in a display panel to obtain reorganized pixel data includes: a first reorganized part in the n-th reorganized pixel data set consists of a first original part in the (n-1)-th original pixel data set, and a second reorganized part in the n-th reorganized pixel data set consists of a second original part in the n-th original pixel data set, wherein n is an integer satisfying 1
This application discloses a display panel and a processing device thereof. The display panel includes: a display screen and a connection terminal arranged at an edge of the display screen; a driver chip assembly connected to the connection terminal; a driver chip output pin arranged on a side, close to the connection terminal, of the driver chip assembly; a terminal pin connected to the driver chip output pin by bonding; and a fanout region arranged on a side, away from the edge of the display screen, of the terminal pin, where an insertion length of the terminal pin is greater than the length of an overlap region of the driver chip output pin and the terminal pin, where the terminal pin is higher than the fanout region.
A shift register unit and a driving method thereof, a gate driving circuit and a driving method thereof, and a display device are provided to improve a stability of the shift register unit. The shift register unit includes a first input circuit, a second input circuit, an output circuit, a first pull-down circuit, and a second pull-down circuit and further includes: a first pull-down control circuit configured to control a level of the first pull-down node; a second pull-down control circuit configured to output a voltage of the third voltage terminal to the first pull-down node under the control of the fifth voltage terminal; a third pull-down control circuit configured to control a level of the second pull-down node; and a fourth pull-down control circuit configured to output the voltage of the third voltage terminal to the second pull-down node under the control of the fourth voltage terminal.
A display device includes a display panel having a display area and a peripheral area. The display device includes a circuit having a comparator, and first and second sense wires disposed in the peripheral area and connected to the circuit. The comparator compares a first output signal output from the first sense wire and a second output signal output from the second sense wire to generate a comparison result. The circuit determines whether a defect is present in the display device based on the comparison result.
The invention provides a portable display apparatus. The portable display apparatus includes a clipstand that attaches to a barreled device and is used to display information, including holding other metal-backed items. The clipstand surface has a magnet embedded so that different faces can be attached to the clip surface and allow different information to be displayed, and different items to be held. The present invention also includes a clear plastic sleeve, the tag, attached to a metal bar to allow the tag to stick to the magnet. Different cards can be placed into the tag, and the tag may be written on with an erasable marker to allow for different displays. The clipstand may be displayed on a table attached to a barreled instrument or worn on a lanyard.
A method and structure for for displaying an optimal tactile display, comprising transforming a CAD image into physical dimensions and creating an optimal tactile display reflective of the physical dimensions utilizing instructions from one or more microcontrollers. The optimal tactile display comprises an array display surface comprising a collection of controlled pins, a quantity of controlled pins propositional to a size of the physical dimensions, wherein each pin assembly of the controlled pins configured to be extended pins based upon the size of the physical dimensions, a plurality of planetary motors, each of the planetary motors associated with the controlled pins and configured to move the plurality of pins, a control unit to monitor the extension of the plurality of pins, and respective linear actuators configured to drive a respective motor shaft connected to a respective lead screw, each respective lead screw placed inside of each of respective threaded circular cross-section stoke tube.
Disclosed herein are embodiments of a training lab that can be used as a teaching platform for individuals to learn electronic maintenance, such as transformer maintenance. The training lab can be either stationary or mobile, or can switch between the two modes. Modified transformers, or other equipment, can be incorporated into the lab to improve training.
An approach is provided for estimating a vulnerable road user count in real time or near real time. The approach, for example, involves collecting one or more vulnerable road user observations from at least one vehicle traveling a road link. The approach also involves querying a geographic database for historical vulnerable road user data for the road link. The approach further involves determining a first variance for the one or more vulnerable road user observations and a second variance for the historical vulnerable road user data. The approach further involves calculating the vulnerable road user count by fusing the one or more vulnerable road user observations with the historical vulnerable road user data based on the first variance and the second variance.
The present application relates to an electronic vaporizer device, an electronic vaporizer device body, and an operation method. An electronic vaporizer device body, configured to be used in combination with an electronic vaporizer, wherein the electronic vaporizer device body comprises: a power supply, configured to supply power; an airflow sensor; and a main control circuit, configured to activate the airflow sensor after detecting first level information; wherein the first level information is generated when the electronic vaporizer device body being in combination with the electronic vaporizer.
Some embodiments may include a poker indexing service. For example, a multi dimensional vector of player performance and/or other data may be determined based on gaming related activity that is input or otherwise captured. Such a vector may be used in various forms to generate a metric or to facilitate wagering and/or other gaming activity. Other methods and apparatus are described.
System and methods for providing a digital touch screen button display device incorporating player tracking and player rewards capabilities for an electronic gaming machine including game play functionality via a touch screen LCD thereby eliminating the need for a separate player tracking module. The digital button display device is located on the button deck of an electronic gaming machine and cooperates and communicates with the slot accounting system of a casino and may contain one or more interoperability modules to cooperate and communicate with differing slot accounting systems.
An image rendering method the steps of, for a view of a virtual model having a locus of interest, performing flexible scale rasterisation with a first bin distribution for a luminance channel, and mapping the results to a first pixel space; performing flexible scale rasterisation with a second bin distribution for chrominance channels, and mapping the results to a second pixel space; and outputting an image based upon the luminance and chrominance results mapped to the first and second pixel spaces; where the second bin distribution includes larger bins than the first bin distribution in a region outside the locus of interest.
In example implementations, an apparatus is provided. The apparatus includes a first channel, a second channel, a physical control interface, and a processor in communication with the physical control interface. The first channel provides a virtual image. The second channel provides a second image. The physical control interface receives the first channel and the second channel. The processor mixes a view of the virtual image and the second image based on a setting of the physical control interface.
A method of calibrating a registration of an augmented reality device 2 comprised in a surgical navigation system 100 is provided. The method comprises obtaining a first transformation 38 between a coordinate system 40 of the augmented reality device 2 and a reference coordinate system 42 of the surgical navigation system 100, a second transformation 44 between a coordinate system of a reference object 24 and the reference coordinate system 42 and obtaining geometrical properties of the reference object 24. The method further comprises determining a visual representation 34 of the reference object 24 to be displayed by the augmented reality device 2 and obtaining at least one first viewing direction 56 of a user using the augmented reality device 2, the at least one first viewing direction 56 being associated with the reference coordinate system 42. The method comprises determining a calibrated first transformation, which is a transformation between the coordinate system 40 of the augmented reality device 2 and the reference coordinate system 42.
A cross reality system that provides an immersive user experience by storing persistent spatial information about the physical world that one or multiple user devices can access to determine position within the physical world and that applications can access to specify the position of virtual objects within the physical world. Persistent spatial information enables users to have a shared virtual, as well as physical, experience when interacting with the cross reality system. Further, persistent spatial information may be used in maps of the physical world, enabling one or multiple devices to access and localize into previously stored maps, reducing the need to map a physical space before using the cross reality system in it. Persistent spatial information may be stored as persistent coordinate frames, which may include a transformation relative to a reference orientation and information derived from images in a location corresponding to the persistent coordinate frame.
Provided are a device and a method for extracting a terrain boundary, including: a grid creating module configured to divide a region which is determined based on measured contour line data of a target terrain, to form a regular grid including multiple grid units; a data analyzing module configured to assign a first standard value or a second standard value to each of the multiple grid units based on the number of elevation points included in the grid unit, to form a final grid region, where the final grid region is a region including all grid units having the first standard value; and a boundary extracting module configured to extract a terrain boundary based on the final grid region.
The system obtains an indication of a shape of a cross-section of an elongated shape, and an orientation of the shape. Based on the shape of the cross-section of the elongated shape and the orientation of the shape, the system creates a nonuniform distribution of random numbers mapping uniformly distributed input values to multiple points on the surface of the elongated shape. The system provides an input value randomly selected from a uniform distribution of random numbers to the nonuniform distribution of random numbers to obtain a point among the multiple sample points on the surface of the elongated shape. The system applies a function to the input value to obtain an indication of a normal associated with the sample point among the multiple sample points. Finally, the system computes an illumination of the elongated shape using the normal.
A main video sequence of a live action scene is captured along with ancillary device data to provide corresponding volumetric information about the scene. The volumetric data can then be used to visually remove or replace objects in the main video sequence. A removed object is replaced by the view that would have been captured by the main video sequence had the removed object not been present in the live action scene at the time of capturing.
A system and method for planning surgical procedure including importing CT image data of a patient; generating a 3D reconstruction from the CT image data; presenting a slice of the 3D reconstruction; selecting a target anatomical feature from the slice of the 3D reconstruction; setting a treatment zone including presenting at least one slice of the 3D reconstruction including the target anatomical feature, and presenting a treatment zone marker defining a location and a size of the treatment zone on the presented at least one slice of the 3D reconstruction; setting an access route to the treatment zone; and presenting a three-dimensional model including the treatment zone and the access route.
Provided is a method of controlling an image and sound pickup device, which is includes obtaining a plurality of audio signals and a participant image, which shows a plurality of participants, and generating location information about a sound source location by using comparison information about a comparison among the plurality of audio signals and face recognition that is performed on the participant image; and generating an estimated utterer image, which displays an estimated utterer, by using the location information.
A method of constructing a map including a plurality of lanes and a system thereof are provided. The method includes: for each of the plurality of lanes, constructing corresponding lane geometry data based on a plurality of polyline segments, including constructing a general outline circumscribing the plurality of lanes and identifying an outline of each of the plurality of lanes based on the plurality of polyline segments and the general outline. Outline polyline segments as boundaries of the general outline are selected from the plurality of polyline segments.
A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements representing the secondary anatomical elements; acquiring at least one trajectory, referred to as primary trajectory, based on the 4D-CT, the at least one primary trajectory describing a path of the at least one first image element as a function of time; acquiring trajectories of the second image elements, referred to as secondary trajectories, based on the 4D-CT; for the image elements of the undynamic CT, determining trajectory similarity values based on the at least one primary trajectory and the secondary trajectories, the trajectory similarity values respectively describing a measure of similarity between a respective one of the secondary trajectories and the at least one primary trajectory; determining the dynamic DRR by using the determined trajectory similarity values, and, in case the planning CT is acquired independently from the 4D-CT, further using a transformation referred to as planning transformation from the undynamic CT to the planning CT, at least a part of image values of image elements of the dynamic DRR being determined by using the trajectory similarity values.
An example fixture includes a hollow elongate section having a first end and a second end, and the first end has an opening for receiving a lens portion of an imaging device and the second end is structurally configured to brace against a surface of an object being imaged. The hollow elongate section is configured to hold the lens portion of the imaging device at a fixed distance from an object being imaged and to control an amount of incident light on the lens portion. Example methods of configuring an imaging device for capturing images of an object include holding, via a fixture, a lens portion of an imaging device at a fixed distance from an object being imaged, controlling an amount of incident light on the lens portion of the imaging device, and holding a calibration object in a field of view of the imaging device.
A velocity measuring device includes an event sensor, a ranging sensor and a controller. The event sensor could detect a first image frame of an object along a plane at a first time point and detect a second image frame of the object at a second time point. The ranging sensor could detect a first depth of the object along a depth direction at the first time point, wherein the depth direction is substantially perpendicular to the plane and detect a second depth of the object along the depth direction at the second time point. The controller could obtain first-dimensional velocity and a second-dimensional velocity along the plane according to the first image frame, the second image frame, the first depth and the second depth, and obtain a third-dimensional velocity along the depth direction according to the first depth or the second depth.
A control method for a mobile platform includes obtaining a captured image, identifying one or more candidate first characteristic parts from the captured image, determining a second characteristic part of a target object in the captured image, determining one or more matching parameters each corresponding to one of the one or more candidate first characteristic parts based on the one or more candidate first characteristic parts and the second characteristic part, determining a target first characteristic part of the target object from the one or more candidate first characteristic parts based on the one or more matching parameters, and switching from tracking the second characteristic part to tracking the target first characteristic part in response to a tracking parameter of the target object meeting a preset tracking condition.
Methods and systems for determining a diagnostically unacceptable medical image. One system includes at least one electronic processor configured to receive a new medical image captured via a medical imaging device. The at least one electronic processor is also configured to determine a classification of the new medical image using a model developed with machine learning using training information that includes a plurality of medical images and an associated classification for each medical image, each associated classification identifying whether the associated medical image is diagnostically unacceptable, wherein the classification of the new medical image indicates whether the new medical image is diagnostically unacceptable. The at least one electronic processor is also configured to, when the classification indicates that the new medical image is diagnostically unacceptable, prompt a user of the medical imaging device to adjust a parameter associated with the new medical image and recapture the new medical image.
An image processing device includes an application execution unit which executes an image processing application, an image processing circuit which performs image processing, a memory control circuit which is capable of accessing a plurality of memories and a memory allocation determination unit which determines a memory allocation of the image data on the basis of memory address management information, operation unit-specific information and application information. The application execution unit distributedly stores the image data in the plurality of memories on the basis of the memory allocation determined by the memory allocation determination unit.
Methods, systems, and computer-storage media fare provided for utilizing a GPU for user-defined image compositing operations. A sequence of compositing operations is determined for a graphical image document based on at least one user-defined layer property such as a layer mode or an opacity level. A domain-specific language runtime, such as Halide runtime, is used to provide encoded objects for each operation within the sequence with the code being optimized for the GPU platform. A command buffer with a plurality of commands comprising the encoded operations is created and committed to the GPU for execution of the compositing operations. Commands are committed to the GPU in an asynchronous nature such that additional command buffers may be created and committed the GPU prior to receiving a response from the GPU on an earlier command buffer.
Embodiments described herein provide a system and method that utilize transit data to determine where a transit traveler's order is placed in an order queue at a vendor. A transit traveler may execute an application, associated with an ordering system, on a mobile device. Utilizing the application, the transit traveler may select one or more menu items from a selected vendor. The ordering system may then utilize the transit data, associated with a transit vehicle the transit traveler is traveling on or intends to board, to determine the anticipated time of arrival of the transit traveler at the selected vendor. The vendor device then executes order placement software, provided by the ordering system, to place the transit traveler's order in a particular position within an order queue utilizing the anticipated time of arrival and a fulfillment time.
Energy usage of a plurality of appliances is measured using a single meter. A pattern of energy usage with respect to the plurality of appliances is determined dependent upon the measured energy usage, appliance details of the plurality of appliances, and usage hours of the plurality of appliances. The pattern is provided to a user of the appliances.
A method, system, and computer program storage product determine determining a trajectory information type of a receipt submitted by an employee. Trajectory information associated with the receipt submitted by the employee is retrieved based on the trajectory information type. Trajectory information corresponding to a device associated with the employee is also retrieved. The receipt is determined as a valid receipt in response to the trajectory information associated with the receipt submitted by the employee matching the trajectory information associated with the device associated with the employee.
An exercise apparatus includes a base, an operating unit that is movable relative to the base, and a motor that is coupled to the operating unit. The exercise apparatus also includes a sensor that is operable to detect engagement of a user with the operating unit, and a controller that is in communication with the operating unit and the sensor. The controller con generate validated exercise use data in response to the sensor detecting engagement of the user with the operating unit and movement of the operating unit relative to the base.
A computer implement method that assist healthcare payers in identifying potentially fraudulent claims and which requests confirmation preferably from a healthcare provider or patient of services rendered by the healthcare provider or products received by the patient. Confirmation of equipment and services can occur at different times in the settlement process including, but not limited to, prior to payments being made to health care providers.
Methods, systems, and computer-readable media for deploying and implementing centralized trading and tracking computing platforms to support tri-party trading are presented. In some embodiments, a central trading computing platform may receive, from a discretionary and managed accounts administration computer system associated with a financial institution, trade information defining one or more trades in one or more mutual funds for one or more accounts administrated by the financial institution. Subsequently, the central trading computing platform may validate the trade information and create order information based on the trade information. Then, the computing platform may send the order information to a clearing entity computer system. The order information created may be configured to cause the clearing entity computer system to settle the one or more trades in the one or more mutual funds for the one or more accounts administrated by the financial institution with a custodian different from the financial institution.
The present invention relates to a method and system for facilitating access to recorded data. The system comprises an interface and a processing device. The interface is arranged to receive data and the processing device is arranged to separate the received data in data subsets, compress each data subset and assign an identifier to each compressed data subset, thereby creating data units each comprising a compressed data subset and an associated identifier, the processing device further being arranged to establish an index on the basis of the assigned identifiers.
A computer-implemented system and method receive information regarding a funds transfer from a payor to a payee. The information is received by a depository computer system. The depository computer system forwards the information regarding the funds transfer to an account verification service computer system. The depository receives an indication of a real-time account status of an account of the payor. The account status information is received from a paying bank computer system that maintains the account of the payor via the account verification service computer system. Release of the funds to the payee is authorized based on the account status information received via the account verification service computer system. The authorization occurs in real-time relative to when the funds transfer information is initially received.
Example embodiments are directed to providing a portable and interactive user interface. A search request for content regarding a product or service is received from a client device of a user. In response to receiving the search request, an interactive user interface that includes a region for displaying the content regarding the product or service and an option to create a new interactive user interface is displayed. A selection of the option to create the new interactive user interface is received. In response to receiving the selection of the option, the client device of the user is redirected to a web page of a server to create the new interactive user interface. In some embodiments, the interactive user interface comprises an interactive storefront.
Systems, apparatuses, and methods of making (initiating and processing) an event-based automatic transaction on behalf of a user including and not limited to, determining an event geolocation impacted by an event and determining that the user is at the event geolocation based on a user device geolocation received from a user device of the user. In response to determining that the user is at the event geolocation, the event-based automatic transaction is automatically initiated and processed to digitally purchase goods or services on behalf of the user.
Aspects of the present invention disclose a method, computer program product, and system for capturing and transposing user behavioral data. The method includes determining that a user enters a first venue based on tracking a computing device of the user. The method further includes capturing behavioral data of the user in the first venue as the user interacts with a first product, where the captured behavioral data is saved to a database. The method further includes responsive to determining that the user enters a second venue, determining a set of recommendations for the user that has entered the second venue, based on the behavioral data in the user profile and a product available to the user in the second venue. The method further includes generating a recommendation to a user.
An example method involves a computing device displaying a first action-outcome node corresponding to a first marketing-campaign action, displaying a plurality of outcomes of the first marketing-campaign action, positioned around the first action-outcome node, wherein each outcome corresponds to a potential result of the first marketing-campaign action, displaying a second action-outcome node corresponding to a second marketing-campaign action, displaying a plurality of outcomes of the second marketing-campaign action, positioned around the second action-outcome node, wherein each outcome corresponds to a potential result of the second marketing-campaign action, and displaying a graphical link connecting an outcome of the first action-outcome node to the second action-outcome node.
A method and apparatus are provided for presenting multimedia content to a caller and/or a called party in association with a telephone call. Content may be presented pre-ring (before the called party's telephone rings), in-call, and/or post-call. Content presented to a party may be related to another party participating in the call or may be related to a third party (e.g., an advertiser that paid for the ability to have its content presented). Presented content may be actuable, to allow a caller to change the destination of a call, take advantage of an offer presented to him or her, redeem a coupon, schedule or queue a subsequent call, etc. To find a desired destination party, a caller may initiate a manual or automatic search of his or her local contacts (on his telephone) and/or a central or global directory or contact list.
Provided herein are methods, systems, and non-transitory computer-readable media of providing a predicted rate based on information about the property, the customer, and the amenities that a supplier has proposed. The rate may be based on many factors that can be extracted or derived from the historical bid data, including, but not limited to: location and market tier of the property, length of relationship with the channel (which may be an account or customer), the included amenities, the cancellation policy, the size of the account's or channel's event, the season of the booking, the proximity of the channel's offices of the account or channel to the property. Increased confidence that a customer is getting a fair rate facilitates negotiations between contracting parties.
Methods and systems for data modelling. One method includes receiving a data stream including a first plurality of data points, aggregating the first plurality of data points to a second plurality of data points including values at a first frequency, and building, with at least one electronic processor, a first model based on the second plurality of data points, wherein the first model is configured to generate data values at the first frequency. The method also includes accessing a second model based on a third plurality of data points, wherein the second model is configured to generate data values at a second frequency shorter than the first frequency, generating a first data output using the first model, generating a second data output using the second model, multiplying the first data output by the second data output to generate a third data output, and outputting the third data output for display.
A method for verifying a name on a check include receiving, from a check issuer computer system, a first payee name and first check information and associating the first payee name with the first check information. The method also includes receiving second check information electronically read by a first device at the payee financial institution. The method further includes receiving a second payee name electronically read from an identification document and comparing the first check information with the second check information. The method still further includes verifying that the first payee name corresponds to the second payee name when the first payee name matches the second payee name; and sending, in response to the verification, a name verification message indicating the first payee name corresponds to the second payee name.
A merchant website automatically detects whether a customer device has a registered payment application; if so, the website generates a custom protocol message that is triggered on checkout to initiate payment via the payment application. Details of the transaction are passed to the payment application via a payment server so that the user can authorize the transaction within the payment application.
Example embodiments of systems and methods for performing a transaction involving a transmitting device and a receiving device. A state machine may be configured to monitor the data communications, data reads, and data writes performed between the transmitting device and the receiving device. In the event of a disruption during the transaction, the state machine may allow the transaction to resume following the most recent data communication, data read, or data write once the disruption is resolved.
An electronic device and method are disclosed herein. The electronic device includes a touch screen display, a wireless communication circuit, a processor and a memory. The processor implements the method, including receiving a first user input indicating a transaction card associated with an issuer identification, storing information for the transaction card, transmitting to a request to initiate a search for a plug-in software program associated with the issuer identification, receiving a response identifying at least one searched plug-in software program, receiving a second user input requesting installation of the at least one plug-in software program, transmitting an access request requesting download of the at least one plug-in software program, downloading and installing the at least one plug-in software program, transmitting a request for authentication of the installed at least one plug-in software program, and based on a result of the authentication completing the installation.
A method, system, and non-transitory computer readable medium are disclosed for recommending merchants. The method includes storing a first tip amount and a second tip amount corresponding to a first merchant and a second merchant, respectively. Then, categorizing the first tip amount and the second tip amount into a lower weighted category or higher weighted category. The method also includes generating, using a weighted model that includes machine learning logic: a first score for the first merchant based on the first tip amount and the category of the first tip amount; and a second score for the second merchant based on the second tip amount and the category of the second tip amount. Tip amounts in the higher weighted category carry more weight in generating scores than those in the lower weighted category. Then, either the first merchant or the second merchant is recommended based on the scores.
A method is proposed for a payer, to make a payment to a payee, such as a merchant. The payer's communication device automatically acquires payment facilitation data comprising payee account identification data identifying a payment account associated with the payee and maintained by an acquirer. The payment facilitation data preferably also includes transaction data describing the payment, such as the amount of the payment. From the payment facilitation data, the communication device generates a payment request which is transmitted to an issuer at which the payer maintains a payment account. The issuer communicates with the acquirer, typically via a payment network, to arrange for a payment to be made, and the payment is credited to the payment account associated with the payee, and debited from the payment account associated with the payer. Thus, a payment is effected without the payee ever receiving confidential information about the payer's payment account.
A technique for improving meeting participation in electronically calendared meetings includes a data processing system receiving an electronic invitation to a virtual meeting that requires access to one or more referenced resources for a meeting invitee to fully participate in the meeting. Whether the invitee has access to the referenced resources is determined by a data processing system. In response to determining that the invitee does not have access to the referenced resources, access for the invitee to the referenced resources is provisioned by a data processing system. Finally, the meeting is added to an electronic calendar associated with the invitee.
Methods and apparatus are described for improved delivery notification using a wireless node network having an ID node related to an item being shipped, a courier master node, a mobile delivery point master node related to a mobile delivery point (e.g., a vehicle), and a server. The mobile delivery point master node detects a signal from the ID node as the ID node approaches the mobile delivery point master node, and responsively determines shipping information related to the ID node, an intended recipient of the shipped item, and the courier master node currently associated with the ID node. The mobile delivery point master node then transmits information on the mobile delivery point master node's current location at the mobile delivery point to the courier master node, and transmits a notification to the identified recipient to inform the intended recipient about the item being substantially near the mobile delivery point.
A method, computer system, and a computer program product for customer representative ratings is provided. The present invention may include receiving a chat transcript with one or more tagged triplets and one or more multi-dimensional success vectors. The present invention may include aggregating the one or more multi-dimensional success vectors. The present invention may include receiving at least one business priority. The present invention may include applying at least one filter to the one or more multi-dimensional success vectors. The present invention may include normalizing the one or more multi-dimensional success vectors based on the at least one applied filter. The present invention may include obtaining a rating.
Embodiments for facilitating cognitive conflict resolution between parties by a processor. An appropriateness of communications, behavior, actions or events associated with one or more users may be cognitively interpreted according to a plurality of identified contextual factors during a conflict resolution. One or more corrective actions may be suggested to mitigate a possible negative impact of the communications, behavior, actions or events upon the one or more users if the interpreted appropriateness is less than a predetermined threshold.
Data processing systems and methods, according to various embodiments, are adapted for determining an applicable privacy policy based on various criteria associated with a user and the associated product or service. User and product criteria may be obtained automatically and/or based on user input and analyzed by a privacy policy rules engine to determine the applicable policy. Text from the applicable policy can then be presented to the user. A default policy can be used when no particular applicable policy can be identified using by the rules engine. Policies may be ranked or prioritized so that a policy can be selected in the event the rules engine identifies two, conflicting policies based on the criteria.
A method and system for automatically assigning employees to work plurality of cash registers when the employees report for work is described. The system and method automatically compares the employee's qualifications to the current operational status of a plurality of cash registers and any parameters that may govern the operation of the cash registers such as age requirements for the sale of alcohol. The system automatically assigns an employee to a cash register and transmits real time operational status of those cash registers to a supervisor via a wireless device.
A method and system of analyzing a symbolic sequence is provided. Metadata of a symbolic sequence is received from a computing device of an owner. A set of R random sequences are generated based on the received metadata and sent to the computing device of the owner of the symbolic sequence for computation of a feature matrix based on the set of R random sequences and the symbolic sequence. The feature matrix is received from the computing device of the owner. Upon determining that an inner product of the feature matrix is below a threshold accuracy, the iterative process returns to generating R random sequences. Upon determining that the inner product of the feature matrix is at or above the threshold accuracy, the feature matrix is categorized based on machine learning. The categorized global feature matrix is sent to be displayed on a user interface of the computing device of the owner.
Mechanisms are provided for modifying response of cognitive systems to user requests based on a determined knowledge level of the user and knowledge level of the concepts referenced in the cognitive system responses. The mechanisms receive a response to a user submitted request received from a client computing system and determine a first knowledge level of the user for a domain of the user submitted request. The mechanisms determine a second knowledge level associated with concepts referenced in the response and whether the first knowledge level is different from the second knowledge level. The mechanism, in response to the first knowledge level being different than the second knowledge level, modify content of the response to include concepts associated with the first knowledge level, to thereby generate a modified response. The modified response is then output to the client computing system associated with the user.
A computing system trains a classification model using distributed training data. In response to receipt of a first request, a training data subset is accessed and sent to each higher index worker computing device, the training data subset sent by each lower index worker computing device is received, and a first kernel matrix block and a second kernel matrix block are computed using a kernel function and the accessed or received training data subsets. (A) In response to receipt of a second request from the controller device, a first vector is computed using the first and second kernel matrix blocks, a latent function vector and an objective function value are computed, and the objective function value is sent to the controller device. (A) is repeated until the controller device determines training of a classification model is complete. Model parameters for the trained classification model are output.
Techniques described herein relate to a method for forecasting backup failures. Such techniques may include: obtaining data items associated with backup jobs; writing entries in a time series database, the entries comprising successful backup jobs and failed backup jobs; performing a first analysis to predict future failed backup jobs based on the entries in the time series database to obtain a future backup job failure predictions; performing a second analysis to determine a confidence prediction for each of the future backup job failure predictions; ranking the future backup job failure predictions based on the second analysis; performing a third analysis to determine at least one variable leading to each of the future backup job failure predictions; and sending results of the second analysis and the third analysis to an administrator of a data domain.
A method may include receiving telemetry data associated with one or more information handling resources, receiving failure statistics associated with the one or more information handling resources, merging the telemetry data and the failure statistics to create training data, and implementing a gated recurrent unit to: (i) impute missing values from the training data and (ii) train a pattern recognition engine configured to predict a failure status of an information handling resource from operational data associated with the information handling resource.
An antenna pattern used in a UHF frequency band RFID inlay is provided with a substance; a dipole antenna formed from a metal foil upon the front surface of the substance; and a sub-element formed from a metal foil upon the back surface of the substance, wherein the dipole antenna is provided with a loop portion having a IC chip connecting portion; a pair of meanders configured to respectively extend from the loop portion so as to be line symmetrical; and capacitance hats, the sub-element has a pair of U-shapes, and a part of the sub-element overlaps with the dipole antenna through the substance.
A transaction card construction and a method for making a transaction card are described. The transaction card construction comprises an inlay component and a housing component. The inlay component may comprise a light-penetrable layer and a backer layer. A light source may be disposed on or in the housing component, and the housing component and the inlay component may be joined such that light emitted by the light source passes through the inlay component.
A transaction card that includes a card body that can include a ceramic material. The card body can include a primary surface and a secondary surface, a laser marked feature disposed on the card body and a laser etched feature disposed on the card body. A method of making a transaction card can include forming a ceramic material slurry comprising a ceramic material and a binder, forming a green body from the ceramic material slurry, firing the green body at a firing temperature to create a fired ceramic body, grinding the fired ceramic body into a card body, and polishing a primary surface of the card body.
The systems and methods presented here completely separate a non-user pattern from the user jobs being printed. In fact, depending on the number of images in the job and the number of patterns provided by the manufacturer or press operator, the patterns may appear on different images of the job each time the job is printed. This is because the image marks are generated and processed according to the configuration of ROUS, independent of the user jobs being printed.
An information processing apparatus includes a storage unit and a processor. A font file includes type face data and serif data. When a sans-serif font is selected, the processor generates sans-serif character data on the basis of the type face data. When a serif font selected, the processor generates sans-serif character data, generates serif image data, and adds generated the serif image data to generated the sans-serif character data to generate serif character data.
A method includes providing attributes of a manufacturing process and an image of a product associated with the manufacturing process to a trained machine learning model. The method further includes obtaining, from the trained machine learning model, predictive data. The method further includes determining, based on the predictive data, image measurements of the image of the product associated with the manufacturing process. Manufacturing parameters of the manufacturing process are to be updated based on the image measurements.
Exemplary systems and methods to extract, transform, and save to memory features from a training and a test dataset at extraction layers in a machine-learning model. For each data element in the training dataset, at each extraction layer: feature maps are created and grouped by k unique data labels to construct a set of k class-conditional distributions. For each data element in the datasets: distance sets between each feature map of each extraction layer and the extraction layer's class-conditional distributions are calculated and reduced to distance summary metrics. A drift test statistic for each extraction layer is computed between the datasets by comparing the extraction layer's distance summary metric distributions of the test dataset to distance summary metric distributions of the training dataset. The measure of drift between the datasets is computed by combining the test statistics of the extraction layers through a mathematical transform.
Method, electronic device, and computer readable medium embodiments are disclosed. In one embodiment, a method includes training a neural network using a first image dataset and a first truth dataset, then using the trained neural network to analyze a second image dataset. The training includes modifying a loss function of the neural network to forego penalizing the neural network when a feature is predicted with higher than a first confidence level by the neural network, and the first truth dataset has no feature corresponding to the predicted feature.
A method for performing automatic license plate recognition includes: performing character detection on a to-be-processed image; when a number of character objects constituting characters of a license plate are detected, obtaining a representative point for each character object; calculating a pattern line with respect to the character objects; calculating a skew angle defined by the pattern line and a preset reference line; rotating each character object based on the skew angle to obtain an adjusted image; and performing character recognition on the adjusted image to obtain a recognized character for each character object.
An optical scanner captures a plurality of images from a plurality of image-capture devices. In response to the activation signal, an evaluation phase is executed, and in response to the evaluation phase, an acquisition phase is executed. In the evaluation phase, a first set of images is captured and processed to produce a virtual frame comprising a plurality of regions, with each region containing a reduced-data image frame that is based on a corresponding one of the plurality of images. Also in the evaluation phase, attributes of each of the plurality regions of the virtual frame are assessed according to first predefined criteria, and operational parameters for the acquisition phase are set based on a result of the assessment. In the acquisition phase, a second set of at least one image is captured via at least one of the plurality of image-capture devices according to the set of operational parameters.
To make error correction in a position estimate of a vehicle, visual lane markings on the road can be matched with lane boundaries for the road within 3-D map data. Embodiments include obtaining a “stripe” indicative of an observed lane marking captured in a from a camera image, obtaining map data for the road on which the vehicle is located, determining the plane of the road from coordinates of lane boundaries within the map data, projecting the stripe onto the plane, and comparing the projected stripe with lane boundaries within the map data and associating the visual lane markings with the closest lane boundary. Differences between the projected stripe and the associated lane boundary can then be used for error correction in the position estimate of the vehicle.
Concepts for detecting a scene transition in video footage are presented. One example comprises, for each of a plurality of different frames of video footage, obtaining a value of a confidence measure associated with a detected object in the frame. A scene transition in the video footage is then detected based on the obtained values of the confidence measure.
Provided is a ledger recognition system which can enhance recognition accuracy of a handwritten character filled out by a user thus capable of reducing a manual work in a correction operation. A ledger recognition system includes: a headquarter server configured to recognize handwritten characters described in a ledger by a user; a system terminal including an image scanner for reading the handwritten characters filled out in the ledger by the user; and a public telecommunication network which allows the headquarter server and the system terminal to be communicably connected with each other. The headquarter server includes a handwritten character recognition unit where the handwritten character recognition unit receives the image data of the ledger read by the image scanner from the system terminal, recognizes the handwritten characters written by the user in the image data of the received ledger in accordance with at least two types of OCR recognition programs having different algorithms, determines the handwritten characters described in the ledger with respect to a part of the handwritten characters where recognition results in accordance with the OCR recognition programs agree with each other, and sets a part of the handwritten characters where the recognition results by the OCR recognition programs do not agree with each other as an object of correction processing.
A recognition apparatus includes an image acquisition unit configured to acquire an image captured by a far-infrared camera and a recognition processing unit configured to set a target region in the image and determine whether an object in the target region is a human being or an animal based on a temperature variation in the target region. A recognition apparatus, a recognition method, and a recognition program that can correctly determine whether it is a human being or an animal that appears in an image even when the human being or the animal appears in the image showing his/her or its front or back can be provided.
A processor-implemented liveness detection method includes: obtaining an initial image using a dual pixel sensor; obtaining a left image and a right image from the initial image; and detecting liveness of an object included in the initial image using the left image and the right image.
A LCD device defining a display area includes a color filter substrate, a thin film transistor (TFT) substrate facing the color filter substrate, a backlight module on a side of the TFT substrate away from the color filter substrate, a transparent cover on a side of the color filter substrate away from the TFT substrate, and a fingerprint sensor in the display area. The fingerprint sensor defines a fingerprint sensing area in the display area. The LCD device further includes a light emitting diode on a side of the transparent cover adjacent to the color filter substrate. The light emitting diode is configured to emit light toward the fingerprint sensing area of the transparent cover.
A method of generating a finger image includes determining a quantity of electric charge to be removed from each of a plurality of detection circuits connected to a fingerprint sensor, based on an amplifier characteristic of each of the plurality of detection circuits; obtaining a second electrical quantity by removing the quantity of electric charge from a first electrical quantity that is input to each of the plurality of detection circuits; integrating the second electrical quantity to obtain an integrated value; and generating the fingerprint image based on comparison between the integrated value of the second electrical quantity and a predetermined threshold value.
The present invention provides a product label with a colorimetric sensor array and a code, and the system and the method of the present invention are mainly that the product label is attached to a fresh food, so that at least one sensing material of the colorimetric sensor array undergoes a chemical reaction with at least one metabolic molecule of the fresh food to change from an initial color to an indicating color. The present invention, by obtaining an image comprising an appearance, the code and the indicating color of the fresh food through an image acquisition device, also provides an instant information associated with the fresh food by a processing device according to a comparison result of the image and a database.
A location-based analytics system provides tracking and visualization of individuals within a controlled-environment facility. A plurality of sensors, such as RFID (Radio Frequency Identification) sensors, are located within the controlled-environment facility and detect individuals located within a first proximity to the sensors. An analytics system determines the identity of individuals detected by the sensors and reports the locations of the identified individuals. A user interface provides the ability to select the display of the location and movement of selected individuals of the identified individuals on a three-dimensional model of the controlled-environment facility. The user interface also provides the ability to select a three-dimensional representation for the selected individuals and various other aspects of the controlled-environment facility. The selected representation of the selected individuals is projected onto the three-dimensional model of the controlled-environment facility at locations corresponding to the reported locations of the selected individuals within the facility.
A translation device includes: a controller that extracts a proper noun candidate from an original sentence, generates a translation word of the proper noun candidate in a second language, generates a second translated sentence by translating the original sentence into the second language based on the proper noun candidate and the translation word of the proper noun candidate, and generates a second reverse-translated sentence by translating the second translated sentence into the first language based on the proper noun candidate and the translation word of the proper noun candidate; a display that displays the first reverse-translated sentence and the second reverse-translated sentence; and an operation unit that receives a user operation of selecting one of the first reverse-translated sentence and the second reverse-translated sentence. The controller displays one of the first translated sentence and the second translated sentence on the display as a translated sentence of the original sentence according to the selection of the user.
Embodiments are disclosed for transliterating text entries across different script systems. A method according to some embodiments includes steps of: receiving an input string in a first script system input using a keyboard; segmenting, using a probabilistic model, the input string into phonemes that correspond to characters or sets of characters in a second script system; converting the phonemes in the first script system into the characters or sets of characters in the second script system, the characters or sets of characters forming a word or a word prefix in the second script system; and outputting the word or the word prefix in the second script system.
A method for rendering context based information on a user interface includes receiving a user request to extract the context based information from a database. The database includes a plurality of documents and the request includes at least one search criteria required to determine a context of the user request. The method includes generating a list of documents corresponding to the context of the user request and rendering on a viewing portion of the user interface the list of documents corresponding to the context of the user request.
A computer-implemented method for employing input-conditioned filters to perform natural language processing tasks using a convolutional neural network architecture includes receiving one or more inputs, generating one or more sets of filters conditioned on respective ones of the one or more inputs by implementing one or more encoders to encode the one or more inputs into one or more respective hidden vectors, and implementing one or more decoders to determine the one or more sets of filters based on the one or more hidden vectors, and performing adaptive convolution by applying the one or more sets of filters to respective ones of the one or more inputs to generate one or more representations.
A data profiling module receives user selection of spreadsheets, and the data from the selected spreadsheets is profiled. At least one matching column is identified among the spreadsheets selected. The data profiling module calculates a match metric for the at least one matching column, and unifies the spreadsheets into a single composite spreadsheet using the at least one identified matching column. A preview view of a composite spreadsheet is generated, visually indicating the at least one matching column, any non-matching columns between the spreadsheets, and the match metric for the matching columns. An action history module identifies spreadsheets for use in the procedure, and stores any action applied to the spreadsheets as a procedure template that can be applied to a plurality of other spreadsheets.
A template built by a user may be converted by a Server Script Generation Engine (SSGE) into script code. In converting, the SSGE may load and parse a framework file containing static script syntax to locate insertion points, each associated with an iteration number, and may iteratively parse the template, utilizing the iteration number to resolve, in order, tags and sub-tags contained in the template. If a tag is set to respond to the iteration number, a function of the tag is invoked to process any related sub-tags and return a script associated therewith at the appropriate insertion point. The framework file (with the appropriate script code inserted) is compiled and stored in a compiled script object which can be run multiple times to perform all of the output functions expected by the user in lieu of the need to reconvert the template.
A method of forming a semiconductor device includes: providing a first circuit having a plurality of circuit cells; analyzing a loading capacitance on a first pin cell connecting a first circuit cell and a second circuit cell in the plurality of circuit cells to determine if the loading capacitance of the first pin cell is larger than a first predetermined capacitance; replacing the first pin cell by a second pin cell for generating a second circuit when the loading capacitance is larger than the first predetermined capacitances, wherein the second pin cell is different from the first pin cell; and generating the semiconductor device according to the second circuit.
The present disclosure relates to a security device, a system, and a method for securing a control apparatus. The security device includes a data security unit which is configured to secure data, data communication and information, and includes a first security component inside the data security unit to operate in a first operating mode, and at least one first monitoring unit to operate in a high-availability mode which, said first monitoring unit being configured to detect a fault present in the first security component. The high-availability mode is different from the first operating mode. The security device further includes a second security component which is configured to operate in the high-availability mode and to output a first response signal if a fault is detected by the first monitoring, where the high-availability mode is available independently from the first operating mode.
A method and an apparatus for hardware security to countermeasure side-channel attacks are provided. The method or apparatus may introduce at least one redundant or partial redundant computation having a similar power dissipation profile or an electromagnetic emission profile when compared to that of a genuine operation for cryptographic devices, and/or to reorder the iterations of operations in a different sequence. The redundant or partial redundant computation may be performed by using a different password key and/or a different raw data (e.g., plaintext). The presence of the redundant or partial redundant computation would make side-channel attacks difficult in the sense that genuine or redundant/partial redundant operations are difficult to be clearly identified, hence serving as a countermeasure for hardware security.
A method of providing an auto-encoder for anonymizing data associated with a population of entities is disclosed. The method includes providing a computer system with a memory storing specific computer-executable instructions for a neural network. The neural network includes an input layer of nodes; three or more layers of nodes; and an output layer of nodes to provide an encoded output vector. The second layer of nodes has more nodes than the first and third layers of nodes. The method also includes identifying a plurality of characteristics associated with the entities and preparing a plurality of input vectors that include a characteristic. The characteristics appear in the input vector as transformed numeric information from human recognizable text. The method includes training the neural network during a plurality of training cycles comprising: processing an input vector with the neural network to provide an encoded output vector; determining an output vector reconstruction error by calculating a function of the encoded output vector and the input vector; back-propagating the output vector reconstruction error back through the neural network; and recalibrating a weight to minimize the output vector reconstruction error. Additional neural networks are also disclosed. The outputs of the additional neural networks may be combined. Encoded output vectors may be compared to identify a common characteristic between two or more entities or to identify two or more entities with the common characteristic. An auto-encoder system for anonymizing data is also disclosed.
Systems, methods, and apparatuses for providing a central location to manage permissions provided to third-parties and devices to access and use user data and to manage accounts at multiple entities. A central portal may allow a user to manage all access to account data and personal information as well as usability and functionality of accounts. The user need not log into multiple third-party systems or customer devices to manage previously provided access to the information, provision new access to the information, and to manage financial or other accounts. A user is able to have user data and third-party accounts of the user deleted from devices, applications, and third-party systems via a central portal. The user is able to impose restrictions on how user data is used by devices, applications, and third-party systems, and control such features as recurring payments and use of rewards, via a central portal.
An example operation may include one or more of identifying a new member (M1) to a permissioned database, creating a new group including the new member and one or more previously identified members (MP), modifying a world state of the permissioned database to identify a set of members in the new group with access to the permissioned database, and responsive to the new member (M1) being identified, creating a new entry (TX1) to the permissioned database using an encryption key (K1) associated with the new member (M1).
Disclosed herein are systems and methods of executing scanning software, such an executable software program or script (e.g., PowerShell script), by a computing device of an enterprise, such as a security server, may instruct the computing device to search all or a subset of computing devices in an enterprise network. The scanning software may identify PowerShell scripts containing particular malware attributes, according to a malicious-code dataset. The computing system executing the scanning software may scan through the identified PowerShell scripts to identify particular strings, values, or code-portions, and take a remedial action according to the scanning software programming.
Disclosed herein are methods and systems for detecting malicious files. An exemplary method comprises emulating execution of a file under analysis, forming a behavior log of the emulated execution of the file under analysis, forming one or more behavior patterns from commands and parameters selected from the behavior log, calculating a convolution of the one or more behavior patterns, selecting two or more models for detecting malicious files from a database, calculating a degree of maliciousness of the file being executed based using the convolution and the two or more models, forming a decision making template based on the degree of maliciousness and determining that the file is malicious when a degree of similarity between the decision making template and a predetermined decision making template exceeds a predetermined threshold value.
Disclosed are various embodiments for determining authentication assurance using algorithmic decay. In an embodiment, an authentication request associated with an account is received. At least one historical authentication event associated with the account is determined. A measure of authentication assurance is determined based at least in part on applying an exponential time decay to at least one authentication assurance value individually corresponding to the historical authentication event(s). A response to the authentication request is generated based at least in part on the measure of authentication assurance.
Methods and associated systems are provided to perform a security posture assessment (PA) of a device based on a PA process implemented on a server but not statically stored on the device. The method includes generating, by the server, commands to be performed by a dynamic command executor on the device. The dynamic command executor is configured to dynamically launch and execute system modules on the device, based on the commands, to perform operations in the PA process. The commands and the results may be exchanged between the server and the device via a secure communication connection. The commands may be sent in a message with an encryption key that encrypts the messages, and the received command results may also be encrypted using the encryption key. By not statically storing the PA process on the device, the PA process is protected from reverse engineering attacks.
A method for preventing digital content misuse can include detecting, by a client-side computing device, that the client-side computing device is paired to a viewing device such that, after being paired, the client-side computing device can cause digital content received from a remote server to be presented on a display of the viewing device; after detecting that the client-side computing device is paired to the viewing device, detecting, by the client-side computing device, that the client-side computing device has been unpaired from the viewing device; and in response to detecting that the client-side computing device has been unpaired from the viewing device, executing a remedial action.
An information processing apparatus includes a web server configured to receive a screen display HTTP request from a web browser, determine whether or not the web browser is a certain web browser on a basis of the screen display HTTP request, if the web server determines that the web browser is not the certain web browser, create first HTML data including data obtained by encoding an image to be displayed on the screen, and create a first HTTP response including the first HTML data, if the web server determines that the web browser is the certain web browser, create second HTML data including link information of the image, and create a second HTTP response including the second HTML data, and return the first HTTP response or the second HTTP response to the web browser.
A system and method for creating, managing, and displaying collections of 3D digital collectibles comprising a virtual, three dimensional, n-sided structure including a digital media file or set of digital media files representing an event rendered on a representation of a first surface thereof, and data relating to the event rendered on at least a second surface thereof, where the digital media file may be a video clip of the event that can be played automatically via a media player associated with the display. The system may provide a graphical user interface that displays a set of user tools to create the collections by selecting individual 3D digital collectibles, and a user interface to display collections to other users and serially play the digital media files of the 3D digital collectibles of the collection.
Techniques are described for a de-obfuscation framework that utilizes image recognition of text. A word input by a user is received by the de-obfuscation service. Visual feature data associated with an image corresponding to each character of the word is generated. Word embeddings are generated using the visual feature data and each character of the word using a character encoder layer. Feature vectors are generated from the word embedding by combining the generated word embeddings and a provided word embedding using a second neural network. The generated feature vector is classified. Potential text obfuscation is detected from the classified generated feature vector using a lexicon to determine de-obfuscated text closet to the user text.
Devices and methods for classification of low relevance records in a database are disclosed. A method includes: in response to a request to delete a selected database record, generating a vector representation of the selected record, deleting the selected record in the database, and storing the vector representation of the deleted selected record; in response to the storing the vector representation of the deleted selected record, determining a cluster from which the vector representation has a shortest determined distance, among a plurality of clusters into which a plurality of vector representations of deleted records is partitioned; determining a distance between a record in the database and a nearest cluster among the plurality of clusters into which the plurality of vector representations of deleted records is partitioned; and in response to the record being within a predetermined distance of the nearest cluster, determining that the record is a deletion candidate record.
An apparatus and method of identifying semantically related records, including receiving input data from an input device, splitting the input data into a plurality of clusters according to semantic relationship, each of the clusters including a plurality of source terms and a plurality of target terms, transforming each of the plurality of clusters based on the transformation which includes tokenization of the plurality of clusters, for each of the plurality of clusters that are transformed, finding relatedness scores of a plurality of semantic relatedness measures with the plurality of target terms, building a vector of similarity scores for each of the plurality of target terms, and for each of the plurality of source terms, selecting a predetermined number of the plurality of target terms according to the similarity scores.
This disclosure relates to data association, attribution, annotation, and interpretation systems and related methods of efficiently organizing heterogeneous data at a massive scale. Incoming data is received and extracted for identifying information (“information”). Multiple dimensionality reducing functions are applied to the information, and based on the function results, the information are grouped into sets of similar information. Filtering rules are applied to the sets to exclude non-matching information in the sets. The sets are then merged into groups of information based on whether the sets contain at least one common information. A common link may be associated with information in a group. If the incoming data includes the identifying information associated with to the common link, the incoming data is assigned the common link. In some embodiments, incoming data are not altered but assigned into domains.
The present disclosure provides a method and an apparatus for obtaining an expression from characters. The method may include: extracting N words under test from a text under test in an arrangement order; inputting an i-th node in the first-level operation, each node of a first node to an i−1 th node in the first-level operation, and a predefined set of operators into a sub-network of a recurrent neural network to obtain nodes of a second-level operation; determining a valid operator in the first-level operation according to the nodes of the second-level operation; performing multi-level operations until the number of valid operators in a M-level operation is determined to be 0 according to the obtained nodes of the M+1-level operation; and generating the expression from the text under test according to valid operators in the first-level operation to the M−1-level operation and words corresponding to valid nodes.
Embodiments of systems and methods for information retrieval are disclosed. Embodiments of such systems and methods may perform information retrieval based on a language model that is used to generate a single vector for the search terms of a query. Similarly, a single vector representation of each of the data records to be searched is obtained and the single vector representing the search terms of the query compared to the single vector of each data record to determine a similarity metric. The resulting similarity metrics associated with each of the data records can be used to rank, present or return one or more data records.
In some aspects, an interconnectivity evaluation system identifies, in a data structure with data indicating links among entity data objects, first links between a first entity data object and additional entity data objects and second links between a second entity data object and the additional entity data objects. A connectivity score for the first and second entity data objects, which indicates a weight of a relationship between the first and second entity data objects, is computed based on the first links and the second links. Data in the data structure is modified to indicate a relationship between the first and second entity data objects. The relationship is associated with the computed connectivity score. If a difference between the connectivity score and a desired connectivity score exceeds a threshold, a recommendation is outputted to modify the connectivity score by changing at least some of the links among the entity data objects.
Providing dynamic, interest-based change notifications includes detecting an event for an artifact managed by a collaborative system, determining a user subscribed to the artifact, and, responsive to the event, calculating a score for the event using a processor. The score is user-specific and indicates a level of interest of the user for the event. The score is compared with a threshold score. A change notification of the event is sent to the user responsive to determining that the score exceeds the threshold score.
Systems, methods, and software for management of partitioned data storage spaces is provided herein. An exemplary method includes storing sets of structured data records among partitioned data storage spaces, with data fields of the structured data records correlated among the sets by relational associations. The method includes, in a data center that receives change actions related to the structured data records, selectively placing the change actions into a plurality of change feeds, where the change feeds can be commutatively executed in parallel to implement the change actions. The method further includes implementing the change actions and propagating replication data comprising the change actions in the plurality of change feeds.
Systems and methods for replicating containers in object storage using intents are disclosed. A DS processing unit, upon reception of a write request may determine the location of replicated instances for the container. DS processing unit can then generate an intent for each fork, to indicate a specific write request received. The DS processing unit may save or persist intent objects within one of the containers, or in a dispersed data structure. A DS unit or DS processing unit may then check for intents whose operation has not been completed, and when resources to perform the operation are available, perform the operation specified in the intent. DS processing unit can remove a pending intent once the job or operation is complete. A clean-up agent could run periodically to complete unfinished jobs that are pending within DS processing unit or DS unit due to containers not being available for whatever reason.
Methods and apparatus for examining digital forensic data using a viewer computer. Forensic data collections are provided to the viewer computer, which can format the data artifacts according to a variety of display types and presentation formats, to facilitate review and reporting by a user. The display types and presentation formats also enable the user to easily switch between a source location view and a related artifacts view.
Disclosed herein are system, method, and computer program product embodiments for partition pruning via non-homogenous synopsis information. An embodiment operates by maintaining synopsis information for a data partition in accordance with a first synopsis strategy, monitoring performance of the synopsis information within a partition pruning system, determining that the performance of the synopsis information is insufficient, and updating the synopsis information in accordance with a second synopsis strategy better suited for the attributes of the data partition. In some embodiments, a first data partition of a partitioned data table may employ a first synopsis strategy and a second data partition of the partitioned data table may employ a second synopsis strategy.
A log-to-metrics transformation system includes a log-to-metrics application executing on a processor. The log-to-metrics transformation system receives a format associated with machine data, and further receives, via a first graphical control, a first set of metric identifiers corresponding to a first set of metrics associated with the machine data. The log-to-metrics transformation system generates a first set of mappings between the first set of metric identifiers and a first set of field values included in the machine data. The log-to-metrics transformation system stores the first set of mappings and an association with the format of the machine data. The log-to-metrics transformation system, based on the first set of mappings, causes the first set of field values to be extracted from the machine data. Further, a first metric included in the first set of metrics is determined based on at least a portion of the first set of field values.
In a streaming environment, efficient correlation between base events and relevant follow-on events is accomplished by temporarily storing events in an in-memory state for a limited time window. The in-memory state buffers the incoming stream of events to permit efficient attempted correlation. Successful correlation (e.g., by ID matching) between a follow-on event and a relevant base event, gives rise to specialized aggregation tables for matched (base, follow-on) event pairs. All events are ultimately removed from the in-memory state upon expiry of the time window. This results in correlated matched event pairs being stored in the aggregation tables for efficient querying. Events remaining uncorrelated upon expiration of the time window, are stored only in an (voluminous) log table for less-efficient (but rare) late querying and aggregation. Efficient correlation is achieved by assuming that successful event pair matching is most likely to occur within the in-memory time window, or not at all.
Provided is a computer-implemented method for implementing a blockchain-based entity identification network. The method includes establishing a blockchain network including a plurality of nodes, the plurality of nodes including a plurality of client nodes and a plurality of entity nodes, maintaining a distributed ledger on a plurality of administrative nodes of the blockchain network, receiving, from at least one node of the plurality of nodes, entity data and at least one entity identifier, the entity data corresponding to the at least one entity identifier, publishing the entity data to the distributed ledger, querying the distributed ledger based on at least one entity identifier received from a client node, and determining, based on the distributed ledger, entity data corresponding to the at least one entity identifier received from the client node.
Described are devices, systems and techniques for implementing atomic memory objects in a multi-writer, multi-reader setting. In an embodiment, the devices, systems and techniques use maximum distance separable (MDS) codes, and may be specifically designed to optimize a total storage cost for a given fault-tolerance requirement. Also described is an embodiment to handle the case where some of the servers can return erroneous coded elements during a read operation.
A knowledge model “overlay” for organizing and analyzing large, dynamic data volumes is implemented as a hypergraph that manifests as a result of a distributed theory-driven data source transformation process. This process maps exponentially growing data into an asymptotically limited information space. Within this space, real-world entities (e.g. people, computers, cities, Earth) and their complex interdependencies (e.g. social networks, connectivity, causal relationships) are represented as attributed hypergraph elements (i.e. both hypervertices and hyperedges). Attributes are represented as state vectors affixed to any hypergraph element. Transformation of source system data into this overlay structure is accomplished with minimal data movement and replication using a universal “pointer” like mechanism that is managed in a decentralized fashion by the respective transformation components. Access to the knowledge overlay is performed via a hypergraph communication protocol encapsulated within a common hypergraph API and accompanying hypergraph toolkit.
Metadata of each file of a group of files of a storage and chunk file metadata are analyzed to identify one or more file segment data chunks that are not referenced by the group of files of the storage. Fragmented chunk files to be combined together are identified based at least in part on the one or more identified file segment data chunks. The chunk file metadata is updated with an update that concurrently reflects the removal of at least a portion of the one or more file segment data chunks that are not referenced by the group of files and the combination of the identified fragmented chunk files.
An overlay optimizer can enhance the functionality of a write filter using an auxiliary overlay. An overlay optimizer can be loaded above a write filter. Based on the configuration of the write filter's overlay, the overlay optimizer can be configured to implement a volatile or persistent auxiliary overlay and then use the auxiliary overlay to selectively cache artifacts. To minimize the likelihood that the consumption of the write filter's overlay will exceed a critical threshold, the overly optimizer can be provided a list of monitored artifacts. The overlay optimizer can employ the list to selectively move monitored artifacts from the write filter's overlay to the auxiliary overlay when the overlay's consumption reaches a threshold. The overlay optimizer may also selectively allow I/O requests generated by particular applications while redirecting I/O requests generated by other applications.
Disclosed herein is technology for enhancing a distributed file system to create file objects in requested formats. An example method may involve: storing file objects that have multiple formats; determining a base format for a group of file objects from the file objects, wherein the base format is determined in view of multiple different formats of file objects containing similar content; storing a file object corresponding to the base format on one of the nodes and discarding the group of file objects; receiving a request from a client for a file object in a first format; identifying a file object in a base format corresponding to the requested file object; creating a file object in the first format in view of the file object in the base format; and sending the created file object in the first format to the client.
A single-wire bus (SuBUS) apparatus is provided. The SuBUS apparatus includes a master circuit coupled to a slave circuit(s) by a SuBUS. The master circuit can enable or suspend a SuBUS telegram communication over the SuBUS. When the master circuit suspends the SuBUS telegram communication over the SuBUS, the slave circuit(s) may draw a charging current via the SuBUS to perform a defined slave operation. Notably, the master circuit may not have knowledge about exact completion time of the defined slave operation and thus may be unable to resume the SuBUS telegram communication in a timely manner. The slave circuit(s) can be configured to generate a predefined interruption pulse sequence to cause the master circuit to resume the SuBUS telegram communication over the SuBUS. As such, it may be possible for the master circuit to quickly resume the SuBUS telegram communication, thus helping to improve throughput of the SuBUS.
Embodiments of the present disclosure may relate to a host controller that includes processing circuitry to identify an inter-integrated circuit (I2C) out-of-band interrupt (OBI) received on a general purpose input-output (GPIO) pin from an I2C device that is unable to generate an improved inter-integrated circuit (I3C) bus an I3C in-band interrupt (IBI). The processing circuitry may further generate, based on the I2C OBI, an I3C IBI that includes information related to the I2C OBI. The host controller may further include transmission circuitry to transmit the I3C IBI on an I3C bus. Other embodiments may be described and/or claimed.
Disclosed are ticketed flow control mechanisms in a processing system with one or more masters and one or more slaves. In an aspect, a targeted slave receives a request from a requesting master. If the targeted slave is unavailable to service the request, a ticket for the request is provided to the requesting master. As resources in the targeted slave become available, messages are broadcasted for the requesting master to update the ticket value. When the ticket value has been updated to a final value, the requesting master may re-transmit the request.
In exemplary aspects described herein, system memory is secured using protected memory regions. Portions of a system memory are assigned to endpoint devices, such as peripheral component interconnect express (PCIe) compliant devices. The portions of the system memory can include protected memory regions. The protected memory regions of the system memory assigned to each of the endpoint devices are configured to control access thereto using device identifiers and/or process identifiers, such as a process address space ID (PASID). When a transaction request is received by a device, the memory included in that request is used to determine whether it corresponds to a protected memory region. If so, the transaction request is executed if the identifiers in the request match the identifiers for which access is allowed to that protected memory region.
An approach for tracking data stored in caches uses a Bloom filter to reduce the number of addresses that need to be tracked by a coherence directory. When a requested address is determined to not be currently tracked by either the coherence directory or the Bloom filter, tracking of the address is initiated in the Bloom filter, but not in the coherence directory. Initiating tracking of the address in the Bloom filter includes setting hash bits in the Bloom filter so that subsequent requests for the address will “hit” the Bloom filter. When a requested address is determined to be tracked by the coherence directory, the Bloom filter is not used to track the address.
Disclosed herein are techniques for implementing hybrid memory modules with improved inter-memory data transmission paths. The claimed embodiments address the problem of implementing a hybrid memory module that exhibits improved transmission latencies and power consumption when transmitting data between DRAM devices and NVM devices (e.g., flash devices) during data backup and data restore operations. Some embodiments are directed to approaches for providing a direct data transmission path coupling a non-volatile memory controller and the DRAM devices to transmit data between the DRAM devices and the flash devices. In one or more embodiments, the DRAM devices can be port switched devices, with a first port coupled to the data buffers and a second port coupled to the direct data transmission path. Further, in one or more embodiments, such data buffers can be disabled when transmitting data between the DRAM devices and the flash devices.
Techniques for managing a storage disk involve monitoring a duration of a fault of a faulted storage disk, wherein the faulted storage disk includes a first disk slice configured to store metadata and a second disk slice configured to store user data. The techniques further involve, in response to the duration reaching a first threshold value, replacing the first disk slice with a first available disk slice in a first non-faulted storage disk. The techniques further involve, in response to the duration reaching a second threshold value greater than the first threshold value, replacing the second disk slice with a second available disk slice in a second non-faulted storage disk. Accordingly, fault monitoring windows with different lengths are applied to disk slices for different logical tiers in the faulted storage disk. In this way, the reliability of data of a metadata tier can be effectively improved.
A computer-implemented method according to one aspect includes determining whether an operating system of a node of a distributed computing environment is functioning correctly by sending a first management query to the node; in response to determining that the operating system of the node is not functioning correctly, determining whether the node has an active communication link by sending a second management query to ports associated with the node; and in response to determining that the node has an active communication link, resetting the active communication link for the node by sending a reset request to the ports associated with the node.
In one example, a method for writing data includes receiving a write request and performing a first type of logging process in connection with the write request, and creating a corresponding first logging record. Additionally, a second type of logging process is performed in connection with the write request, and a corresponding second logging record created, where the second type of logging process is different from the first type of logging process. Next, a determination is made, as between the two logging records, which of the logging records requires the least amount of non-volatile random access memory (NVRAM), and the logging record that requires the least amount of NVRAM is written to the NVRAM.
Disclosed herein are system, method, and computer program product embodiments for non-blocking backup for tertiary initialization in a log replay only node. An embodiment operates by performing a standard log replay on a secondary server and briefly suspending the standard log replay in response to tertiary initialization. Further, the secondary server may determine backup block information and perform a page-aligned backup process from the secondary server to a tertiary server. Additionally, the secondary server may determine log replay block information, and perform a modified log replay concurrently with the backup process based on the backup block information.
An information processing apparatus, includes a query unit that requests a query for a file to a device in a transmission destination or a transmission source based on a transmission or reception history of the file, in response to a restoration instruction to restore the file from a terminal device, the restoration instruction being made after a deletion instruction to delete the file is made at the terminal device; and a file restoration unit that restores the file by acquiring the file from the device storing the file in a case where the file is found to be present in the device in the transmission destination or the transmission source as a result of the query.
Files are identified for file-level restore by bitmaps of cloud snapshots of a storage volume. The bitmaps comprise a data structure for each snapshot containing record numbers of files of the storage volume and a file status bit for each such file that indicates the presence or absence of the file in the corresponding snapshot. File numbers of files of interest are obtained from record numbers of records in a volume files index of the storage volume. The bitmaps can be searched to locate the snapshots containing particular files of interest without the necessity of mounting and searching the separate snapshots on a virtual machine.
A method of collecting error logs according to the disclosure includes generating, during procedure of BIOS of a server, at least one BIOS error log based on detection of an error condition of one or more of hardware devices and a CPU, transmitting the at least one BIOS error log to a BMC, storing the at least one BIOS error log received from the CPU, packaging the at least one BIOS error log and at least one log that is generated by the BMC and that is related to BMC sensors to generate an error log file, and storing the error log file.
A method includes receiving a set of difference lists from a set of storage units of the DSN, where the set of storage units store a plurality of sets of encoded data slices, wherein a first difference list identifies first encoded data slices that have first indicators that are different than corresponding first indicators of the first encoded data slices included in a shared common list. The method continues by determining, for a set of encoded data slices of the plurality of sets of encoded data slices, whether a storage inconsistency exists based on one or more indicators associated with the encoded data slice included in the set of difference lists. When the storage inconsistency exists, the method continues by flagging for rebuilding encoded data slices of the set of encoded data slices associated with the storage inconsistency.
Cached data is obtained from a device. The cached data includes data saved on the device in response to electronic searches or electronic messaging performed by a user using the device. A determination is made, at least in part via the cached data, regarding an intended use context associated with the electronic searches or the electronic messaging. Using the intended use context, a confidence level is determined. In response to the determined confidence level meeting or exceeding a predefined threshold, a transaction involving the user is automatically executed, or an electronic communication is automatically sent on behalf of the user.
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing a stateless, deterministic scheduler and work discovery system with interruption recovery. For instance, according to one embodiment, there is disclosed a system to implement a stateless scheduler service, in which the system includes: a processor and a memory to execute instructions at the system; a compute resource discovery engine to identify one or more computing resources available to execute workload tasks; a workload discovery engine to identify a plurality of workload tasks to be scheduled for execution; a cache to store information on behalf of the compute resource discovery engine and the workload discovery engine; a scheduler to request information from the cache specifying the one or more computing resources available to execute workload tasks and the plurality of workload tasks to be scheduled for execution; and further in which the scheduler is to schedule at least a portion of the plurality of workload tasks for execution via the one or more computing resources based on the information requested. Other related embodiments are disclosed.
An information processing device provided with: an application division setting part for assigning execution responsibility for each of a plurality of execution files included in an application to one of a plurality of information processing devices, and for generating execution responsibility assignment information indicating each of the execution files and an information processing device to which the execution responsibility for the execution file is assigned; a communication part for transmitting the execution responsibility assignment information to a network; and an application division execution part for referring to the execution responsibility assignment information to execute an execution file whose execution responsibility is assigned to its own device out of the plurality of execution files.
A method for operating an apparatus that includes a program memory, a data memory and a status register that holds a status, wherein the status has fields including: a program memory address at which a most recent instruction is fetched from the program memory, a data memory access address at which data has most recently been accessed in the data memory by the apparatus and a repeat count indicating a number of times an operation specified in a current program instruction remains to be performed, the apparatus further including a condition register having condition fields corresponding to the status fields held in the status register, the method including: writing the condition register with a condition including the condition fields; and generating an interrupt request to a processing core in response to detecting that the status held in the status register satisfies the condition specified in the condition register.
A virtual server includes at least one processor to create a single composited layered image comprising an operating system layer and an application shortcut that includes a representation of an application while not including the application. The single composited layered image is provided as a virtual session to a client computing device. An application layer is mounted to the single composited layered image in response to a user of the client computing device interacting with the application shortcut, with the application layer including the application.
Embodiments relate to a system, program product, and method for use with an intelligent computer platform to automated and integrated cognitive processing. The embodiments support a mechanism for dynamically detecting a communication, and evaluating the communication with respect to actions and services. The actions are translated to APIs, which are leveraged to dynamically construct a User Interface (UI) as a representation of the evaluated services. The constructed UI is created as a service output to members of the detected communication.
A system provides content describing an object, for example, a physical object or a customizable service. The system presents an interactive user interface displaying a customized version of a physical object. The interactive user interface allows the user to further customize the physical object. The user interface displays a plurality of options for customizing various components of the physical object. The system customizes the physical object presented via the interactive user interface based on the user profile and user interactions of the user with other users via an online system. The system allows the user to further customize the physical object via the interactive user interface. The interactive user interface presents various options for customization of the physical object based on predicted user preferences.
A processing unit includes a plurality of processing elements and one or more caches. A first thread executes a program that includes one or more prefetch instructions to prefetch information into a first cache. Prefetching is selectively enabled when executing the first thread on a first processing element dependent upon whether one or more second threads previously executed the program on the first processing element. The first thread is then dispatched to execute the program on the first processing element. In some cases, a dispatcher receives the first thread four dispatching to the first processing element. The dispatcher modifies the prefetch instruction to disable prefetching into the first cache in response to the one or more second threads having previously executed the program on the first processing element.
The disclosure provides a projector and a projector firmware updating method therefor. The projector is connected to a cloud server through a network connection. The first processor of the projector executes a first firmware updating process corresponding to a request firmware, including: identifying the first request unique identification code of the projector and the request firmware serial number of the request firmware, and transmitting the first request unique identification code and the request firmware serial number to the cloud server; if the request firmware is not the latest version, receiving the first target firmware from the cloud server and updates the request firmware by using the first target firmware, and completing the first firmware updating process. The projector and projector firmware updating method of the disclosure can efficiently update the firmware to the latest or specific version according to the unique identification code of the projector.
One or more processors compile user preference and activity information associated with a mobile device operated by the user. The installation of a first application (app) on the mobile device operated by the user is confirmed. Responsive to detecting availability of an update to the first application, and confirmation accepting installation of the update, dynamically embedding a message within a new feature included in the update of the first application. A message is selected from one or more available messages to dynamically embed within the new feature included in the update of the first application, based on profile and activity information collected about the first user, and responsive to receiving a confirmation to receive the update of the first application, the message selected from the one or more available messages, is presented to the user, embedded within the new feature of the update to the first application.
A method may include generating, based on a first programming code implementing a routine in a first programming language, a second programming code implementing the routine in a second programming language associated with an offline runtime environment and a third programming code implementing the routine in a third programming language associated with an online runtime environment. The routine may include a first operation and a second operation associated with a cloud-based software application. The first operation may be capable of being performed while the cloud-based software application is operating in an offline mode but the second operation may be incapable of being performed while the cloud-based software application is operating in the offline mode. The second second programming code being generated to include the first operation and exclude the second operation. The second programming code and the third programming code may be deployed to a client.
This invention provides a system and a method for online, web-based point of sale (POS) building and configuration, which can assist non-expert business operators in building, editing and testing a point of sale system to manage their businesses. The business operations range from a single branch to a large chain of stores or branches. The key advantages of the Web-based POS builder are that it is completely built on the foundation of the Web. The POS builder is accessible anywhere in the world. It can be used by a person of any skill level. The POS builder builds, edits, and tests new POS terminals in real time.
A display system is disclosed. The display system includes an electronic device including first and second interfaces and a display apparatus. The electronic device is configured to: rectify external alternating current (AC) power by direct current (DC) power based on a first ground, convert the DC power into power based on a second ground, provide the converted power to the display apparatus through a first interface connected to the second ground, and provide a signal received from an external device through a second interface connected to an earth ground to the display apparatus through the first interface, wherein a ground of the display apparatus is the same as the second ground and the second ground is different from the earth ground.
An editing device includes a controller configured to edit a layout of characters to be printed on a printing medium including a light-transmitting area and a non-light-transmitting area. The controller execute displaying a medium image and an input area image overlapped on the medium image, the input area image including a light-transmitting input portion overlapping a first portion of the medium image and corresponding to the light-transmitting area, determining whether arrangement of the characters in the light-transmitting input portion is enabled or disabled, and restricting the arrangement of the characters in the light-transmitting input portion. In the restricting, the arrangement in the light-transmitting input portion is allowed when it is determined that the arrangement in the light-transmitting input portion is enabled, and the arrangement in the light-transmitting input portion is prohibited when it is determined that the arrangement in the light-transmitting input portion is disabled.
An information processing apparatus includes: a CPU board configured to communicate with an external apparatus via a network and including a CPU; and a printer being an internal equipment configured to communicate with the CPU board by a communication method different from a communication method used between the CPU board and the network and having a USB device descriptor, wherein the CPU obtains the USB device descriptor from the printer and generates identification information corresponding to the printer based on the obtained USB device descriptor, and when the CPU receives an inquiry request to the printer from the external apparatus, the CPU transmits first response information indicating the generated identification information to the external apparatus.
Techniques manage metadata. Such techniques involve: in response to receiving a request for accessing metadata in a first page, determining, from a plurality of storage units including pages for storing metadata, a storage unit where the first page is located, the plurality of storage units including a first storage unit and a second storage unit, an access speed of the second storage unit exceeding an access speed of the first storage unit; accessing, from the determined storage unit, the first page for metadata; in response to the first page being accessed from the first storage unit, determining whether hotness of the first page exceeds a threshold level; and in response to the hotness of the first page exceeding the threshold level, transferring the first page from the first storage unit to the second storage unit. Accordingly, such techniques can improve the efficiency for accessing the metadata.
Managing workloads at the processor core level by identifying host-to-core relationships and corresponding virtual machines of a host cluster. NVMe-oF protocols provide for communications between host cluster and target storage over a network. I/O queues and corresponding physical hosts are evaluated for intra-cluster migration of VMs to relieve processor core overload and underutilization. A VM migration plan is implemented by host cluster hypervisors.
The present disclosure includes apparatuses and methods related to a memory protocol. An example apparatus can execute a read command that includes a first chunk of data and a second chunk of data by assigning a first read identification (RID) number to the first chunk of data and a second RID number to the second chunk of data, sending the first chunk of data and the first RID number to a host, and sending the second chunk of data and the second RID number to the host. The apparatus can be a non-volatile dual in-line memory module (NVDIMM) device.
In a large-scale storage system configured by combining a plurality of storage modules, it is possible to improve a read performance for deduplicated data. A large-scale storage system includes a first storage module and a second storage module each connected to a computing machine, the first storage module and the second storage module being connected to each other by a network, the first controller determines whether second data that is same as first data requested to be written is already stored in the second storage module when the first storage module receives a write request from the computing machine, and the first controller determines whether to store the first data in the first storage medium or to refer to the second data in the second storage module in a case in which the second data is already stored in the second storage module.
The present disclosure generally relates to methods of operating storage devices. The storage device comprises a controller and a storage unit divided into a plurality of zones. Each zone comprises a plurality of dies, where each die comprises a plurality of erase blocks. Each erase block comprises a plurality of wordlines. One or more wordlines are grouped together in bins. Each bin is associated with a susceptibility weight, a read count weight, a timer count weight, and a running total weight. A weight counter table is stored in the controller, and tracks the various weights associated with each bin. When a sum of the weights of each bin reaches or exceeds a predetermined value, the controller closes the erase block to avoid an unacceptable quantity of bit error accumulation. The bit error susceptibility of an erase block decreases after the erase block is at capacity or is closed.
A method for hot plug memory device data protection is provided. Removal of a hot plug memory device from a connection interface is determined by a status of an interface plug-in detection signal, wherein the hot plug memory device is electrically coupled to a host through the connection interface. A command for moving data is transmitted to the hot plug memory device by the host. Temporary data is moved from a cache module of the hot plug memory device to a flash memory module of the hot plug memory device by the hot plug memory device in response to the command for moving data.
Flexible deprovisioning of distributed storage is disclosed. For example, an orchestrator executes on a processor to measure a current storage demand factor based on a current count of service guests and a storage capacity of a plurality of storage nodes. A projected storage demand factor is calculated by (i) adjusting the current count of service guests with a timing factor resulting in a projected count, and (ii) combining the projected count with a storage class associated with the service guests. The orchestrator determines that the projected storage demand factor is lower than the current storage demand factor, and in response requests termination of a first storage node of the plurality of storage nodes based on the first storage node lacking an active communication session with the service guests. Cancel termination of the first storage node based on an association between the first storage node and a second storage node.
An infotainment computer device for use in controlling an infotainment system in a vehicle is provided. The infotainment computer device includes at least one processor communicatively coupled to at least one memory device and a display device communicatively coupled to the at least one processor. The infotainment computer device is programmed to display an active page and a toolbar. The active page includes a plurality of buttons and the toolbar includes a shortcut area including at least one shortcut button. The infotainment computer device is also programmed to receive a first input requesting access to a customization mode, retrieve a current speed of the vehicle, activate the customization mode if the current speed of the vehicle is zero, receive a second input indicating a desired change to at least one of the active page and the toolbar, and change the display based on the desired change.
A computer-implemented method for managing associations between production elements and production approaches includes displaying, within a breakdown panel, a representation of at least one scene obtained from a script, the representation including a plurality of production elements; displaying, within an approaches panel, a representation of at least some of the plurality of production elements displayed within the breakdown panel, and associated respective user selection indicators; and displaying, within the approaches panel, a representation of at least one production approach. The method further includes receiving a user selection of at least one production element displayed within the approaches panel; receiving a user selection of the at least one production approach. The selected at least one production element is associated with the selected at least one production approach.
This application relates to performing organizational tasks using a variety of physical operations in a message application. The physical operations can include swiping actions performed by the user of the message application. By performing certain types of swipes on a user interface of the message application, the user can more readily organize messages stored by the message application. The types of swipes can include full swipes, which can execute one or more functions on a message, and partial swipes, which can open up a menu that includes multiple buttons for executing various operations on the message being swiped. Additionally, the direction of the swipe can also determine the functions and operations to be performed on the message being swiped.
A method for display in a mobile terminal is disclosed. The mobile terminal includes a display screen, the display screen is configured for displaying an application icon, defines an opening, and includes a display area, and the opening is located in the display area. The method includes displaying the application icon at a location of the opening in the display area, wherein a wall of the display screen in the opening has a projection located in the application icon.
A user interface display method, apparatus, and system are provided. The method can include displaying, in a main display region, a first user interface of a first application program; displaying, in a secondary display region, a program icon of a second application program; and when a first operation signal on the program icon is received, displaying a floating window on the first user interface, the floating window being used for displaying a second user interface of the second application program.
Methods and devices for selectively presenting a virtual keyboard are provided. More particularly, a change in the operating mode of a multiple screen device from a multiple screen operating mode to a single screen operating mode, or from a single screen operating mode to a multiple screen operating mode, can be determined. Moreover, a change in the operating mode can effect a change in a presentation of a virtual keyboard. More particularly, a presentation of a virtual keyboard can be retained, where the number of screens of the device in view of the user is changed, provided an application with a keyboard focus remains in view of the user after the change in operating mode.
A touch substrate for a touch screen includes a touch layer. The touch layer includes a first electrode and a second electrode. The first electrode includes a first protrusion and a first dummy electrode. The second electrode includes a second protrusion and a second dummy electrode. Adjacent two first protrusions or adjacent two second protrusions are spaced apart by a size of at least one sub-pixel.
A touch panel control circuit and a touch panel. The touch panel control circuit includes a touch transfer module, a main chip and a signal source interface. An input interface (A) of the touch transfer module is configured to be connected to an output interface of a touch input device to receive a first touch coordinate signal form the output interface of the touch input device. A first transmission interface of the touch transfer module is connected to a touch information transmission interface (E) of the main chip. A second transmission interface (B2) of the touch transfer module is connected to the signal source interface. The touch transfer module is configured to receive, via the first transmission interface (B1), a signal distribution instruction from the touch information transmission interface (E) of the main chip, and to send, based on the signal distribution instruction, a second touch coordinate signal corresponding to the first touch coordinate signal, from at least one of the first transmission interface (B1) and the second transmission interface (B2).
A knob device is applicable to a touch panel. The knob device includes a knob cover; and a rotation sensing element. The rotation sensing element includes a base and a plurality of sensing pads connected to the knob cover. The rotation sensing element is arranged between the touch panel and the knob cover. The base is connected to the knob cover. When a user touches the knob device, the touch panel generates a rotation sensing signal in response to a location of the plurality of sensing pads. An orthographic projection of the knob cover on the touch panel is divided into a plurality of parts, the plurality of parts are distributed radially from a center of the orthographic projection of the knob cover, each sensing pad is located in a part and connected to another sensing pad located in another part adjacent to the part.
Systems and methods for preventing sight deterioration caused by near work with devices with electronic screens arc provided. A system can include, in addition to an electronic screen, a distance detector directed towards a user. A system can also include processing circuitry coupled to a distance detector. Processing circuitry determines the distance between a user's head and a screen, relative to a calibration distance, and in case it is shorter than the calibration distance (putting the user at risk of future sight deterioration and progression of myopia), it can send a control signal to circuitry operative to notify the user. If processing circuitry determines that said distance is equal or longer than the calibration distance, the circuitry operative can slop the notification. A notification can be modulated by stud relative distance, making a user instinctively move a device away.
A finger-gesture detection device adapted for a control handle includes a grip portion. The finger-gesture detection device includes a first wearing portion, a plurality of second wearing portions, and a plurality of first sensors. The first wearing portion is adapted to detachably surround the grip portion of the control handle. When the grip portion connects the first wearing portion, the grip portion is positioned on one side of the first wearing portion. The second wearing portions are each independently connected to the first wearing portion. When a force is applied to one of the second wearing portions, the corresponding second wearing portion moves toward the grip portion. The first sensors are respectively disposed on the second wearing portions for detecting positions or movements of the second wearing portions relative to the grip portion. A control assembly and a correction method are also proposed.
A human negligence warning method based on augmented reality includes steps of: using a smart wearable device to photograph multiple physical operation elements of an electronic apparatus to obtain interface depth data; performing spatial position calculations according to the interface depth data, to set corresponding wrapping geometry elements between the physical operation elements and the smart wearable device to wrap the physical operation elements, respectively; photograph a hand of a wearer wearing the smart wearable device to obtain a gesture and a spatial position of the hand; and judging whether the hand touches one of the wrapping geometry elements according to the gesture and the spatial position, and further judging whether a corresponding procedure to be initiated by the physical operation element is correct if yes, If the corresponding procedure is not correct, then an warning operation is performed to avoid human negligence.
Various embodiments of the present invention provide an apparatus and a method for adaptively configuring a user interface in an electronic device. According to various embodiments, an electronic device may comprise: a memory for storing instructions; a communication interface; and at least one processor connected to the communication interface and the memory, wherein the at least one processor is configured to: receive at least one signal which is transmitted by an external electronic device and is used to determine a user's characteristic related to the electronic device and the external electronic device, in response to detection of the user's input in the external electronic device; determine a field of view (FOV) for the user on the basis of the at least one signal; and execute the stored instructions in order to display a content for virtual reality (VR) on the basis of the determined FOV.
A power failure prevention system and method with a power management mechanism are provided. A switch circuit is connected to a first terminal of an inductor. An energy storage circuit is connected to the switch circuit. A pre-charged circuit is connected to an input power source and a second terminal of the inductor. A pre-charging control circuit is connected to the pre-charged circuit and configured to obtain a voltage of a node between the pre-charged circuit and the second terminal of the inductor, a voltage of the switch circuit or a voltage of the energy storage circuit as a pre-charged voltage. The input power source pre-charges the pre-charged circuit. When the pre-charging control circuit determines that the pre-charged voltage is higher than or equal to a reference voltage, the pre-charging control circuit controls the pre-charged circuit, allowing the input power source to charge the energy storage circuit.
A management device includes: storage unit which stores a known intake air temperature of a heating element, and a heat transfer characteristic of a cooling device; heat extraction amount calculation unit which calculates a heat extraction amount of the cooling device, by use of the refrigerant information input by the input means, and a cooling capacity of the refrigerant; and air volume calculation unit which calculates an air volume of air supplied to the cooling device, by applying the heat extraction amount to air volume dependence of the heat extraction amount, being derived by use of air volume dependence of a difference temperature between a temperature of the refrigerant and a temperature of exhaust air from the heating element, and the heat transfer characteristic, the air volume dependence of the difference temperature being derived by use of the intake air temperature, the power consumption, and the refrigerant information.
A multiple mode display apparatus and methods of use. An apparatus includes a display surface with a first and a second display area. A housing pivotally attached with the display proximate a first edge of the housing is displaceable from a coplanar position with the surface of the display device to a position wherein an angle of at least 90 degrees between the surface of the display and the housing is formed along said first edge. In the first position, the first display area is visible and activated to receive user input or to display output. The second display area is covered by the housing and placed in a mode of reduced power consumption. In the second position, the second display area is visible and activated to display output.
A display apparatus includes a first display and a second display. The first display includes a first display body having a first side, a positioning recess located at the first side, and an engagement recess located in the positioning recess. The second display is detachably mounted at one side of the first display body, includes a second display body, a positioning protrusion, and a pendulum hook, and has a second side. The positioning protrusion is connected to the second side and has a cavity configured to accommodate the pendulum hook pivotally connected to the positioning protrusion and including an engagement protrusion. The positioning protrusion is inserted into the positioning recess. The second side contacts the first side. The engagement protrusion is configured to move out of the cavity and be engaged with the engagement recess or move away from the engagement recess and move back to the cavity.
Provided is an electronic apparatus including a flexible display comprising at least a portion disposed at a first surface, a body frame disposed at a second surface opposed to the first surface, a display frame moving to decrease a distance to a first region of the body frame in response to a reduction in size of the flexible display exposed on the first surface, a first sensor disposed at at least a portion of the first region of the body frame and configured to sense an approach of an object, and a controller configured to control the size of the flexible display exposed on the first surface based on measurement information of the first sensor. The first region includes a surface corresponding to a position of the display frame among at least one surface of the body frame.
An electronic device includes a host, a main display, an auxiliary display, and a hinge mechanism. The auxiliary display is located between the host and the main display and includes a sliding part and a lifting part. The sliding part is slidably connected to the host. The hinge mechanism includes a first bracket, a second bracket pivotally connected to the first bracket, and a third bracket pivotally connected to the second bracket. The first bracket is secured to the host, and the second bracket is secured to the main display. The third bracket is secured to the lifting part of the auxiliary display.
A clock delay circuit includes an output to provide an output clock signal which is a delayed version of an input clock signal. The clock delay circuit includes a latch whose output provides the output clock signal. A delay control circuit provides a third clock signal. The latch includes a first input to receive the input clock signal and a second input to receive the third clock signal. The amount of delay provided by the latch is dependent upon the duty cycle of the third clock signal.
An electronic device may include a main circuit including multiple sub-circuits powered by a direct-current (DC) power supply circuit. The main circuit has a main circuit current demand being a time-varying demand for a DC voltage-regulated supply current being a function of a number of the sub-circuits being active. The DC power supply circuit may include multiple DC voltage regulators to provide the main circuit with the supply current and a command decoding and power management circuit to control enablement of the voltage regulators. The command decoding and power management circuit may be configured to detect an instant value of the main circuit current demand and to selectively enable one or more of the voltage regulators based on the detected instant value.
A voltage converting device includes: a DC/DC converter configured to step down a voltage of a power supply and output the stepped-down voltage to a low-voltage power supply having a voltage lower than a voltage of the power supply; a control device configured to control the DC/DC converter; and a determining unit configured to determine whether a voltage of the power supply input to the DC/DC converter is within a predetermined voltage range, wherein the control device switches, on the basis of a determination result of the determining unit, between a first control in which the DC/DC converter is caused to perform a step-down operation and electric power is supplied to a load connected to the low-voltage power supply and a second control in which a step-down operation of the DC/DC converter stops and electric power is supplied from the low-voltage power supply to the load.
A zipper manifold for use in wellbore operations includes a trunk line having a first longitudinal axis, an inlet on a first axial end, an outlet on a second axial end, and a first gate valve positioned between the inlet and the outlet, a block tee fluidly connecting the trunk line to a secondary line, the secondary line having a second longitudinal axis parallel to the first longitudinal axis, a second gate valve positioned along the secondary line, and an outlet head at an end of the secondary line.
A fluid control device includes a main body block including a first flow passage, and a second flow passage, a first and second fluid control units installed on an installation surface of the main body block. The first and second flow passages include a first portion extending along a first direction and a second flow passage portion orthogonal to the first direction. The second portion is formed of a hole extending from a side surface of the main body block and a sealing member.
A mobile robot includes: a sensor unit configured to sense an object present in a traveling direction; a camera configured to, in response to sensing of the obstacle by the sensor unit, photograph the obstacle; a data unit configured to store information regarding a plurality of obstacles; a controller configured to control an operation by recognizing the obstacle based on the information stored in the data unit; a travel unit configured to perform a designated operation according to a control command from the controller; and a speaker configured to output a designated sound according to a control command from the controller, wherein the controller comprises: an obstacle recognizer configured to analyze an image of the obstacle photographed by the camera, compare the image of the obstacle with data stored in the data unit, recognize the obstacle, and determine a type of the obstacle; and a motion controller configured to, in response to a type of the obstacle recognized by the obstacle recognizer, perform a designated operation according to setting stored in the data, and accordingly, it is possible to determine a type of an obstacle by recognizing the obstacle, effectively cope with obstacles by performing different operations according to types of the obstacles, improve cleaning efficiency, enable the mobile robot to recognize an obstacle and determine a type thereof within a short period of time, allow a user to modify an operation responsive to the type of the obstacle, and perform an operation suitable for characteristics of the obstacle, an area to be cleaned, or a surrounding environment.
A patient support device has a bed, a travel mechanism designed to move the patient support device, a control computer and a sensor, which detects at least one environmental parameter of the patient support device. The control computer ascertains a control parameter for controlling the travel mechanism depending on the at least one detected environmental parameter.
Signals usable to determine a path of a vehicle towards a particular stopping point in a vicinity of a destination are detected from an individual authorized to provide guidance with respect to movements of the vehicle. Based at least in part on the signals and a data set pertaining to the external environment of the vehicle, one or more vehicular movements to be implemented to proceed along the path are identified. A directive is transmitted to a motion control subsystem of the vehicle to initiate one of the vehicular movements.
A control device includes: a physical first communication port that connects to a first network—to which an information processing device belongs; a physical second communication port that connects to a second network to which the drive device belongs; and a storage device that stores a user program created for controlling the drive device. The user program includes a filtering function for switching a filtering condition in accordance with a setting for the filtering condition that is input during execution of the user program. The filtering condition is used for determining whether or not to transmit communication data received from one device to another device. The one device is one of the drive device and the information processing device. The other device is the other of the drive device and the information processing device.
A control layer automation device comprises a processor, one or more control layer applications, a database, a wireless interface, a device memory. Each control layer application is configured to perform a discrete set of automation functions. The database comprises a plurality of operator device identifiers and the wireless interface allows the one or more control layer applications to communicate with a plurality of operator devices via the plurality of operator device identifiers. The device memory comprises the one or more control layer applications. The control layer application manager is configured to manage execution of the one or more control layer applications on the processor.
An electronic timepiece includes: a 6 o'clock information display unit that displays one display mode among a plurality of display modes including a barometric display mode in which a barometric pressure is displayed, using a first display hand; a 10 o'clock information display unit that displays a change in the barometric pressure using a second hand in a case in which the display mode displayed by the 6 o'clock information display unit is the barometric display mode; a 2 o'clock information display unit that displays the barometric pressure using measurement display hands in the case in which the display mode displayed by the 6 o'clock information display unit is the barometric display mode; and a time display unit that displays a time using an hour hand and a minute hand irrespective of the display mode.
The invention relates to a device, such as a digital holographic microscope, for detecting and processing a first full image of a measurement object, measured with a first offset, wherein an arrangement is provided for generating at least one further full image with at least one offset that differs from the first offset.
An image forming apparatus, having first, second, third, and fourth photosensitive drums, first, second, third, and fourth developing rollers, a development-driving gear, a development motor, a first development gear train having a first gear, a second development-gear train having a second gear, a process-driving gear, a process motor, a first process-gear train having a third gear, and a second process gear-train having a fourth gear, is provided. The first development-gear train transmits a driving force from the development motor to the first and second developing rollers. The second development-gear train transmits the driving force from the development motor to the third and fourth developing rollers. The first process-gear train transmits a driving force from the process motor to the first and second photosensitive drums. The second process-gear train transmits the driving force from the process motor to the third and fourth photosensitive drums.
An image forming device and an operating method are provided. The operating method included outputting a notification indicating that a cartridge in an image forming device needs to be refilled with toner, in accordance with the notification, performing a preparatory operation for entering a refill mode when it is determined that an operation mode of the image forming device is to be switched to the refill mode for refilling the cartridge with toner, when the preparatory operation is completed, controlling the image forming device such that only an operation related to the toner refilling is performed according to the refill mode, and when the refill mode is terminated, switching the operation mode of the image forming device to a job mode for performing a predetermined job in the image forming device.
An imaging system includes a heating device, a conveyor belt including a surface layer located on an outer surface of the heating device to receive a printing medium, and a cooling device to cool the surface layer after the conveyor belt passes along the outer surface of the heating device. The surface layer includes a temperature sensitive material to vary an adhesive force of the conveyor belt with respect to the printing medium in response to a change in temperature of the surface layer. The adhesive force increases in response to an increase in temperature of the surface layer.
A toner cartridge is mountable on a developing device including a developing roller. The developing device develops an electrostatic latent image formed on a photo conductor. The toner cartridge includes a housing in which toner is stored, and an auger rotatable and configured to supply the toner in the housing to the developing device. In a case where the developing device is installed on an image forming apparatus in a state in which the toner cartridge is mounted on the developing device, rotation of the auger is started before formation of the electrostatic latent image corresponding to a sheet is started, based on a signal indicating that the image forming apparatus detects the sheet.
An image forming apparatus includes a photoconductor, a charger, a charge remover, and control circuitry. The charger is configured to charge the photoconductor. The charge remover is configured to remove charge from a surface of the photoconductor by light and electric discharge. The control circuitry is configured to: estimate a surface potential that the photoconductor has after the photoconductor is charged by the charger, based on a characteristic value of the photoconductor and a value of a current flowing through the charger after the charge remover removes charge from the photoconductor; and control a charging bias applied to the charger, based on the surface potential estimated.
In a method of diagnosing an RF generator of a laser produced plasma extreme ultra violet (LPP EUV) radiation source apparatus, a testing system is connected to the RF generator of the LPP EUV radiation source apparatus. An output power is measured by the testing system with changing an input power of the RF generator. Using a computer system, the measured output power is analyzed. Based on the analyzed measured output power, whether the RF generator is operating properly is determined.
A self-priming resist may be formed from a first random copolymer forming a resist and a polymer brush having the general formula poly(A-r-B)-C-D, wherein A is a first polymer unit, B is a second polymer unit, wherein A and B are the same or different polymer units, C is a cleavable unit, D is a grafting group and r indicates that poly(A-r-B) is a second random copolymer formed from the first and second polymer units. The first random copolymer may be the same or different from the second random polymer. The self-priming resist can create a one-step method for forming an adhesion layer and resist by using the resist/brush blend.
The present disclosure relates to a hologram recording medium having a main relaxation temperature (Tr) of 0° C. or less, wherein the Tr is a point where a rate of change of phase angle with respect to temperature is the largest in a range of −80° C. to 30° C. in dynamic mechanical analysis. The present disclosure also relates to an optical element including the same and a holographic recording method using the hologram recording medium.