US10743450B2

Component supply unit includes supply section for supplying components to mounting device, is electrically connected to mounting device, receives from an operator an operation input to supply section and an operation input to mounting device, controls supply section in accordance with the operation input to supply section, and outputs a signal to mounting device based on the operation input to mounting device. Component supply unit receives the operation input to mounting device in addition to the operation input to component supply unit.
US10743449B2

Set-up families with associated set-ups are provided for populating printed circuit boards by means of a pick-and-place line. Printed circuit board types are associated with each set-up family and component types are associated with each set-up, such that a printed circuit board of a printed circuit board type in a set-up family is populated on the pick-and-place line by means of components of the component types associated with the set-up. Stocks of components of the component types of a set-up are provided by means of set-up tables on the pick-and-place line. A method for populating the printed circuit boards includes the steps of detecting printed circuit board types of which printed circuit boards are intended to be populated with components of associated component types, of associating detected printed circuit board types with a predetermined number of set-up families, and of optimizing the association operation with respect to a predetermined criterion.
US10743439B1

Provided is a thin film vapor chamber for portable electronic devices. The vapor chamber includes: a lower plate formed in a plate shape and having protrusions formed on an upper surface thereof, first protrusions formed to protrude and formed on one side of the upper surface thereof to be spaced apart from each other, and a first joint body formed to protrude upward and formed inward from an outer edge thereof; and an upper plate formed in a shape corresponding to the lower plate and including a second joint body formed to protrude and joined to an upper side of the lower plate, second protrusions formed to correspond to the first protrusions, an inlet formed on an inner side of each of the second protrusions and into which a working fluid is injected, and a step formed to protrude downward to close the inlet by contact with the lower plate.
US10743436B2

A lightweight server (LWS) chassis includes a chassis base having structural configuration that enables placement of the LWS chassis in a nested, stacked configuration with a second LWS chassis placed atop the LWS chassis and a third LWS chassis placed below the LWS chassis. Multiple LWS chasses can be stacked in a vertical space whose height is less than a sum of individual heights of each of the multiple LWS chasses.
US10743430B2

A foldable display device according to an exemplary embodiment includes: a display panel; a pair of rear surface supporters supporting a rear surface of the display panel; a fastener fastening the pair of rear surface supporters; and a pair of pivots respectively connecting the fastener and the pair of rear surface supporters, wherein a position of the pivot is determined by an equation below. Dh=Dm−(2×Oh)  [Equation] Here, Dm represents an interval when the pair of rear surface supporters are folded in parallel, Dh represents a horizontal distance between centers of the pair of pivots, Oh represents an offset of the pivot, and the offset of the pivot is a value obtained by subtracting an upper surface height of the rear surface supporter when the rear surface.
US10743428B2

A slidable display device in which a display panel includes a first area and a second area extending from the first area. A plurality of rollers are inside the housing, which includes an opening. The first area is exposed to the outside through the opening when the second area is stored in the housing. The second area is bent toward a lower portion the first area so as to be located between the plurality of rollers and a lower surface of the housing. The display panel is configured to slide by rotating the plurality of rollers such that the second area is exposed to the outside through the opening or introduced to the inside, and thereby, an area of the display area may be adjusted.
US10743415B2

A camera module has a reduced light leakage. The camera module includes a printed circuit board and a mounting bracket mounted on the printed circuit board. The printed circuit board includes a first surface and at least one side surface perpendicularly connected to the first surface. Gaps are formed on the printed circuit board. The gaps extend from the first surface to a thickness direction of the first surface. Bumps are formed on the mounting bracket and correspondingly placed according to the gaps. Each of the bumps is received and fixed in a corresponding one of the gaps.
US10743414B2

A resin multilayer substrate includes a first resin layer including a thermoplastic resin as a main material, a second resin layer including the thermoplastic resin as a main material and superposed on the first resin layer, a first interlayer-connection conductor passing through the first resin layer in a thickness direction, and a first conductor pattern at an area including a region in which the first interlayer-connection conductor is exposed at the surface of the first resin layer between the first resin layer and the second resin layer. The first conductor pattern includes a portion in or at which a portion of the first interlayer-connection conductor is disposed. The first conductor pattern includes a first portion covering the region exposed at the surface of the first resin layer; and a second portion disposed surrounding the first portion. The first portion and the second portion have different thicknesses from each other.
US10743413B2

The present disclosure provides a method for manufacturing a flexible substrate. The method includes forming at least two flexible substrate layers in a stacking form on a surface of a glass baseplate, wherein a first flexible substrate layer of the flexible substrate layers relatively close to the glass baseplate has a refractive index less than a refractive index of a second flexible substrate layer of the flexible substrate layers relatively far from the glass baseplate; forming a water and oxygen blocking layer on a surface of the second flexible substrate layers, wherein the water and oxygen blocking layer has a refractive index greater than the refractive index of the second flexible substrate layers disposed below the water and oxygen blocking layer.
US10743411B1

A ceramic substrate component suitable for high-power chips includes a ceramic substrate body and at least one raised metal pad. The ceramic substrate body has an upper surface and a lower surface opposite to the upper surface. The raised metal pad includes a base portion and a top layer. The base portion, which is attached to the upper surface of the ceramic substrate body, has a thickness between 10 and 300 micrometers, and a thermal expansion coefficient greater than the ceramic substrate body. The top layer is formed on the base portion and adapted to install a high-power chip thereon. The top layer extends an area less than the base portion but greater than the high-power chip, and has a thermal expansion coefficient greater than the ceramic substrate body. As such, damages due to thermal stress occurring between the base portion and the ceramic substrate body can be mitigated.
US10743410B2

According to one embodiment, a display device includes a first substrate including a first base member and a first terminal, a second substrate including a second base member including a first surface opposing the first terminal and a second surface on an opposite side to the first surface, a second terminal located on a side of the second surface, and a first hole, an organic insulating layer located between the first terminal and the second base member and including a second hole connecting to the first hole and a connecting material provided on the first hole to electrically connect the first terminal and the second terminal to each other, at least one of the first terminal and the second terminal including an oxide electrode in contact with the connecting material.
US10743407B2

A self-healing conductive structure includes a conductive layer and a self-healing layer on at least one surface of the conductive layer. The self-healing layer includes a substrate and carbon nanotubes in the insulating matrix, the layer having low viscosity at higher temperatures. When there is a crack in the conductive layer, the self-healing layer flows into the crack, and the carbon nanotubes then in the crack are rearranged under an electric field to repair conductivity. Service life of the conductive structure is improved and signals generated by the conductive structure retain integrity. A method for making the self-healing conductive structure is also provided.
US10743405B2

The present disclosure provides a printed circuit board including a plurality of conductive layers separated by insulating medium and a plurality of connection structures. Each connection structure penetrates each of the conductive layers. The plurality of conductive layers comprises a first conductive layer in which first signal lines are located and a second conductive layer in which second signal lines are located, and the first and second signal lines are connected via the connection structures. Anti-pads surrounding the connection structures are provided on others of the plurality of conductive layers except the first and the second conductive layers. For a same connection structure, the anti-pads surrounding the connection structure include adjacent anti-pads and nonadjacent anti-pads. Size of the adjacent anti-pads in any direction parallel to the conductive layers is smaller than that of the nonadjacent anti-pads. The present disclosure also provides a display apparatus.
US10743400B2

System includes a particle accelerator configured to direct a particle beam of charged particles along a designated path. The system also includes an extraction device positioned downstream from the particle accelerator. The extraction device includes a stripper foil and a foil holder that holds the stripper foil. The foil holder is configured to position the stripper foil across the designated path of the particle beam such that the particle beam is incident thereon. The stripper foil is configured to remove electrons from the charged particles, wherein the stripper foil includes a backing layer and a conductive layer stacked with respect to one another. The backing layer includes synthetic diamond.
US10743391B2

The invention discloses a lighting control method, by setting the first target illumination value of the illumination sensor so that the illumination of the target area is the set illumination value. Later, at each time node, the system calculates the current second target illumination value of the illumination sensor, and then adjusts the brightness of the lamp so that the detected value of the illumination sensor reaches the second target illumination value. When the detected value of the illumination sensor reaches the second target illumination value, the illumination of the target area can be consistent with the set illumination value of the target area at this time. The present invention can make the target area to substantially maintain constant illumination during the illumination period.
US10743390B2

The present invention is related to verifying an installed lighting system (300), in particular an Ethernet-based lighting system (300), without it being necessary to employ a designated lighting controller and without it being necessary to completely commission the installed lighting system (300). According to an aspect of the invention, this is achieved by providing a network switch (200) that comprises a plurality of ports for coupling luminaires (312A, 312B, 312C, 312D) and sensors and/or actuators (314A, 314B) of the lighting system (300) to the network switch (200); and by setting the network switch (200) such that a signal received at a first port (e.g. port 4) of the plurality of ports is only forwarded to pre-selected ports (e.g. ports 2,3,5,6 and 7) of the plurality of ports.
US10743386B2

A display device includes a pixel including a plurality of sub-pixels. Each of the plurality of sub-pixels includes: a light-emission region; and a non-light-emission region other than the light-emission region. The light-emission region includes one or more effective light-emitting parts in which a first electrode, a light emitting layer, and a second electrode are stacked in order, and a light guide provided on side of the one or more effective light-emitting parts on which light is extracted.
US10743381B2

Various embodiments include a dimmer for controlling the power consumption of a connectable load. The dimmer includes: two parallel-connected, electrically isolated dimmer channels with control devices; a main control device for the channels; a communication link from the main control device to the channel control devices; and a communication link transmitting information from a first dimmer channel to a second dimmer channel. At least one of the two dimmer channels comprises a measurement device generating information about behavior of the electricity at a location in the measurement dimmer channel. The communication link transmits that information. Starting from the measurement dimmer channel, a channel communication link leads in each case from one dimmer channel to the next dimmer channel. The dimmer determines whether respective times of respective zero crossings of a sinusoidal AC voltage applied to the respective dimmer channel are substantially synchronous.
US10743371B2

Embodiments of an Evolved Node-B (eNB), a MulteFire narrowband internet-of-things User Equipment (MF NB-IoT UE), and methods of communication are described herein. The eNB may transmit an unlicensed narrowband primary synchronization signal (U-NPSS) in a plurality of subframes. The eNB may, for the U-NPSS, for each subframe of the plurality of subframes, and for each of the orthogonal frequency division multiplexing (OFDM) symbols of the subframe: repeat a sequence of length-11; and map the sequence to 11 resource elements (REs) of a physical resource block (PRB) of 12 REs. The eNB may process the U-NPSS by an orthogonal cover code (OCC) over the plurality of subframes. The sequence in each of the OFDM symbols of each of the subframes of the plurality of subframes may be multiplied by a different element of the OCC.
US10743369B2

The present specification proposes a signal processing method for changing an operating mode for transmitting a PPDU in a wireless LAN system. Specifically, a first station receives, from the second station, indication information which indicates a change in an operating mode indicating a receiving channel bandwidth and a number of spatial streams supported by a second station during a TXOP interval. When the number of spatial streams and the receiving channel bandwidth decrease, the first station configures a PPDU for the second station by using the indication information after transmitting an ACK for the indication information. When the number of spatial streams and the receiving channel bandwidth increase, the first station configures a PPDU for the second station by using the indication information during a subsequent TXOP interval of the TXOP interval.
US10743365B2

Embodiments of the present disclosure provide a method, an apparatus and a system for data connection management. The method for data connection management includes: obtaining, by a user equipment UE, first instruction information, wherein the first instruction information is used for instructing to close or open a data connection; and transmitting, by the UE, the first instruction information to a packet data network gateway P-GW, for enabling the P-GW to stop or start data transmission of at least one bearer of the UE according to the first instruction information.
US10743364B2

Embodiments of the present invention provides methods, computer program products, and a system for determining a set of potential responders to alert a second party regarding an urgent communication. Embodiments of the present invention can be used to determine if a missed communication placed by a first party to a second party is an urgent communication. Embodiments of the present invention can be used to determine a set of potential responders based, at least in part, on a variety of possible locations of a communication device belonging to the second party.
US10743362B2

Disclosed are a method whereby user equipment operates in a wireless communication system, and a device for supporting same. Disclosed more particularly are: a method whereby, in case a base station which operates multiple analogue beams is connected to user equipment, the user equipment determines a cell-level radio link failure (RLF) and a beam-level RLF through signal transmission and reception to and from the base station and carries out an operation based on the determination; and a device for supporting said method.
US10743351B2

Disclosed is a method for a wireless device for transmitting a random-access preamble. The method may comprise the steps of: generating a sequence of a random-access preamble; and mapping the sequence of a random-access preamble to one sub-carrier wave from among 12 sub-carrier waves of a frequency domain. The mapping step may comprise the step for carrying out a first hop between a plurality of sub-regions. Each sub-region may comprise a previously set number of sub-carrier waves. The mapping step may additionally comprise the step for carrying out a second hop from among the sub-carrier waves within any one sub-region.
US10743349B2

An electronic device that determines a first parameter corresponding to a length or duration of data to be transmitted by the electronic device; determines whether the first parameter exceeds a predetermined threshold value; controls a wireless interface of the electronic device to transmit a request to send the data when the parameter exceeds the predetermined threshold value; acquires a second parameter related to detection sensitivity or transmission power; and determines, when the first parameter does not exceed the predetermined threshold value, whether to transmit the request to send the data prior to transmitting the data based on the second parameter.
US10743345B2

A source node identifies a communication interval for communication with a destination node, the communication interval comprising a control interval, a data interval disposed after the control interval, a coordination interval disposed after the data interval, and a feedback interval disposed after the coordination interval. The source node transmits one or more control signals during the control interval, transmits one or more data signals during the data interval, transmits or receiving one or more coordination signals during the coordination interval, the one or more coordination signals coordinating at least one aspect of a listen-after-talk (LAT) procedure, and listens for one or more feedback signals during the feedback interval, the one or more feedback signals indicating a status of the transmission of the one or more data signals.
US10743330B2

Embodiments of the present invention provide a data transmission method and an apparatus, and relate to the field of communications technologies. The method includes: obtaining, by a terminal, first indication information of an uplink resource used for sending uplink data or uplink control information. The first indication information of the uplink resource includes information used to indicate whether the uplink resource is a type 1 uplink resource or a type 2 uplink resource. The type 1 uplink resource includes at least one subcarrier in a frequency domain, where when a subcarrier quantity of subcarriers is greater than or equal to 2, the subcarriers are orthogonal to each other, and a subcarrier spacing is 3.75 kHz; or the type 1 uplink resource includes at least one sub-channel in a frequency domain, where a bandwith of each sub-channel is approximately 3.75 kHz.
US10743319B2

Certain aspects of the present disclosure provide techniques for beam refinement. The techniques presented herein may allow for beam refinement using an existing frame structure and utilizing resources (receive antenna ports) that may otherwise be idle.
US10743300B2

Provided are a base station, whereby the erroneous detection of control information can be reduced, thereby preventing the degradation of the system throughput. A base station maps a downstream allocation control information unit, which is addressed to a terminal, to a first resource region, which can be used for any of a downstream control channel region and a downstream data channel region, or to a second resource region, which can be used only for the downstream control channel, so as to transmit the downstream allocation control information unit. In the base station, a control unit establishes a scale of the PDCCH region, and a transmission region establishing unit establishes, on the basis of a scale value established by the control unit, a mapping region to which the DCI is mapped within the R-PDCCH region and the PDCCH region.
US10743298B2

A user apparatus in a radio communication system that supports D2D includes: an acquisition unit configured to acquire radio parameter information including a D2D radio parameter managed in a unit of a predetermined region including a plurality of cells from a base station; and a communication unit configured to transmit and receive a D2D signal using the D2D radio parameter in the predetermined region.
US10743296B2

A new design for an uplink control channel is provided. A User Equipment (UE) determines, based on a tone mapping pattern from a plurality of tone mapping patterns for an uplink control channel, resources for transmitting the uplink control channel, and transmits the uplink control channel using the determined resources. A Base Station (BS) determines a tone mapping pattern from a plurality of tone mapping patterns for an uplink control channel, and transmits information regarding the determined tone mapping pattern to at least one UE. The BS receives the uplink control channel based on the tone mapping pattern.
US10743279B2

Implementations of a registration procedure are described. The registration procedure includes a Access and Mobility Function (AMF) selection procedure and a Session Management Function (SMF) selection procedure. The AMF receives a Non-Access Stratum (NAS) registration request pertaining a User Equipment (UE). At least partially in response to the registration request: the AMF registers the UE on the network; and establishes a Protocol Data Unit (PDU) session for the UE. The AMF transmits a registration response to the UE. An access node of the network receives a Radio Resource Control (RRC) registration request from a User Equipment (UE). At least partially in response to the registration request: The access node selects an AMF, and forwards a corresponding Non-Access Stratum (NAS) registration request to the selected AMF. The NAS registration request includes PDU session request information pertaining to the UE.
US10743278B2

A device and method for registering devices on advanced networks as well as providing operative communications between a legacy device and a advanced network. The legacy device may contain data, such as sensor data, which is being collected on a network outside the communication range/abilities of the legacy device. An intermediary device may receive the data via a first communication scheme and send the device to a server collecting the data via a second communication scheme.
US10743268B2

Provided are a method and an apparatus for obtaining downlink synchronization in a wireless communication system. The wireless communication system that is proposed has an environment in which the resource location of a downlink synchronization signal changes due to the application of multiple numerology. Particularly, a terminal receives synchronization signal information from a base station. The synchronization signal information includes candidate resources from which synchronization signals with respect to a tracking area can be transmitted, and the order of detecting the synchronization signals from the candidate resource win respect to the tracking area. The terminal detects the synchronization signal on the basis of the synchronization signal information.
US10743266B2

A communication method implemented by a terminal device includes: determining whether a power lower than a target transmission power of a first channel or signal is allowed to be used to transmit the first channel or signal during a first period within a time unit, wherein the transmission power available to transmit the first channel or signal during the first period is different with at least one of other periods within the time unit; determining a current transmit power to be used to transmit the first channel or signal during the first period based on the transmission power available when the power lower than the target transmission power is allowed to be used to transmit the first channel or signal during the first period; transmitting the first channel or signal during the first period with the current transmit power.
US10743264B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify an indication of an amount of remaining energy for the UE. In some cases, the UE may identify an indication of a temperature of the UE. In some cases, the UE may determine a constraint indicator based on the amount of remaining energy for the UE or the temperature of the UE. The UE may then transmit the constraint indicator to a base station via physical layer signaling. According to another embodiment, the UE may determine an alternative transmission mode based on the amount of remaining energy for the UE or the temperature of the UE. The UE may then transmit an indicator of the alternative transmission mode to the base station via physical layer signaling.
US10743263B2

A wireless communication system, an apparatus, and a method in a wireless communication system. The apparatus includes a processing circuit. The processing circuit is configured to: detect whether a pre-set power margin reporting trigger event is satisfied; and trigger, if the pre-set power margin reporting trigger event is satisfied, reporting of a power margin of a user equipment to a base station, wherein the pre-set power margin reporting trigger event includes at least one of the following events: a first event of having detected an idle channel on an unlicensed band; and a second event of having received uplink scheduling licensed signalling from the base station. A power margin in an LAA system can be effectively reported.
US10743262B2

A technique of reducing interference at a wireless node includes: determining a location of a base station relative to a wireless node, determining, based at least on the location of the base station relative to the wireless node, a beam-reduction region that includes one or more interfering transmit beams of the base station within the beam-reduction region, and causing the base station to decrease a transmit power for the one or more interfering transmit beams within the beam-reduction region.
US10743260B2

The present disclosure provides a method and a device in a user equipment and a base station used for power adjustment. The UE first receives K downlink signaling(s) and transmits a first radio signal. Any of the K downlink signaling(s) comprises a first field and a second field, the second field of any of the K downlink signaling(s) is used to determine a power offset. A transmitting power of the first radio signal is a first power. A value of each first field of K1 downlink signaling(s) among the K downlink signaling(s) is equal to a first index. The first power is linearly correlated with a sum of K1 power offset(s), which is(are) indicated by each second field of the K1 downlink signaling(s) respectively. The present disclosure can support multiple closed-loop power control processes for one UE so as to improve both efficiency and performance of uplink power control.
US10743258B2

A method of Bluetooth communication and a terminal thereof, which relates to communication technology field. A terminal includes a MCU and a first Bluetooth module and a second Bluetooth module which are connected to the MCU; the method includes that the first Bluetooth module and the second Bluetooth module of the terminal are powered up, the second Bluetooth module activates Bluetooth broadcast, sends a broadcast package containing a Bluetooth name to a host, the first Bluetooth module and the second Bluetooth module have a same Bluetooth name and the Bluetooth name contains MAC address information of the first Bluetooth module; when the second Bluetooth module receives a Bluetooth connecting event from the host, the second Bluetooth module actively disconnects from the host and enters low power consumption state; when the first Bluetooth module builds connection to the host, the terminal communicates with the host.
US10743255B2

Power optimization modes for communication between a device and a server is disclosed. The device can dynamically change between communication modes based on an application or quality of service, battery life, an amount of noise associated with the communications link, a frequency of messages, and a type of message received in a given time period. In some examples, the device can determine if the number of pull messages is greater than the number of push messages. The device can select a push mode where a pull message can accompany a push message. In some examples, the device can determine that the number of push messages is greater than the number of pull messages, and the device can select a low-power associated sleep mode.
US10743252B2

A method for identifying an access point and a hotspot and a terminal are provided. The method includes the following. An internet protocol (IP) address of a gateway is obtained when a terminal is in a wireless fidelity (Wi-Fi) connection state. Whether a preset Wi-Fi list contains the IP address is determined. The terminal is determined to be connected to a hotspot when the preset Wi-Fi list contains the IP address. The terminal is determined to be connected to an access point when the preset Wi-Fi list does not contain the IP address.
US10743248B2

An example user device may include a terrestrial mobile network radio; a satellite network radio; and one or more processors to establish, via the terrestrial mobile network radio, a first communication link with a terrestrial mobile network, establish, via the satellite network radio, a second communication link with a satellite network, monitor a characteristic of the first communication link and a characteristic of the second communication link, select the terrestrial mobile network or the satellite network for traffic communication based on the characteristic of the first communication link and the characteristic of the second communication link, and/or perform an action associated with the traffic communication based on selecting the terrestrial mobile network or the satellite network for traffic communication.
US10743243B2

A wireless device may transmit a session initiation protocol (SIP) REGISTER request to an internet protocol multimedia subsystem (IMS) network entity. The SIP REGISTER Request may comprise a first SIP header field. The first SIP header field may comprise one or more indicators for V2X capabilities of the wireless device. The wireless device may receive a SIP response from the IMS network entity. The SIP response may comprise the first SIP header field confirming the registration of the V2X capabilities. The wireless device may receive a second SIP request from the IMS network entity. The second SIP request may comprise a second SIP header field. The second SIP header field may comprise one or more indicators for V2X multicast service capabilities. The second SIP request may comprise one or more configuration parameters to receive packets via V2X broadcast and multicast bearers. The wireless device may transmit a second SIP response to the IMS network entity. The wireless device may receive packets via the V2X broadcast and multicast bearers. According to an embodiment, the SIP header field may comprise a SIP Contact header field.
US10743240B2

Methods, a wireless device (400; 120) and a radio network node (600; 110), for managing information about one or more coverage classes associated with the wireless device (400; 120). The wireless device (400; 120), sends, to the radio network node (600; 110) that receives, a message that comprises an indicator indicating an updated downlink coverage class estimated by the wireless device (400; 120).
US10743237B2

Technology for a user equipment (UE) operable to receive system information change notifications from an eNodeB is disclosed. The UE can receive one or more system information (SI) change notifications that indicate a change has occurred in one or more system information blocks (SIBs). The UE can receive a SIB1 that is associated with a value tag, and the SIB1 can include a bit-map that indicates which of the one or more SIBs include a change. The UE can compare the value tag associated with the SIB1 with a value tag stored at the UE. The UE can obtain scheduling information for the one or more SIBs that include a change according to the bitmap when the value tag associated with the SIB1 does not equal to the value tag stored at the UE. The UE can retrieve the SIBs that include a change using the scheduling information.
US10743232B1

A base station may use another base station's carrier-aggregation policy for a cell and carrier-aggregation capability information for a UE as a basis to control handover of the UE from the base station to the other base station. As one example, a first base station may receive, from a UE, a report that the UE has detected coverage of a target cell. The target cell may be provided by a second base station, and the first base station may determine whether the target cell can be aggregated with one or more other cells and whether the UE supports carrier aggregation. The first base station may then select a handover threshold based on the determination, and use the selected handover threshold as a basis to control handover of the UE from being served by the first base station to being served by the second base station.
US10743228B2

A method for switching of multi-carrier and device are provided. The method comprises: receiving a message sent from a source radio access network (RAN) node corresponding to a first link and comprising information of a second link; according to the information of the second link, establishing a connection between a target RAN node corresponding to the first link and an RAN node corresponding to the second link, so as to perform data transmission. The first link is a link in a first Radio Access Technology (RAT) network, and the second link is a link in a second RAT network. Embodiments of the present disclosure can ensure the continuity of the throughput of data transmission during switching under aggregation of multiple RAT carriers.
US10743220B2

A system is proposed to provide handover in a mobile telecommunications environment, particularly applicable to 3GPP networks, which does not increase signalling overhead but minimises user data loss during handover. In the modified system, PDCP SDUs with Sequence numbers are buffered and retransmitted as necessary. At the time of handover, SDUs not received by the user device are forwarded to the target base station for forward transmission to the UE. The handover procedure is designed to minimise packet loss whilst keeping to a minimum the duplication of packet transmission over the air interface.
US10743216B2

Disclosed are: a communication method for merging an IoT technique with a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, services related to smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security, safety, and the like) on the basis of a 5G communication technique and IoT-related techniques. The present invention relates to a method for processing a resource allocation request of a terminal in a communication system, the method comprising the steps of: triggering a resource allocation request; confirming whether a resource for transmitting the resource allocation request has been allocated to a first subframe of at least two serving cells at the same time; and transmitting the resource allocation request to one serving cell of the at least two serving cells according to a predetermined condition when the resource is allocated to the first subframe of the at least two serving cells at the same time.
US10743214B2

The proposed technology generally relates to flow control in wireless communication systems and in particular to methods and devices for flow control in multi-point transmission wireless communication systems.
US10743212B2

Provided are a method by which a terminal transmits a wireless local area network (WLAN) offloading availability indication in a wireless communication system, and a device for supporting the same. The terminal can determine whether traffic offloading to a WLAN is available and transmit, to a network, a WLAN offloading availability indication indicating whether the traffic offloading is available.
US10743211B2

A method, a system, and a non-transitory computer-readable storage medium are described in which a congestion control service is provided. The congestion control service provides for congestion detection and management in relation to a diversified radio access network. The congestion control service includes using a radio spectrum re-allocation mechanism pertaining to different radio access technologies of the diversified radio access network to mitigation detected congestion.
US10743209B2

The present invention addresses the issue of responding to a state in which operation has stopped as a result of high frequency triggering of a specified application either intentionally or as a result of a malfunction, etc. The present invention relates to communication system including: a monitoring unit that monitors the occurrence state of triggering messages on the basis of port number information identifying port numbers included in triggering messages that trigger a terminal; and a control unit that controls transmission of the triggering messages to the terminal, on the basis of the occurrence state.
US10743193B2

A cellular system comprising at least one moving non-stationary base station for enabling cellular communication between at least two mobile stations in a geographic area that lacks adequate cellular coverage by at least one stationary base station.
US10743191B2

A system for providing small cell backhaul communications includes a small cell backhaul network including a plurality of small cell network nodes each including transceivers enabling communication with at least two other small cell network nodes. A software defined network (SDN) controller controls the transceivers at each of the plurality of small cell network nodes to establish link configurations between the plurality of small cell network nodes of the small cell backhaul network. The SDN controller implements an optimizer module for managing operation the small cell backhaul network. The optimizer module uses an OpenFlow protocol to gather wireless and power consumption statistics.
US10743188B2

In one embodiment, a device determines locations of a plurality of transmitters relative to a particular wireless access point in a wireless network. One of the transmitters comprises a target client to which the particular wireless access point is to communicate. The device compares a plurality of beamforming patterns associated with the particular wireless access point to the determined locations. The device selects, based on the comparison, one of the beamforming patterns for use by the particular wireless access point to communicate with the target client. The device controls the particular wireless access point to use the selected beamforming pattern to communicate with the target client.
US10743185B2

Embodiments of the present invention provide a data transmission method and an apparatus. In the method, a communications node receives N spatial reuse parameters SRPs; the communications node determines, based on the received N SRPs, that the communications node can perform spatial reuse link transmission; and the communications node transmits data by using a spatial reuse link, and processes data transmission based on the spatial reuse link. Whether spatial reuse link transmission can be performed is determined based on the received SRPs, so as to reduce mutual interference between a primary link and the spatial reuse link during data transmission, and improve transmission quality.
US10743178B2

Reduced resolution location determination for improved anonymity of a user location is disclosed. In some implementations, a first location of a computing device operating in a geographic area is determined. A population density of the geographic area is estimated. A grid overlay is generated, including a number of cells based on the estimated population density. Using the grid overlay, a second location is generated for the computing device that is less precise than the first location. The less precise second location can be used in a local search or other application to improve the anonymity of the user location.
US10743177B2

A method of utilizing mobile communication roaming data is described. The method receives a roaming data authorization from a user to allow using roaming data related to the user. The method receives roaming data related to the user from a set of mobile network operators. The method receives an information request related to the user. The method performs an analysis on the roaming data related to the user to retrieve the requested information. The method then sends a response containing the requested information.
US10743170B1

A device, system and method for emergency audio transmission is provided. A server receives, over a broadband network, a request to make an emergency audio transmission to a talk group. The request is received from a first push-to-talk (PTT) device communicatively connected with the talk group over a narrow band network at which a second PTT device of the talk group has floor control. In response to granting the request, the server receives, from the first PTT device, an audio transmission over the broadband network, and transmits the audio transmission to the talk group via the broadband network.
US10743157B2

A method for managing modules incorporated into a plurality of vehicles is provided. The method includes steps of: a managing device (a) performing data collection for determining whether descendant modules are malfunctional, on condition that a module signal generated from an ancestor module is acquired, and that specific module data are recorded in a node of a tree data structure, and then if the specific module data are determined as corresponding to a malfunction of the ancestor module; and (b) transmitting individual malfunction information to a managing server to thereby allow the managing server to perform diagnosis on identical-type modules, where the individual malfunction information includes information on the malfunction of the ancestor module and the descendant modules, and where the identical-type modules are selected among modules of other vehicles by referring to whether each modules of said other vehicles is identical to the ancestor module and the descendant modules.
US10743153B2

Systems and methods are provided for enabling communication, without breaching the engine firewall, between a datalogger located on one side of the firewall and one or more sensor devices that are located on the opposite side of the firewall. The systems and methods described herein can allow a transmitting node (i.e., a transmitting datalogger) to transmit collected data (from an auxiliary sensor) to a receiving node (i.e., a receiving datalogger) while reducing or minimizing various difficulties associated with addition of an auxiliary sensor in the engine environment. The transmission of data from the transmitting node to the receiving node can correspond to wired data communication or wireless data communication.
US10743152B2

A telecommunication system that carries out telecommunication functions between multiple parties as initiated by the user interaction with a social network application, while maintaining privacy of the device identifiers (phone numbers or static IP addresses assigned to devices) of the participating parties.
US10743148B2

A multi-group call setup method and device are disclosed. The method includes determining, by a first MCPTT server, to set up a multi-group call involving N MCPTT groups, where N is an integer greater than or equal to 2, and sending, by the first MCPTT server, a call message to first UE, where the call message is used to add the first UE to the multi-group call, where a first MCPTT user is an associated user of the first UE, and where the first MCPTT user is an MCPTT user in the N MCPTT groups.
US10743144B2

A trajectory determining device is designed for determining trajectory data (10) based on signaling data associating mobile communication device identifiers, time markers and signaling identifiers, at least some of the signaling identifiers designating a location cell. These trajectory data are used in order to identify pairs of movement markers associated with a same mobile communication device identifier, and corresponding signaling data, the time markers of which are between the time markers of a given pair, are reprocessed in order to return classified movement data (16) associating movement type data and departure and arrival data determined from location cells associated with the signaling data and a group of chosen locations.
US10743138B2

A tracking server stores information identifying one or more community mobile devices and information identifying one or more tracking devices within a proximity of each of the one or more community mobile devices. The tracking server receives a tracking device request from a mobile device. The tracking device request includes information identifying a tracking device and configuration instructions for configuring the tracking device. The tracking server identifies a community mobile device from the one or more community mobile devices within a proximity of the tracking device. The tracking server sends the tracking device request to the identified community mobile device. The identified community mobile device is configured to forward the tracking device request to the tracking device and the tracking device is configured to re-configure the tracking device based on the configuration instructions included in the tracking device request.
US10743134B2

A method for providing on-demand service information is provided. One or more processors determine, for a given geographic region, position information for each of a plurality of requesters for an on-demand service and position information for each of a plurality of service providers that can provide the on-demand service. A plurality of sub-regions is identified for the given geographic region. Based, at least in part, on the position information of the requesters and the service providers, one or more sub-regions are determined as being under-supplied by the plurality of service providers as compared to one or more other sub-regions. Information identifying the under-supplied sub-regions are provided to one or more service provider devices.
US10743131B2

Methods, systems, and mobile devices for providing users with social media-related information about other users based on the relative geographic locations of the users.
US10743126B2

The present disclosure relates to a method and to an apparatus, both arranged for controlling acoustic signals to be recorded or reproduced by an electro-acoustical sound system. An initial digital filter is determined by solving an inverse problem, wherein the initial digital filter is configured to control acoustic signals to be recorded and/or reproduced by the electro-acoustical sound system; a frequency-dependent articulation parameter is determined by executing a time spectral psychoacoustic automatic audio quality test on the initial digital filter; a frequency-dependent regularization parameter, used for determining the initial digital filter, is tuned by use of the frequency-dependent articulation parameter; and, by use of the tuned frequency-dependent regularization parameter, a digital filter configured to control acoustic signals to be recorded or reproduced by the electro-acoustical sound system is determined.
US10743116B2

Disclosed herein, among other things, are methods and apparatus for mitigating antenna interference for hearing assistance devices. One aspect of the present subject matter includes a hearing aid for a wearer including hearing aid electronics and an antenna including a loop segment. According to various embodiments, one or more conductors are connected in parallel with a portion of the loop segment. The conductors electrically short the loop segment to change current distribution in the antenna. The conductors reduce unwanted coupling between the hearing aid electronics and the antenna, according to various embodiments.
US10743114B2

Presented herein are techniques that use acoustic scene (environmental) analysis to determine the sound class of sound signals received at a hearing prosthesis and, accordingly, assess the estimated listening difficulty that the acoustic environment presents to a recipient of the hearing prosthesis. This difficulty of the recipient's listening situation can be used to adjust, adapt, or otherwise set the resolution of the electrical stimulation signals delivered to the recipient to evoke perception of the sound signals. In other words, the resolution of the electrical stimulation signals is dynamically adapted based on the present acoustic environment of the hearing prosthesis.
US10743110B2

A device to transmit an audio signal to a user comprises a transducer and a support. The support is configured for placement on the eardrum to drive the eardrum. The transducer is coupled to the support at a first location to decrease occlusion and a second location to drive the eardrum. The transducer may comprise one or more of an electromagnetic balanced armature transducer, a piezoelectric transducer, a magnetostrictive transducer, a photostrictive transducer, or a coil and magnet. The device may find use with open canal hearing aids.
US10743089B2

Data are transmitted and/or received in a communication system by a communication participant, which has a communication device, a microprocessor, and an energy supply. The latter has an electrical variable that changes from an initial value when it supplies the microprocessor and/or the communication device with energy. The microprocessor encodes the data before transmission and/or decodes the data after reception, each using a computing cycle. When the electrical variable changes during the computing cycle, it is interrupted, preferably at any desired point. The encoding and/or decoding are carried out separately during the computing cycle in individual encoding phases in which the value of the electrical variable changes. Regeneration phases for regenerating the electrical variable are provided between and/or within the encoding phases. The duration of a regeneration phase is such that the value of the electrical variable approaches or reaches the initial value during the regeneration phase.
US10743088B2

A wireless sensor assembly includes a housing, a wireless power source, and electronics. The housing defines an interior space and at least one aperture sized to receive at least one external sensor. The wireless power source is mounted within the housing. The electronics are mounted within the housing and are configured to receive power from the wireless power source and to be in electrical communication with the external sensor. The electronics include a wireless communications component, and firmware configured to manage a rate of data transmittal from the wireless communications component to an external device such that the wireless communications component has a power consumption less than about 0.5 mW. The electronics are powered exclusively by the wireless power source and the wireless sensor assembly defines a volume less than about 2 in3.
US10743086B2

A method of creating and sharing a streaming video to other devices by an electronic device, which comprises a first camera and a second camera, is disclosed. A voice signal collected by the electronic device is encoded into digital audio data. The first camera captures first still images and the second camera captures second still images simultaneously. The first still images and/or the second still images are cropped and combined to generate combined images. The combined images are encoded into encoded images with a predetermined format. A streaming video is obtained by mixing the encoded images with the digital audio data and transmitted to other remote devices.
US10743082B2

The present technology relates to a reception apparatus, a reception method, a transmission apparatus, and a transmission method, by which an increase in data size of signaling information transmitted by broadcasting can be suppressed. Provided is a reception apparatus including: a reception unit that receives a broadcast wave of digital broadcasting using an IP (Internet Protocol) transmission system; and a control unit that controls, on the basis of information for managing only a broadcast component transmitted by a broadcast wave of the digital broadcasting, which is first signaling information transmitted by a broadcast wave of the digital broadcasting, or information for managing at least one component of the broadcast component and a communication component transmitted by communication, which is second signaling information transmitted by communication, operations of respective units for acquiring the at least one component of the broadcast component and the communication component. The present technology is applicable to a television receiver, for example.
US10743080B2

An example method is described in which a controller initiates, with a control point, control point discovery for an endpoint managed by the control point. The controller, receives, from the control point, a message in response to the initiation of control point discovery. The message is an Internet Protocol Detail Record (IPDR) message or Simple Network Management Protocol (SNMP) message that includes registration information of the endpoint. Based on the registration information of the endpoint, the controller determines an association between the control point and the endpoint. This allows the controller to apply a controlling function on the control point when the endpoint accesses a service via the control point.
US10743069B2

Techniques are described for efficient delivery and reception of information, such as an Entitlement Management Message (EMM), that is related to Digital Rights Management (DRM) in a terrestrial broadcast system such as ATSC 3.0.
US10743063B2

This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media for intelligent routing of notifications related to media programming. In one aspect, a smart television (TV) can be implemented to track a user's TV watching behavior, and anticipate programming based on that behavior. In some other aspects, the smart TV can be implemented to detect a user's presence, and based on that detection, can automatically change the TV channel to media programming analyzed to be desirable to the user. In some further aspects, the smart TV can be implemented to transmit notification instructions to electronic devices within a network in an attempt to alert the user to upcoming media programming. Additionally, the smart TV can be implemented to transmit detection instructions to the electronic devices within the network, whereby the electronic devices attempt to detect a user's presence through voice or facial recognition.
US10743061B2

A display apparatus and a control method of the display apparatus are provided. The display apparatus includes a display, a communicator that communicate with a server, a sensor that obtains information about a companion animal and a processor that controls the display to display content based on a first image quality value, transmits the information about the companion animal to the server, receives, from the server, a second image quality value based on the information about the companion animal, and controls the display to display the content based on the received second image quality value. The information is obtained by the sensor while the content is displayed based on the first image quality value.
US10743059B2

An audio/video (A/V) hub is described. This A/V hub determines display instructions specifying information to be displayed on a display in an A/V display device that includes icons associated with content sources. These content sources are located at arbitrary or different locations in a structure, including locations external to an environment of the A/V hub and the A/V display device. Then, the A/V hub provides the display instructions to the A/V display device for display on the display.
US10743057B2

A reception apparatus includes a receiver and processing circuitry. The receiver circuitry configured to receive a broadcast stream that includes television content. The processing circuitry executes a television receiver application that displays the television content. The processing circuitry receives indication of a selection of a key that is provided on an input device. In response to reception of the indication of the selection of the key, the processing circuitry determines whether a broadcaster application has reserved the selected key. In response to the determination that the broadcaster application has reserved the selected key, the processing circuitry determines whether a native application associated with the broadcaster application has reserved the selected key. The processing circuitry processes, by the native application, the selected key in response to the determination that the broadcaster application has reserved the selected key and the native application has reserved the selected key.
US10743053B2

The present disclosure provides a method and system for real time, dynamic, adaptive and non-sequential assembling of one or more mapped fragments of one or more tagged videos. The method includes a step of receiving a set of preference data from pre-defined selection criteria and set of user authentication data. The method includes another step of fetching the one or more tagged videos from the digitally processed repository of videos. The method includes yet another step of fragmenting each tagged video of the one or more tagged videos into the one or more tagged fragments and clustering one or more logical sets of mapped fragments into one or more logical clusters of mapped fragments. The method includes yet another step of assembling at least one of the one or more logical clusters of mapped fragments in a pre-defined order of preference to obtain an assembled video.
US10743043B2

A management device includes a storage management unit configured to store, in a storage unit in accordance with a priority, a plurality of pieces of transmission data having corresponding time information among a plurality of pieces of transmission data generated by dividing a plurality of pieces of content data each encoded for a channel.
US10743040B2

Systems and methods are described herein for a media guidance application to determine that a user has switched away from a source transmitting a media asset with which the user was engaged and detect, while the user is switched away from the source, that secondary content transmitted by the source during a break of playback of the media asset relates to the media asset. In response to detecting that the secondary content relates to the media asset, the media guidance application may access a database to determine whether the secondary content specifically corresponds to the media asset, and, in response to determining that the secondary content specifically corresponds to the media asset, the media guidance application may generate for display the secondary content to the user.
US10743039B2

A method of displaying video embedded in a user interface is performed at an electronic device such as a server system or client device. The method includes obtaining user-interface frames having a first placeholder for a first video window and obtaining source video frames having a first video stream in the first video window. The source video frames and the user-interface frames are interleaved to form an output video stream, which is provided for decoding and display.
US10743035B2

This application is directed to vectoring a raster image in which an electronic device detects a contour of a component in the raster image, builds tangent vectors for each point of the contour and identifies a plurality of segmentation points on the contour. One or more points of sharp angle are identified on the contour in accordance with a determination that each point of sharp angle corresponds to two distinct tangent vectors and that an angle between the two distinct tangent vectors falls below a predefined threshold. A respective one of the segmentation points is positioned at each identified point of shape angle. The electronic device approximates a piecewise smooth fitting curve (e.g., a piecewise Bezier curve) having two or more fitting segments to connect the plurality of segmentation points on the contour. The piecewise smooth fitting curve is thereby provided to vectorize the raster image.
US10743030B2

Decoder retrieval timing information, ROI information and tile identification information are conveyed within a video data stream at a level which allows for an easy access by network entities such as MANEs or decoder. In order to reach such a level, information of such types are conveyed within a video data stream by way of packets interspersed into packets of access units of a video data stream. In accordance with an embodiment, the interspersed packets are of a removable packet type, i.e. the removal of these interspersed packets maintains the decoder's ability to completely recover the video content conveyed via the video data stream.
US10743027B2

Methods and apparatus are provided for adaptive residual updating of template matching prediction for video encoding and decoding. In one embodiment, an apparatus and method encodes picture data for at least a block in a picture using template matching prediction, wherein the template matching prediction involves selecting from among a plurality of residual updating schemes for use in encoding the block. In another embodiment, an apparatus and method encodes a block in a picture using template matching prediction, wherein the template matching prediction involves partitioning the block into a plurality of sub-blocks, and applying a transform to a residual of a particular sub-block from among the plurality of sub-blocks subsequent to searching for a prediction for the particular sub-block block and prior to completion of processing of the block with respect to the template matching prediction.
US10743026B2

A video encoding method, a video encoding apparatus, a video decoding method, and a video decoding apparatus are provided. The video encoding method includes producing a fast transform matrix based on a transform matrix which is used for frequency transformation on a block which has a predetermined size; producing a transformed block by transforming the block having the predetermined size by using the fast transform matrix; and performing scaling with respect to the transformed block in order to correct a difference between the transform matrix used for the frequency transformation and the fast transform matrix.
US10743024B2

To achieve a reduction in the amount of coding taken in the use of an asymmetric partition and to implement efficient encoding/decoding processes exploiting the characteristics of the asymmetric partition. An image decoding device includes a motion compensation parameter derivation unit configured to derive a motion compensation parameter indicating either a uni-prediction scheme or a bi-prediction scheme. In a case that a prediction unit has a size less than or equal to a predetermined value, the motion compensation parameter derivation unit is configured to derive the motion compensation parameter by switching between the prediction schemes.
US10743019B2

The present invention relates to a motion control system and method using detection of motions in a video, and the motion control system includes: a video processing device for decoding encoded video to extract motion vectors and residual values of effective macroblocks, producing motion codes using the extracted motion vectors and residual values of the effective macroblocks, reproducing the decoded video, and transmitting the produced motion codes and the time codes corresponding to the video being reproduced to a motion control device; and the motion control device for receiving the time codes and motion codes from the video processing device and controlling motions of actuators according to the motion codes if the time values of the time codes and motion codes correspond to each other.
US10743010B2

A bitstream, including a coded signal resulting from coding slices of an image, is decoded. Each slice includes plural largest coding units (LCUs). A slice is either a normal slice having a slice header with information useable for another slice or a dependent slice having an associated normal slice which is decoded using information included in a slice header of the associated normal slice. The image includes plural LCU rows, and each LCU row includes two or more LCUs. When decoding a first normal slice in a first LCU row that starts at a position other than a beginning of the first LCU row: (i) the first normal slice and any dependent slices associated with the first normal slice are decoded, and (ii) a second normal slice that starts at the beginning of a second LCU row, immediately following the first LCU row, is decoded.
US10743000B2

A method and apparatus are disclosed for generating a video bitstream for high-resolution video streaming. The present disclosure in some embodiments provides a method and apparatus for generating a video bitstream by encoding a video at a different bit rate for each of video areas, in order to efficiently transmit a large amount of high-resolution video contents.
US10742989B2

A variable frame rate encoding method applied to a video encoder, and the method, by obtaining a current coded macro block: determining whether the current coded macro block is located in a still area and if the current coded macro block is located in the still area, encoding the current coded macro block by using a first preset coding mode, and if the current coded macro block is located in a motion area, then encoding the current coded macro block by using a second preset coding mode.
US10742982B2

A methods and apparatus for coding and decoding a MATRIX. The coding method includes: dividing a MATRIX into layers according to a preset quantity of layers, and grouping MATRIX elements into different layers; performing, according to a determined to-be-coded layer number and in an order of layers one by one, coding processing on MATRIX elements at each layer to be coded; for a layer having a layer number less than or equal to the to-be-coded layer number, writing residual data between an original MATRIX element value corresponding to the layer and a corresponding MATRIX element predicted value into a bit stream; for a layer having a layer number greater than the to-be-coded layer number, writing no coded data of the layer into the bit stream; and coding the to-be-coded layer number and writing the coded layer number of the coded layer into the bit stream.
US10742978B2

An encoder which encodes image information includes memory and circuitry accessible to the memory. The circuitry binarizes a data value indicating the number of non-zero coefficients included in a current basic block which is one of one or more basic blocks in a frequency transform block, according to a conversion table, to encode the image information which includes the data value. When binarizing the data value, the circuitry selects the conversion table from a plurality of tables including two or more tables which differ from each other in difference between a longest bit length and a shortest bit length of a plurality of binary values associated with a plurality of data values, according to the position of the current basic block in the current frequency transform block which is the frequency transform block including the current basic block, and binarizes the data value according to the conversion table selected.
US10742977B2

An encoder that encodes a current block in a picture includes circuitry and memory. Using the memory, the circuitry: performs a first transform on a residual signal of the current block using a first transform basis to generate first transform coefficients; and performs a second transform on the first transform coefficients using a second transform basis to generate second transform coefficients and quantizes the second transform coefficients, when the first transform basis is the same as a predetermined transform basis; and quantizes the first transform coefficients without performing the second transform, when the first transform basis is different from the predetermined transform basis.
US10742976B2

There is provided an apparatus, methods, to generate a set of transform coefficients for coding a block in a frame or portion thereof, comprising: a media encoder coupled to a data interface adapted to receive a frame or portion thereof, the media encoder is adapted to: select a rotational symmetry mask for the block from a plurality of rotational symmetry masks which define a plurality of different rotational symmetries in a multi dimensional space having a size and a shape as the block; split the block to two complementary portions based on the rotational symmetry mask; generate a pair of rotational symmetry blocks each having one of the two complementary portions; and compute at least one transform coefficient for at least one member of the pair of rotational symmetry blocks.
US10742960B1

A three dimensional imaging system for generating a 3D panoramic video/image is disclosed. The three dimensional imaging system comprising a plurality of stereoscopic pairs of compound cameras is disclosed. The pair of compound cameras being separated by a predefined distance d.
US10742959B1

Some embodiments of the invention provide a novel multi-layer node network to reliably determine depth based on a plurality of input sources (e.g., cameras, microphones, etc.) that may be arranged with deviations from an ideal alignment or placement. Determined depths are used, in some embodiments, to process data captured by the plurality of input sources. Other embodiments use the calculated depth to determine whether warnings must be provided or other actions taken. Some embodiments train the multi-layer network using a set of inputs generated with random misalignments incorporated into the training set.
US10742957B2

Hardware and software configurations, optionally, for performing profilometry of an object are disclosed. An advantageous imaging device is described. An advantageous approach to determining imager position is also described. Each aspect described may be used independently of the other. Moreover, the teaching may find use in other fields including velocimetry, etc.
US10742952B2

A 3D reconstruction method is provided. Positioning signals are received by a signal receiver at a first and a second time spots to determine a HMD displacement vector and a HMD rotation amount. A first and a second images are retrieved by a first camera to determine a first camera rotation amount. A relative rotation amount and a relative displacement vector between the HMD and the first camera are calculated. A first camera displacement vector of the first camera is calculated according to the HMD displacement vector, the HMD rotation amount, the relative rotation amount and the relative displacement vector. Depth information of the first and the second image is obtained based on the first camera displacement vector and the first camera rotation amount. 3D reconstruction is performed according to images retrieved by the first camera and the depth information.
US10742949B2

Embodiments disclose a real-time surgery method and apparatus for displaying a stereoscopic augmented view of a patient from a static or dynamic viewpoint of the surgeon, which employs real-time three-dimensional surface reconstruction for preoperative and intraoperative image registration. Stereoscopic cameras provide real-time images of the scene including the patient. A stereoscopic video display is used by the surgeon, who sees a graphical representation of the preoperative or intraoperative images blended with the video images in a stereoscopic manner through a see-through display.
US10742948B2

Methods and apparatus for receiving content including images of surfaces of an environment visible from a default viewing position and images of surfaces not visible from the default viewing position, e.g., occluded surfaces, are described. Occluded and non-occluded image portions are received in content streams that can be in a variety of stream formats. In one stream format non-occluded image content is packed into a frame with occluded image content with the occluded image content normally occupying a small portion of the frame. In other embodiments occluded image portions are received in an auxiliary data stream which is multiplexed with a data stream providing frames of non-occluded image content. UV maps which are used to map received image content to segments of an environmental model are also supplied with the UV maps corresponding to the format of the frames which are used to provide the images that serve as textures.
US10742943B2

A projector includes an image projection section, an imager, a calibration processor that performs calibration, an information acquirer that acquires information on the state in which the projector is installed, and an image generator that generates a calibration image corresponding to the state in which the projector is installed, and the calibration processor causes the image projection section to project the calibration image generated by the image generator to perform the calibration.
US10742937B2

A watching apparatus includes a housing, a display provided on the housing, a camera provided on the housing, a determiner that determines a watching target in a camera image captured by the camera, a position detector that detects a position of the watching target in the camera image, and a display controller that displays an application image that does not include the camera image on the display on the basis of the detected position of the watching target.
US10742936B2

According to various aspects of the present disclosure, methods, systems, and media for object tracking are provided. In some embodiments, the systems may include: at least one hardware processor to: detect a target object in first image data provided by a first camera; determine a first plurality of neighboring cameras of the first camera that have detected the target object; determine at least one of the first plurality of neighboring cameras as a next node of the first camera; and generate first topological data for the first camera and the next node of the first camera.
US10742932B2

A communication terminal comprising circuitry, a method of outputting moving images, and a computer-readable non-transitory recording medium storing a program for causing a computer to execute the method. The communication terminal and the method includes receiving an event related to an initiation of communication with a counterpart communication terminal, inputting moving images output by an external device, and outputting the moving images input by the inputting to a display. After the receiving receives the event related to the initiation of communication, the outputting includes reducing a frame rate of the moving images to be output to the display.
US10742931B2

A video conference system may include two or more video conference endpoints, each having a display configured to display content. The video conference system may detect a plurality of participants within a field of view of a camera of the system. The video conference system may determine an attention score for each endpoint based on the participants. The video conference system may determine whether the content of the first endpoint and/or the content of the second endpoint are active content based on whether the attention scores exceed a predetermined threshold value. The video conference system may send to secondary video conference systems an indication of the active content to enable the secondary video conference systems to display the active content.
US10742927B2

An entry adapter for a cable television (CATV) network includes a first signal separation device configured to separate downstream CATV signals into a first downstream high-frequency signal and a first downstream low-frequency signal based on a first cutoff frequency, a second signal separation device configured to separate the downstream CATV signals into a second downstream high-frequency signal and a second downstream low-frequency signal based on a second cutoff frequency, and a signal frequency sensor and selector device in selective communication with the first and second signal separation devices.
US10742924B2

Electronic information defining visual content within video frames may be accessed. Video frames may be ordered in a source sequence. Positions in the source sequence may be associated with playback directions. Video frames may be ordered in a playback sequence based on the playback directions. The playback sequence may characterize a playback order in which video frames are displayed during playback. Video frames in the playback sequence may be associated with playback speeds. The playback speeds may determine perceived speeds with which visual content is displayed during playback. Speed ramped video frames may be determined based on the playback sequence and the playback speeds. A speed ramped video may be generated based on the speed ramped video frames.
US10742912B2

Pixel arrangements in time-of-flight sensors are presented that include sensing elements that establish charges related to incident light, charge storage elements that accumulate integrated charges transferred from the sensing elements, and diffusion nodes configured to establish measurement voltages representative of the integrated charges that are dumped from the charge storage elements. The pixel arrangement includes analog domain output circuitry comprising a measurement capacitance element that stores the measurement voltage, and a reset capacitance element that stores a reset voltage established at the diffusion node during a reset phase performed prior to a measurement phase. The analog domain output circuitry subtracts the stored reset voltage from the stored measurement voltage for processing into a pixel output voltage that at least partially reduces readout voltage uncertainty of the pixel arrangement.
US10742911B2

A radiation imaging apparatus is provided. The apparatus comprises an image capturing unit and a signal processing unit. The image capturing unit includes a plurality of pixels each including a conversion unit configured to convert radiation into electric charge and a holding unit configured to hold a signal corresponding to electric charge of the conversion unit. The holding unit holds a first signal corresponding to electric charge generated by the conversion unit by one image capturing operation without irradiation with radiation. The signal processing unit generates correction image data based on the plurality of first signals nondestructively read out from the holding unit over a plurality of times while the holding unit holds the first signals, and corrects radiation image data captured by the image capturing unit during irradiation with radiation by using the correction image data.
US10742910B2

A successive approximation analog-to-digital converter causes a comparator to compare an analog signal and a comparison signal that a first digital-to-analog converter converts into a voltage with an offset applied to the comparison signal by an offsetting unit. The successive approximation analog-to-digital converter can successfully carry out the second AD conversion and successive AD conversions of a signal.
US10742899B1

Disclosed are systems, methods, and computer-readable storage media to enhance an image on a mobile computing device. In some aspects, a user interface on the mobile computing device provides a plurality of image filters, each of the image filters associated with a different replacement sky type. Upon application of one of the plurality of image filters to an image, the mobile computing device is configured to identify a sky portion of the image, modify a color mapping of a non-sky portion of the image, and replace the sky portion of the image with replacement sky data corresponding to the applied image filter.
US10742897B2

Methods, systems, and devices for exposure control are described, including capturing a first and second field of view with a first and second sensor. The techniques may include identifying a brightness difference and an exposure time difference between the first and second sensor, and capturing a first image and a second image, and outputting a third image including both the first and second image. Techniques may include determining an exposure bias, identifying a hypothesis total gain for the first sensor and a peer sensor total gain for the second sensor, and selecting a total gain for each sensor based on comparing the hypothesis total gain and the peer sensor total gain, and based on a maximum brightness difference between the two sensors. The total gain for each sensor may be adjusted to satisfy the maximum brightness difference and the exposure bias, or based on a region of interest.
US10742896B2

An image processing apparatus performs first calculation configured to calculate a conversion coefficient, with respect to images having a same exposure, with respect to a plurality of images, second calculation configured to calculate a conversion coefficient of images having different exposures, positional adjustment configured to execute positional adjustment with respect to the plurality of images by using the conversion coefficient calculated in the second calculation, and composition configured to execute composition with respect to the images to generate a composite image having a dynamic range and a viewing angle wider than the images, and in the second calculation an image used for detection with respect to a part of images from among the plurality of images is newly generated.
US10742893B2

A mobile terminal including a camera having an image sensor; a memory; a display; and a controller configured to synthesize first image data generated by a first exposure and second image data generated by a second exposure, store a log image in the memory obtained by applying a log profile to the synthesized image data in a first mode, and display a first image on the display obtained by transforming the log image in a second mode. Further, the controller controls the first exposure and the second exposure based on first exposure information corresponding to an average brightness information and a maximum brightness information of the synthesized image data.
US10742887B1

An apparatus comprising an image sensor and a processor. The image sensor may be configured to generate a video signal based on a targeted view of an environment. The processor may be configured to (A) perform an image stabilization on the video signal and (B) generate (i) a first output video signal and (ii) a second output video signal. The first output video signal may be generated on a low-latency path. The second output video signal may be generated on an encoding path. The image stabilization may be performed prior to the generation of the first output video signal and the second output video signal.
US10742877B1

An imaging module is described that acquires images of objects and outputs a digital image of the objects that is corrected for aberrations and flaws due to design, manufacturing constraints and variability, and, the local environment (temperature and humidity). The imaging module includes memory to store adjustment parameters, environmental sensors, and, a computing device that processes the raw acquired image into a corrected processed image. The imaging module is used with a test apparatus to calibrate the imaging module and calculate empirically determined correction factors that are stored in memory within the imaging module.
US10742869B2

An image pickup apparatus includes a touch detecting unit configured to be capable of detecting a touch operation performed on a touch panel; a viewfinder display unit configured to display a display indicating a set value of an item inside a viewfinder; and a control unit configured to execute control such that, in a case where a subject image is visible through the viewfinder, a set value of a first item is changed in response to a touch operation performed on the touch panel when a predetermined operation relating to image pickup is not being performed, and a set value of a second item that is different from the first item is changed in response to a touch operation performed on the touch panel when the predetermined operation is being performed.
US10742863B2

An imaging and displaying device according to the present disclosure includes an imaging device that takes an image of a subject including a user; a display; and an image processor that receives data of an image of the subject taken by the imaging device and causes the image to be displayed on the display. The imaging device includes an imaging element that is disposed so that a normal to an imaging surface is horizontal; an optical system that has a lens for forming the image of the subject on the imaging surface; and an optical axis shift device. The optical axis shift device supports at least one of the imaging element and the lens in such a manner that the at least one is movable in a direction parallel with the imaging surface and that shifts the movably supported imaging element or lens in the direction parallel with the imaging surface.
US10742860B2

A method and device for double-camera-based imaging are provided. The method includes the following actions. A first image is acquired by a main camera and a second image is acquired by an auxiliary camera. A main image resolution and an auxiliary image resolution are determined according to a determined shooting mode and resolutions of the main camera and the auxiliary camera respectively. The first image is converted into a main image with the main image resolution. The second image is converted into an auxiliary image with the auxiliary image resolution according to the second image. A required target image is obtained according to the main image and the auxiliary image.
US10742857B2

An occupant monitoring apparatus includes: an imaging unit; an illumination unit; a casing in which the imaging unit and the illumination unit are installed; optical films provided on driver's sides of the imaging unit and the illumination unit and optically adjusting incident light; a cover covering the imaging unit, the illumination unit, the casing, and the optical films; windows provided in the cover so as to face the optical films; supports provided on window frame portions; and supports provided in the casing so as to face the window frame portions. The supports provided in the casing support end portions of the optical films from the windows side. The supports provided on the window frame portions support the end portions from an imaging unit side or an illumination unit side. The optical films are sandwiched in the thickness direction.
US10742852B2

Highly accurate estimation results are obtained even though cameras used for shape estimation of an object are distributed in accordance with a plurality of points of interest. The image processing apparatus of the present invention includes: an estimation unit configured to estimate an object shape of an object within a multi-viewpoint video image captured by each of a plurality of camera groups in units of camera groups; and an integration unit configured to integrate estimation results of the object shapes estimated in units of camera groups based on a camera map indicating a position relationship between common image capturing areas in each of the plurality of camera groups.
US10742851B2

A captured image decision device includes a synchronizing signal extraction section extracting a vertical synchronizing signal and a horizontal synchronizing signal for use in displaying a captured image captured by a camera, a time measurement section measuring a pulse interval time period of the vertical synchronizing signal, a segment area setting section configured to divide a frame of the captured image displayed according to the pulse interval time period by a horizontal virtual line, thus setting a plurality of segment areas divided by the virtual line, a pulse number measurement section measuring a pulse number of the horizontal synchronizing signal corresponding to each segment area, and a decision section deciding whether an affirmation condition of the pulse number measured by the pulse number measurement section being equal to or greater than a predetermined value is satisfied or not.
US10742843B2

An electronic device includes a display and a control unit. The control unit includes a processor and functions, when the processor executes a control program, as a screenshot executing section and a control section. The screenshot executing section acquires an image being displayed on the display. The control section performs authentication processing authenticating a user. When an image that requires authentication of the user is being displayed on the display, the control section forbids the screenshot executing section to acquire the image. When an image that requires no authentication of the user is being displayed on the display, the control section permits the screenshot executing section to acquire the image.
US10742840B2

A communication device may: receive a request signal from an external device via a communication interface, the request signal including a first IP address of the external device as a sender address; determine whether the first IP address in the request signal is a global IP address in a case where the request signal is received from the external device; and send a response signal to the request signal to the external device in a case where it is determined that the first IP address is not the global IP address, wherein sending of the request signal is restricted in a case where it is determined that the first IP address is the global IP address.
US10742837B1

A method of managing a low-power wide area blockchain network having multifunction printers (MFPs) as nodes in a radio frequency (RF) mesh is provided. The method includes configuring the RF mesh based on MFP characteristics including RF reception, compute, storage and uplink, for each of the MFPs. The method also includes operating the RF mesh to dynamically determine a role of the MFPs based on the MFP characteristics, current power save and processing state, for each of the MFPs and its neighboring MFPs, based on a function that minimizes delay, balances load and/or transitions MFPs between a sleep mode and a wake mode.
US10742831B1

An approach is provided for authenticating users of mobile devices for accessing printing devices. According to the approach, a short-range communications method is used to establish the identity of printing devices, and then authentication is performed using a Local Area Network (LAN)/Internet or mobile network connection. Embodiments include the use of two-phase authentication to provide additional security.
US10742825B2

A non-transitory computer-readable recording medium containing computer-readable instructions which cause an information processing device, when executed by a controller thereof, to obtain print file including print object data in accordance with a particular obtaining condition in response to application of the second operation to the start-up icon, display file information which is at least a part of information included in the print file as obtained, create, in response to a pointing operation which is at least one of the first operation and the second operation with respect to the displayed file information, print data having a data form interpretable by the printer based on the print object data included in the print file corresponding to file information subjected to the pointing operation, and transmit the print data as created to the printer through the communication interface.
US10742794B1

A system for sharing sounds on a phone call, using a smartphone having a touchscreen display, having a sound library containing a plurality of sounds, and having an app for facilitating the sound sharing functionality, and for initiating a phone call. The app includes a pad controller view which displays a plurality of pads that may each be associated with one of the sounds in the library and will play that sound upon request. The app includes means for associating the sounds with the pads, for editing the sounds associated with the pads, and for adjusting the relative volume of sounds associated with the pads with a mix that may be provided as outgoing audio on the phone call.
US10742787B2

A mobile terminal includes a support assembly, a display screen, and a movable base. The support assembly includes a first housing, a second housing, and a bendable member. The first housing defines a first recess. The second housing defines a second recess. The bendable member is connected between the first housing and the second housing and has a capacity of being unbent or bent to unfold or fold the support assembly. The movable base is movably mounted in the first recess. The movable base is able to carry the camera to move out or retract into the first recess with respect to the first circumferential side surface, and the second recess is configured to accommodate a part of the movable base.
US10742772B2

Disclosed herein is a method for transforming data for low volume transmission of a meta model based protocol which monitors power amount data of new renewable energy, including: generating energy sensing data; receiving, by a client, the energy sensing data and transforming the received energy sensing data into meta model data including a meta model and meta data; generating packet meta model data by dividing and compressing the meta model data; transmitting the packet meta model data to a server through an Internet of Things (IOT) communication network; and parsing, by the server, the packet meta model data to output the meta model data.
US10742771B2

A method and system for a content broker, including a unified object index, where the content broker is coupled to the unified object index and receives, from a requesting entity, a request to perform an action on an object and the object is stored in the content repository. The method further including obtaining the object associated with the request from a content repository, determining, using the unified object index, a normalized object type associated with the object, obtaining a governance rule based on the normalized object type, and servicing the request using the governance rule.
US10742770B2

Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
US10742768B2

A relaying system and method of transmitting an IP address of a client to a server by using an encapsulation protocol are provided. The relaying system includes: a first proxy configured to receive an original packet including the IP address of the client in a header of the original packet attach the original packet to the inside of an encapsulation packet consisting of a header and a payload by using a predetermined encapsulation protocol, and generate a reconstructed packet; and at least one second proxy or bridge router configured to extract the original packet attached to the inside of the encapsulation packet and transmit information about the IP address of the client to the server. According to the relaying system and method, a host server is able to provide services using information in a packet header such as an IP address of a terminal. The presence of a proxy may be not shown to the client and the server. Tunneling communication is enabled between two terminals without any specific changes to a terminal and a host server or installation of a specific program. Furthermore, use of an encapsulation protocol is advantageous for security, and it is possible to quickly find an encapsulation packet.
US10742764B2

A method, apparatus and computer program product for displaying a web page. Metadata describing a web page is received by a client data processing system. The metadata defines what the web page looks like without content for the web page. The content needed for the web page based on the metadata is identified by the client data processing system. The content for the web page is obtained by the client data processing system. The web page using the metadata and the content is created by the client data processing system without using a markup language. The web page on a graphical user interface on the client data processing system is displayed by the client data processing system.
US10742761B2

An inter-process communication (IPC) system, includes a first client engine, a first server engine, and a broker engine that is coupled to the first client engine. The broker engine initiates a first timer that is configured to reset when traffic is received from the first server engine while the first server engine is registered with the broker engine and coupled to the broker engine via a communication channel. The traffic that causes the first timer to reset includes at least one of: traffic generated by the first client engine to complete a request, and a first server-to-broker heartbeat message generated by the first server engine. The broker engine determines that the first timer has reached a predefined time amount, and in response, removes the registration of the first server engine and removes the communication channel between the broker engine and the first server engine.
US10742760B2

Techniques for implementing a publish-subscribe messaging system are disclosed. An example device generates a topic string comprising a string of characters that represent a subscription to a requested publication. A subscription filter is computed based on the topic string. The device is configured to receive a publication, which includes a data payload and a publication filter. The device performs a bitwise comparison of the subscription filter and the publication filter to determine whether the publication is a destination match for the subscription. If the publication is a destination match for the subscription, the device consumes the data payload of the publication.
US10742758B2

A communication analysis device updates statistical information on a content access based on the communication session log of a user. The content access is an aggregation of a plurality of communication sessions needed for browsing one website. The communication analysis device acquires session information pertaining to one communication session, and determines whether a lapsed time from the start time or end time of a base communication session to the start time or end time of the one communication session is equal to or less than a threshold value. When the lapsed time is equal to or less than the threshold value, the communication analysis device determines that the one communication session is included in the same content access as the base communication session, and updates the statistical information of the content access. The communication analysis device stochastically sets the threshold value based on a prescribed probability distribution.
US10742757B2

Systems, devices, and methods for automating network account transfers based on predicted inactivity are disclosed. In one embodiment, the system comprises a mail server providing access to an email account of a user; a social graph monitor configured to: periodically query, over a network, a social graph associated with the user to retrieve at least one social network feed associated with the user, calculate a sentiment score for the social network feed based on parsing the social network feed using a natural language parser, and determining that a transfer condition has occurred if the sentiment score exceeds a pre-defined sentiment score threshold; and a condition processor configured to: transmit, via the mail server, a password reset request to a network application associated with the transfer condition, intercept an email from the network application, via the mail server, transmitted in response to the password reset request, forward, via the mail server, the email to a recipient associated with the transfer condition, determine that the recipient has reset a password associated with the network application, and forward, to the recipient via the mail server, subsequent emails from the network application.
US10742750B2

Systems, methods, and computer-readable media for managing a distributed network of function execution environments. In some examples, a function router registers a plurality of execution endpoints on a catalog of execution endpoints and functions, each of the plurality of execution endpoints including a respective runtime environment capable of executing one or more functions. The function router receives, from a client, a request to execute a particular function and, based on the request, queries the catalog for the particular function and execution endpoints associated with the particular function. The function router receives a query response identifying one or more execution endpoints associated with the particular function, and selects an execution endpoint for executing the particular function based on one or more criteria associated with the request. The function router then sends to the client a response identifying the execution endpoint selected for executing the particular function.
US10742743B2

A method for managing enrollments of an IoT device is disclosed. The method includes: transmitting a request to enroll the device with a first device management service; receiving, from a server associated with the first device management service, a first policy profile including one or more first device management policies, the first policy profile defining at least one restriction on management of the device by other device management services with which the device enrolls; transmitting a request to enroll the device with a second device management service; receiving, from a server associated with the second device management service, a second policy profile including one or more second device management policies; identifying a subset of the one or more second device management policies which comply with the at least one restriction; and applying the identified subset of the one or more second device management policies on the device.
US10742741B2

A method and an apparatus for controlling Internet-of-Things (IoT) devices interlocked with a vehicle are disclosed may include confirming first classification information related to a plurality of IoT devices, confirming second classification information related to at least one service to be provided using the plurality of IoT devices, determining reliability of the plurality of IoT devices corresponding to the first classification information and the second classification information, in the case in which data of the same item are transmitted redundantly from the plurality of IoT devices, selecting a value transmitted from an IoT device selected corresponding to the reliability, and transmitting the selected value to a device that performs the at least one service.
US10742739B2

The present disclosure relates to configuring and operating Internet of things (IoT) elements connected by a network. A computing device receives a request to generate a rule for coordinating operation of a plurality of IoT elements. The computing device determines whether the request satisfies restrictions as described in descriptions of interface components of the plurality of IoT elements in the computing device by referencing descriptions of interface components. The interface components correspond to the plurality of IoT elements. The computing device generates the rule responsive to determining that the request satisfies the restrictions, and sends an action signal over the network based on the rule to operate one or more of the plurality of IoT elements.
US10742735B2

An illustrative storage management appliance is interposed between client computing devices and one or more cloud storage resources. The appliance uses cloud storage resources in conjunction with a network attached storage device configured within the appliance to provide to the client computing devices seemingly unlimited network attached storage on respective network shares. The storage management appliance monitors data objects on the network shares and when a data object meets one or more criteria for archiving, the storage management appliance archives the data object to a cloud storage resource and replaces it with a stub and preview image on the network share. When access to the stub and/or preview image is detected, the storage management appliance restores the data object from the cloud storage resource. The criteria for archiving flexibly allow individual data objects to be archived to cloud storage without archiving frequently-accessed “neighboring” data objects on the same network share.
US10742724B2

Some examples described herein relate to a cluster computer system. In an example, a first node in a cluster computer system may determine that a second node has become unavailable. The first node may form a first sub-cluster with a plurality of nodes that are communicatively reachable in the cluster computer system. The first node may retain ownership over a first application running on the first node, to the exclusion of remaining nodes in the first sub-cluster, wherein retaining ownership over the first application comprises controlling access to a storage volume related to the first application. The first node may attempt to obtain ownership over a second application previously running on the second node before the second node became unavailable. In response to a successful attempt the first node may obtain ownership over the second application, to the exclusion of remaining nodes in the first sub-cluster.
US10742722B2

Examples relate to load balancing servers. In one example, a computing device may: receive a network packet from a source device, the network packet including data specifying a value; divide the value included in the network packet by a divisor; determine, from a plurality of servers, a destination server for the network packet based on a remainder of the division; and forward the network packet to the destination server.
US10742719B2

In an embodiment of the present disclosure, there is provided a computer-implemented method, wherein the computer is operable between a management server and at least one cloud server providing a cloud service, the method comprising: collecting management data related to the cloud service through a standard protocol for network management, wherein the standard protocol allows communication of the management data via a designated port; and sending at least part of the management data to the management server.
US10742718B1

Techniques for distributed computing system node management are described herein. In some cases, internal compute nodes (i.e., compute nodes that are allocated to the distributed system) may be mutually trusted such that they may freely establish communications with one another. By contrast, external compute nodes (i.e., compute nodes that aren't allocated to the distributed computing system) may be untrusted such that their access to the distributed system may be regulated. In some cases, one or more of the compute nodes within the distributed computing system may maintain respective collections of system view information. Each respective collection of system view information may include, for example, information associated with the corresponding compute node's view of the distributed computing system based on information that is available to the corresponding compute node.
US10742708B2

In various embodiments, an iterative encoding application generates shot encode points based on a first set of encoding points and a first shot sequence associated with a media title. The iterative encoding application performs convex hull operations across the shot encode points to generate a first convex hull. Subsequently, the iterative encoding application generates encoded media sequences based on the first convex hull and a second convex hull that is associated with both a second shot sequence associated with the media title and a second set of encoding points. The iterative encoding application determines a first optimized encoded media and a second optimized encoded media sequence from the encoded media sequences based on, respectively, a first target metric value and a second target metric value for a media metric. Portions of the optimized encoded media sequences are subsequently streamed to endpoint devices during playback of the media title.
US10742707B2

In one example, a method for low-latency multimedia stream reception and output in a receiving device is described. Data packets may be extracted from a multimedia stream received over a network. The sequence of independently decodable units associated with the multimedia stream may be decoded. Each independently decodable unit may include one or more data packets. The sequence of decoded units may be stored in an output buffer. Further, flow of the decoded units from the output buffer to an output device may be controlled based on one of (a) a latency associated with the decoded units and (b) a rate of reception of the decoded units by the output buffer and a rate at which the output device is operating. The decoded units may be rendered on the output device.
US10742705B2

A method for generating and processing a broadcast signal according to an embodiment of the present invention includes encoding broadcast data for one or more broadcast services, encoding first level signaling information including information describing properties of the one or more broadcast services, encoding second level signaling information including information for scanning the one or more broadcast services and generating a broadcast signal including the broadcast data, the first level signaling information and the second level signaling information, wherein the first level signaling information includes user service description (USD) information describing service layer properties with respect to the broadcast services, wherein the USD information includes capability information specifying capabilities necessary to present broadcast content of the broadcast services.
US10742699B1

Techniques for low latency streaming, for example in a broadcasting environment, are described herein. In some examples, a playlist may include both currently encoded segments, which are segments that are fully encoded at or before playlist generation, and also future encoded segments, which are segments that have not yet been fully encoded at playlist generation. In some cases, the inclusion of future encoded segments in a playlist may result in a player requesting a segment that has not yet been fully encoded at the time that the request is received by the server. In some examples, even though the segment is not yet fully encoded, the server may nevertheless save and process the request, for example by transmitting encoded portions of the requested segment as those portions are made available by the encoder.
US10742691B2

Processing mid-dialog SIP messages by receiving a mid-dialog SIP message from a SIP user agent client, creating a new SIP session, associating the new SIP session with the mid-dialog SIP message, identifying an application that is associated with the mid-dialog SIP message, providing to the application the mid-dialog SIP message in the context of the new SIP session, receiving an acknowledgement from the application that the application will accept the mid-dialog SIP message, and responsive to receiving the acknowledgement, providing to the application the mid-dialog SIP message in the context of the new SIP session.
US10742689B2

Systems and methods are described for orchestrating a security object, including, for example, defining and storing a plurality of policies in a database coupled to a policy engine and receiving, by the policy engine, the security object and at least one object attribute associated with the security object. In addition, the policy engine determines the acceptability of the security object based, at least in part, on the at least one object attribute and at least one of the plurality of policies corresponding to the at least one object attribute. The security object to at least one communication device associated with the policy engine is distributed when the security object is determined to be acceptable. The at least one communication device establishes communication based, at least in part, on the security object.
US10742683B2

Techniques applicable to a network orchestration and security platform for a network, such as an industrial control system (ICS) network, are disclosed. Such techniques include, for example, methods to characterize and classify networked industrial devices based upon conversation patterns, generate security zones for ICS networked assets based upon conversation characteristics and patterns, to identify and record ICS networked devices in a non-intrusive way, to create secure conduits between security zones for ICS networked devices with no impact to endpoint hose devices, and systems therefor.
US10742681B2

A method and system are provided for enabling collaborative access to a data object. The method comprises establishing an access control policy, the access control policy defining at least one collaborative condition under which access to the data object is permissible, monitoring a plurality of users for compliance with the collaborative condition and providing access to the data object after a predetermined number of the users meet the at least one collaborative condition.
US10742677B1

Embodiments are directed to monitoring network traffic to determine users and assets based on the network traffic. A user role model may assign a user role and provide a role confidence score for the users based on network traffic associated with the users. An asset model may assign an asset type and provide an asset confidence score the assets based on network traffic associated with the assets. The users may be associated with assets based on the network traffic. The role confidence scores provided for the users may be modified based on the asset type assigned to assets associated with the users. The asset confidence score provided for the assets may be modified based on the user role assigned to the users associated with the assets. A report that includes information about the user roles and the asset types may be provided.
US10742673B2

For a managed network including multiple nodes providing multiple services and executing multiple applications some embodiments provide a method for generating groupings of network addresses associated with different applications or services. The method analyzes network traffic patterns using a probabilistic topic modeling algorithm to generate the groupings of network addresses. In some embodiments, data is collected and analyzed periodically. A network administrator defines the granularity of the time stamps in some embodiments to monitor changes in network traffic patterns over time for each network address or node and/or for the network as a whole. For each network address or node, a probability distribution over the topics at a given time is stored in some embodiments. The stored distributions are then used to determine a divergence over time of the application or service provided by the network address or node. Additionally, the stored distributions can be used to detect anomalous behavior.
US10742671B2

Systems and methods are disclosed for identifying resources responsible for events. In one embodiment, a method may include determining a number of unique actors in a plurality of actors that have accessed the resource. The method may further include identifying from the plurality of actors a set of affected actors that has been affected by an event and identifying from the set of affected actors a subset of resource-affected actors that accessed the resource prior to being affected by the event. The method may further include determining a number of resource-affected actors in the subset of resource-affected actors and, based on the number of unique actors and the number of resource-affected actors, determining an event score for the resource. The event score may be a lower bound of a confidence interval of a binomial proportion of the number of resource-affected actors to the number of unique actors.
US10742670B1

Utility driven graph summarization for use in detecting and preventing malicious computer application. In one embodiment, a method may include receiving a graph comprising a plurality of nodes and a plurality of edges, prioritizing each of the plurality of nodes by way of assigning a relative importance value to each node of the plurality of nodes, combining at least two nodes of the plurality of nodes into a supernode based at least on the relative importance value of each node, calculating a utility penalty value for creating a superedge between the supernode and a node neighboring the supernode, creating the superedge between the supernode and the node neighboring the supernode if the utility penalty value satisfies a pre-determined penalty threshold, calculating a utility level based at least in part on creating the supernode and the superedge, and repeating the method until the calculated utility level satisfies a pre-determined threshold.
US10742669B2

A system and method for determining malware threats based on behavior of a host/IP address uses netflow data, white lists, black lists and machine learning classification with a model. A white list generation method may be used and a machine learning model validation method.
US10742668B2

A network attack pattern determination apparatus, method, and non-transitory computer readable storage medium thereof are provided. The apparatus is stored with several attack patterns and access records. Each access record includes a network address, time stamp, and access content. Each attack pattern corresponds to at least one attack access relation. Each attack access relation is defined by a network address and access content. The apparatus retrieves several attack records according to at least one attack address. The network address of each attack record is one of the attack address(s). The apparatus divides the attack records into several groups according to the time stamps and performs the following operations for each group: (a) creating at least one access relation for each attack address included in the group and (b) determining that the group corresponds to one of the attack patterns according to the at least one access relation of the group.
US10742664B2

Methods and systems for event detection include defining a plurality of conditions that represent one or more synthetic events. Data from a plurality of data sources is aggregated across a period of time, multiple attack surfaces, and geographically distinct locations. The aggregated data is matched to the conditions to determine whether a synthetic event has occurred. A response to the synthetic event is formed to resist an attack.
US10742663B2

Systems and methods for providing security services during a power management mode are disclosed. In some embodiments, a method comprises detecting with a mobile security system a wake event on a mobile device, providing from the mobile security system a wake signal, the providing being in response to the wake event to wake a mobile device from a power management mode, and managing with the mobile security system security services of the mobile device. Managing security services may comprise scanning a hard drive of the mobile devices for viruses and/or other malware. Managing security services may also comprise updating security applications or scanning the mobile device for unauthorized data.
US10742657B2

Embodiments can provide a computer implemented method in a data processing system including a processor and a memory having instructions, which are executed by the processor to cause the processor to implement the method for accessing a shared resource. The method includes the following steps: identifying a process having elevated privileges as a background process; providing an authorized user list including at least one user identification number; providing a communication endpoint connectable to a user or a program; receiving a user identification number of the user or the program through the communication endpoint; checking whether the user identification number is in the authorized user list. If the user identification number is in the list, a file descriptor associated with the shared resource is provided; and the file descriptor is transferred to the user or the program through the communication endpoint.
US10742655B2

Access to a resource controlled by a resource server (6, 8) is provided using a validity token issued by a validation server (4). When a resource request from a user (12) is received at the resource server (6, 8), then the resource server (6, 8) determines if the resource request satisfies a policy. If the resource request satisfies the policy, then access to the resource may be permitted without confirming the validity of the validation token with the validation server (4). Conversely, if the resource request does not satisfy the policy, then validation of the validation token with the validation server (4) is performed before the access requested is permitted.
US10742653B2

A method, apparatus and computer program product for protecting enterprise Information Technology (IT) infrastructures by automatically instantiating individualized network flow controls and/or network access controls specific to an IoT device. In this approach, an IoT device is identified, e.g., via network scanning or other observational sensors, or by receipt of information from a network administrator. In response to receiving information about the new IoT device, a control component obtains applicable network flow control and/or access control rules for the IoT device. These rules are obtained from one or more authoritative (trusted) sources, e.g., querying a website of the IoT vendor, an industry site, or an enterprise site. In this manner, applicable network flow control and/or access control rules are obtained. The control component then translates those rules into configuration parameters that are consumable by the particular network flow control device that is (or will be) associated with the IoT device.
US10742647B2

A system for contextual and risk-based multi-factor authentication having a multi-dimensional time series data server configured to monitor and record a network's traffic data and to serve the traffic data to other modules and a directed computation graph module configured to receive network traffic data from the multi-dimensional time series data server, determine a network traffic baseline from the network traffic data, and determine a verification score needed before granting access based at least in part by the network traffic baseline. A plurality of verification methods build up a user's verification score to required level to gain access.
US10742634B1

Automated methods for single sign-on (SSO) to a plurality of websites using optical codes. A login server communicates with a user computer browser and a user mobile device to validate the user. When the user goes to a website, the website presents an optical code to the user computer browser. The user mobile device obtains the optical code and communicates with the login server to automatically log the user in.
US10742629B2

A cloud resource protection method, system, and computer program product include authenticating a user on a first computer that is part of a distributed system, based on the authentication, assigning to the user, on the first computer, a token indicating a set of permissions, receiving a directive from the user to initiate, via the first computer, the execution of a process associated with a class, based on the token, initiating, on a second computer, the execution of the process, with no further authentication, granting the process access to a data set, access to which is restricted to one or more of the plurality of classes, and providing a data item from the data set to the user.
US10742623B1

Certain aspects of the present disclosure provide techniques for encrypting fields in a profile. One example method generally includes adding a profile associated with a user to a profile snapshot queue and receiving an update to the profile from the user. The method further includes encrypting updated fields of the profile with private keys and encrypting the private keys with a public key of a first consumer of a plurality of consumers to generate encrypted keys. The method further includes storing the encrypted keys in a header of the update and adding the update to a live update queue. The method further includes receiving a request by the first consumer to access the profile, transmitting the profile from the profile snapshot queue to the first consumer and transmitting the update from the live update queue to the first consumer.
US10742616B2

The present specification discloses an improved method of encrypting a file and distributing the encrypted file over a network from a user computer to a remote computer, which includes providing an interface to a file encryption application to a user; receiving an input designating an encryption option from among a plurality of encryption options; based upon said input designating an encryption option, and based upon a format of said file, causing a separate application specific to said format to encrypt said at least one file, wherein said encrypted file is adapted to be decrypted using a passcode and wherein said passcode is transmitted to the user via at least one message type.
US10742615B2

Construction of the static webpage begins. A first portion of content of the static webpage to encrypt is identified, the first portion being less than the entire static webpage. The first portion of content of the static webpage is encrypted. A first decryption key is provided to a first group of user devices, wherein the first decryption key allows each user device in the first group of user devices to decrypt the first encrypted portion of content of the static webpage. The static webpage is provided to a server, wherein the server allows public access to the static webpage.
US10742614B2

Aspects of the subject disclosure may include, for example, determining whether communications are encrypted, determining a communication type for the communications according to sensitivity criteria, encrypting the communications according to the communication type to generate encrypted communications, and transmitting to a second network device the encrypted communications. Other embodiments are disclosed.
US10742613B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an adapter for sending Applicability Statement 4 (AS4) profile compliant payloads. In one aspect, a method includes receiving a configuration script including parameters for an adapter for sending Applicability Statement 4 (AS4) profile compliant payloads to an agency; identifying a conformance client and at least one associated Processing Mode (P-Mode) based on the configuration script; identifying a response handler based on the configuration script, wherein the response handler is configured to receive and parse responses from the agency; generating the adapter to include the conformance client and the response handler, wherein the conformance client is associated with an authentication service, the authentication service determined based on the configuration script, and wherein the at least one P-Mode are populated based on the configuration script; and enabling the generated adapter for execution in a runtime environment.
US10742611B2

A method, a system and computer program products for securely enabling in-network functionality over encrypted data sessions, the method involving establishing an encrypted data session between a client communication application (100) and a server communication application (200) over a communication network; receiving and/or transmitting, by the client communication application (100), in the established encrypted data session, at least one encrypted communication data (D) from/to the server communication application (200) through a computing network element (M); and performing, by the computing network element (M), different actions other than data packet forwarding from one communication application to the other on the encrypted communication data (D). The encrypted communication data (D) has a plurality of data portions, or contexts, (CTX), each encrypted by a context key, and the different actions being specific for the computing network element (M) and for one or more of the contexts (CTX_X).
US10742603B2

The invention relates to a TEE (Trusted Environment Execution) structure which comprises: (a) a main domain defining a domain of operation for a main OS; (b) a privileged trusted domain defining a domain of operation for a trusted domain OS; and (c) a low level hypervisor which is separated from both of said main OS and said trusted domain OS, said hypervisor is used for: (c. 1) receiving packets from a network; (c.2) examining an address included in each of said received packets; and (c.3) based on the determined address in each of said packets, targeting respectively the packet to either said main OS or to said trusted domain OS, while in the latter case any interaction between the received packet and said main OS is eliminated.
US10742600B2

Disclosed herein are methods, systems, and software for bypassing a domain name system. In one example, a method of operating a user communication device includes receiving a user instruction requesting content within a user application of the user communication device. The method further provides, in response to the user instruction, processing at least a domain name system bypass data structure on the user communication device to identify a network address for retrieving the content. The method further includes, requesting the content from a content node using the network address.
US10742597B2

An enterprise network may be managed by enabling provision of a graphical user interface that shows IP address allocations for the network and that allows a user to configure DHCP scopes, receiving a DHCP scope request based on a user interaction with the graphical user interface, translating the request into a protocol for communicating with a DHCP control server, providing the translated request to the DHCP control server for processing at the DHCP control server, and updating configurations of multiple DHCP servers. The updated configurations may be sent from the DHCP control server to a configuration storage system and the multiple DHCP servers may be enabled to access the updated configurations from the configuration storage system.
US10742595B2

A system includes a virtual private network (VPN) gateway and a client device. The VPN gateway receives a domain name system response through a physical coding sublayer. The VPN gateway fetches a fully qualified domain name corresponding to the domain name system response, and fetches one or more access control list rules from an access control list table for a specific user account. The VPN gateway installs an Internet protocol (IP) address in the access control list table for each access control list rule and handles requested data traffic to the IP address. The client device creates a virtual tunnel interface route with a port of a transmission control protocol (TCP) listener device and parses the domain name system response. The client device updates a domain name system cache with the fully qualified domain name and the IP address and sends unencrypted network traffic over the virtual tunnel interface route.
US10742590B2

An online delivery servicing system includes a server that functions with a customer computing device to obtain delivery confirmation request information associated with an online gift purchased by a customer for a recipient in which the delivery confirmation request information is associated with a quantity of delivery confirmation messages to be transmitted to a recipient of the online gift and a period of elapsed time for each delivery confirmation message. At each period of elapsed time, the server transmits one of the delivery confirmation messages to a recipient computing device associated with the recipient such that, when a response to the one delivery confirmation message is received, the server transmits a customer confirmation message to the customer computing device, and when the quantity of delivery confirmation messages have been transmitted and no response has been received from the recipient computing device, the server transmits a customer delivery failure message to the customer computing device.
US10742576B2

Embedding actionable content in electronic communication comprises associating an embedding gadget with an electronic message and modifying the electronic message based on the embedding gadget.
US10742569B2

A multi-port status message maintains network connections between virtual ports of two network elements. The network elements negotiate the network connections between first virtual ports on a first network element and corresponding second virtual ports on a second network element. The first network element generates a multi-port status message listing the first virtual ports that are actively connected to the corresponding second virtual ports. The first network element sends the multi-port status message to the second network element to maintain the network connections.
US10742568B2

In accordance with an embodiment, described herein is a system and method for supporting multi-tenancy in an application server, cloud, on-premise, or other environment, which enables categories of components and configurations to be associated with particular application instances or partitions. Resource group templates define, at a domain level, collections of deployable resources that can be referenced from resource groups. Each resource group is a named, fully-qualified collection of deployable resources that can reference a resource group template. A partition provides an administrative and runtime subdivision of the domain, and contains one or more resource groups. Each resource group can reference a resource group template, to bind deployable resources to partition-specific values, for use by the referencing partition. A tenant of the application server or cloud environment can be associated with a partition, or applications deployed therein, for use by that tenant.
US10742556B2

In one embodiment, a method includes monitoring traffic in a Segment Routing (SR) network through a collection of a Segment Routing Demand Matrix (SRDM) at a Traffic Engineering (TE) system operating at a network device, receiving topology information for the SR network at the TE system, modeling the SR network based on the topology information and the SRDM at the TE system, identifying a violation of a constraint in the SR network at the TE system, and running an optimization algorithm for SR optimization of constraints in the SR network at the TE system, wherein the optimization comprises limiting a number of Segment Identifiers (SIDs) used in a SR policy implemented to resolve the constraint violation. An apparatus is also disclosed herein.
US10742555B1

A method and corresponding apparatus for detecting network congestion. The method includes capturing, using a local clock of a sender device, a send time of an outgoing packet sent from the sender device to a receiver device through a forward route, and capturing, using the local clock of the sender device, a receive time of an acknowledgment packet sent from the receiver device to the sender device through a backward route. The acknowledgment packet contains timing information, generated using a local clock of the receiver device, for determining an internal latency of the receiver device. A round trip time is computed as a difference between the send time and the receive time. The internal latency is subtracted from the round trip time to compute a total propagation time. If the total propagation time is above a threshold, the forward route and the backward route are changed.
US10742552B2

In one implementation, a method includes transmitting, to a server, a first interest message. The first interest message includes a request for a representational state transfer (REST) operation and a name of a first state for the REST operation. The method also includes receiving, from the server, a second interest message. The second interest message includes the name of the first state for the REST operation. The method further includes transmitting, to the server, the first state based on the second interest message and receiving, from the server, a response to the REST operation.
US10742550B2

A system, method, and computer-readable medium for updating request routing information associated with client location information are provided. A content delivery network service provider receives a DNS query from a client computing device. The DNS query corresponds to a resource identifier for requested content from the client computing device. The content delivery network service provider obtains a query IP address corresponding to the client computing device. Based on routing information associated with the query IP address, the content delivery network service provider routes the DNS query. The process further includes monitoring performance data associated with the transmission of the requested resource and updating routing information associated with the query IP address based on the performance data for use in processing subsequent requests from the client computing device.
US10742546B2

A traffic on-boarding method is operative at an acceleration server of an overlay network. It begins at the acceleration server when that server receives an assertion generated by an identity provider (IdP), the IdP having generated the assertion upon receiving an authentication request from a service provider (SP), the SP having generated the authentication request upon receiving from a client a request for a protected resource. The acceleration server receives the assertion and forwards it to the SP, which verifies the assertion and returns to the acceleration server a token, together with the protected resource. The acceleration server then returns a response to the requesting client that includes a version of the protected resource that points back to the acceleration server and not the SP. When the acceleration server then receives an additional request from the client, the acceleration server interacts with the service provider using an overlay network optimization.
US10742542B2

A device may determine a link aggregation group (LAG) that aggregates links that includes a first group of links that connects the device to a first provider edge (PE) device and a second group of links that connects the device to the second PE device, where the first PE device and the second PE device are on an Ethernet virtual private network (EVPN) and are multi-homed PE devices for the device, and where the first PE device provides a local connection to a customer edge (CE) device for the device. The device may receive a message from the first PE device indicating that the first PE device lacks a connection with the EVPN, and may send, based on the message, traffic intended for the CE device via the first PE device and traffic intended for the EVPN via the second PE device and not the first PE device.
US10742538B2

An information processing apparatus in a mesh network, includes circuitry that, when the information processing apparatus is allocated as a root node for multicast transmission, transmits path request for multicast to other information processing apparatuses in the mesh network. The circuitry also determines a path for multicast based on responses received from the other information processing apparatuses, and performs multicast transmission of data via the determined path for multicast.
US10742530B1

Embodiments are directed to monitoring network traffic using network monitoring computers (NMCs). Two or more network segments coupled by bridge devices may be monitored by NMCs. The bridge devices may modify network traffic passed from one network segment to another network segment. Flows in network segments may be determined based on monitored network traffic associated with the network segments. Other flows in other network segments may be determined based on other monitored network traffic associated with the other network segments. A correlation score for two or more flows in different network segments may be provided based on a correlation model. Two or more related flows may be determined based on a value of the correlation score of the two or more related flows located in different network segments. A report that includes information about the two or more related flows may be provided.
US10742523B2

Some tests can be implemented as services. A network provider can deploy (“push”) a test to a container resident on one or more devices of the network, either at installation, periodically, or when a problem is reported. When a customer reports an issue, services running on one or more devices of the customer's installation can cause the containerized tests to be run. For example, the central office of the network provider can initiate a request to run the test through the internet (or other connection) by the container. In some implementations, there is an overlap of the service based test set with traditional technician initiated test sets forming a hybrid testing architecture.
US10742522B2

A method for providing a service in a telecommunications network comprising a plurality of resources and at least one slice of resources. The method comprises actions of receiving, creating and modifying. A request is received from a customer to serve a group of user devices by a first service. A new NSI is created to provide the first service, if it is determined that there is no existing NSI, shareable between a plurality of services, that can provide the first service. An existing NSI, shareable between a plurality of services, is modified to serve the group of user devices by that first service in addition to at least one second service that is already provided by the existing NSI, if it is determined that the existing NSI can provide the first service.
US10742520B2

Methods, systems, computer-readable media, and apparatuses for providing mobile device management (MDM) functionalities are presented. In some embodiments, a pseudo device representative of a physical end user device may be established within a cloud computing environment. The pseudo device may be provisioned for use with MDM service providers and configured to receive commands from the MDM service providers on behalf of the physical end user device. In some embodiments, multiple pseudo devices each representative of a physical end user device may be established within a cloud computing environment. A first pseudo device may be provisioned for use with a first MDM service provider and configured to receive commands from the first MDM service provider on behalf of the physical end user device. A second pseudo device may be provisioned for use with a second MDM service provider and configured to receive commands from the second MDM service provider.
US10742511B2

A method for assisting communication of a source host upon movement from a first Data center (DC) to a second DC is disclosed. The method includes identifying that the source host has moved from the first DC to the second DC, ensuring that packets identifying a source as the source host in the second DC are copied to a control plane network element, and, for a first destination host identified in a first packet copied to the control plane network element and identified as a host that is not in the second DC, updating an Address Resolution Protocol (ARP)/Neighbor Discovery Protocol (NDP) cache of the source host by sending, to the source host, a first ARP message/unsolicited neighbor advertisement specifying a Media Access Control (MAC) address of an edge router associated with the source host in the second DC as a destination MAC address for the first destination host.
US10742507B2

An operator node is configured to generate a visualization of the configurations of nodes communicatively coupled to the operator node via a network. The operator node scans target nodes in a network and identifies a set of attributes describing various configuration properties of each node. The operator node compares corresponding attributes across nodes and determines for each attribute a measure of variance. The variance for each attribute is displayed in a grid view, allowing a user to observe the level of similarity or dissimilarity of each attribute across the target nodes of the network. The operator node also defines and implements a policy describing a set of configuration properties with which target nodes must comply. The operator node determines if one or more target nodes is in violation of the policy, displays a differential visualization associated with each policy failure event, and enables an operator to re-configure target nodes accordingly.
US10742484B1

Described herein are systems, methods, and software to enhance the management of responses to incidents. In one example, a method of improving incident response comprises identifying an incident in an information technology (IT) environment associated with a first entity of a plurality of entities, and identifying action implementation information related to the incident. The method further anonymizes the action implementation information for the incident, and determines action suggestions based at least on the anonymized action implementation information.
US10742479B2

A system comprising: an event server including a plurality of event agents for handling events occurring in a geographic space; a selector operable to select an event agent among the plurality of event agents for handling an event candidate based on a type of a source information; and a mobile object server including a mobile object agent assigned to a moving object in the geographic space, wherein the mobile object server is operable to execute the mobile object agent to collect information of an event from the selected event agent and provide the moving object with information that assists the moving object with traveling in the geographic space.
US10742474B2

An envelope tracking (ET) amplifier circuit is provided. The voltage mDPD circuit is provided in an ET amplifier circuit and configured to determine a voltage deviation relative to an ET modulated target voltage signal, execute an mDPD polynomial in one or more iterations to extract an mDPD coefficient(s), and adjust a time-variant target voltage envelope of the ET modulated target voltage signal based on the mDPD coefficient(s) extracted in each of the mDPD iterations to reduce the voltage deviation to a predefined threshold. By reducing the voltage deviation in the ET modulated voltage, it is possible improve linearity (e.g., gain linearity) of the ET amplifier circuit, which can lead to reduced power consumption and improved radio frequency (RF) performance.
US10742469B2

A method and an apparatus for determining a time offset are disclosed. The method includes: obtaining, by a device at a head end, a time-domain signal based on a received signal; and then determining a time offset based on values of peak-to-average ratios of a preset quantity of symbols starting from a qth symbol in the time-domain signal, where a peak-to-average ratio of the qth symbol is greater than a preset threshold. A new method for determining a time offset is provided, and takes advantages that the time-domain signal obtained by the device at the head end has stronger capabilities of resisting interference such as frequency offset and phase noise. The method for determining a time offset can be applied both to initial ranging and periodic ranging.
US10742462B2

Methods, systems, and apparatus for EM communications. One of the apparatus includes a super-regenerative amplifier (SRA) configured to receive a binary phase shift keying (BPSK) modulated signal and to output an amplitude signal as a function of changes in phase in the BPSK modulated signal; a pseudo synchronous demodulator that rectifies the amplitude signal and generates an envelope of the rectified amplitude signal; and an analog to digital converter that converts the amplitude values of the envelope to digital binary values.
US10742452B2

Representative implementations of devices and techniques provide noise reduction between proximate networks by minimizing interference from nearby network communication. A processing module determines a performance condition of a network and communicates with one or more nodes at a nearby network based on the performance condition of the network.
US10742444B2

In a communication system including multiple ring networks, each ring network comprises: a host node serving as an upper controller for the other nodes in the own ring network, the host node being configured to be capable of communicating with another ring network; and a switch provided in the ring network and having multiple regular ports and multiple redundant ports, wherein the redundant communication ports of the switch in each ring network are connected to the redundant communication ports of the switch in the other ring network via redundant communication lines. When a communication error is detected in one ring network, the host node of the one ring network controls the switch of the own ring network and the switch of another ring network such that at least one node of the own ring network is incorporated in the other ring network via the switches and the redundant communication lines.
US10742440B2

A device and a method for controlling a device using a real-time image are provided. The method includes: receiving an image captured by an image capturing device connected to a network to display the image in real-time; searching for the device that is connected to the network and is controllable; designating, within the image, a setting zone corresponding to the device; receiving a user input; and controlling the device selected according to the user input. A location of the setting zone within the image may be updated according to a change in the image. The user may receive immediate visual feedback on how the devices are being controlled. The user may control a device displayed on the screen on which the real-time indoor image is displayed without having to navigate through different sub-menus for different devices.
US10742439B2

When a smartphone, which is an operation terminal connectable to the Internet, receives input for change in hot-water set temperature of a hot water supply device having a hot-water supply function, and the hot-water set temperature after the change instructed by the input for change is within a predetermined high-temperature region, then a request for input of a password is generated for the smartphone. When a password input to the smartphone matches with a predetermined registered password, an instruction for change in hot-water set temperature generated in accordance with the input for change is input to the hot water supply device via a communication adapter.
US10742437B2

The invention relates to a method for exchanging information between a household appliance (1) and a mobile device (2), the method comprising the steps of: providing optical information at a graphical user interface (3) of the household appliance (1) (S10); preferably, aligning the mobile device (2) with respect to the household appliance (1) based on one or more markers (4) displayed at a graphical user interface (5) of the mobile device (2) or based on a time-invariant portion of provided optical information (S11); receiving optical information at the mobile device (2) by capturing said optical information provided at the household appliance (1) by a camera (6) of the mobile device (2) (S12); processing said received optical information at the mobile device (1) in order to derive an information message included in said received optical information (S13); providing said information message or information associated with said information message at a user interface of the mobile device (2) (S14).
US10742419B2

A method for validating an interaction is disclosed. A first interaction cryptogram can be generated by a first device using information about a first party to the interaction and a second party to the interaction. A second interaction cryptogram can be generated by a second device also using information about the first party to the interaction and the second party to the interaction. Verifying each cryptogram can validate that the interaction details have not been changed, and that both the first party and second party legitimately authorized the interaction.
US10742418B2

An authentication method, an authentication apparatus, and an authentication system for the communications field are described. The authentication includes sending, by first user equipment, a first random parameter to second user equipment. The second user equipment obtains a first user identifier, a second user identifier, and a second random parameter; and generates a second authentication feature based on the first user identifier, the second user identifier, the first random parameter, and the second random parameter. The second user equipment sends the second authentication feature to the first user equipment for authentication. The first user equipment, after authentication, generates a first authentication feature. The first authentication feature is sent to the second user equipment for authentication.
US10742417B2

A fingerprint characterizing system and method include receiving a fingerprint image at a fingerprint module; extracting a plurality of minutiae points from the fingerprint image, via a fingerprint image sensor; generating a minutiae file of biometric data according to a corresponding location of the plurality of minutiae points on the fingerprint image; generating a pair table from the minutiae file; dividing the pair table into a plurality of subsets; encrypting, via processing circuitry each of the plurality of subsets; comparing, via the processing circuitry each of the encrypted plurality of subsets against one or more existing encrypted subsets stored across a plurality of data clouds; and generating, via the processing circuitry a match table for each of the encrypted plurality of subsets and a corresponding compatible existing encrypted subset stored in the plurality of data clouds.
US10742416B2

A system and method and for verifying that distorted biometric information submitted to a computing device is authentic. In various embodiments, the method includes receiving a signal indicative of a distorted biometric of a person; determining a DNA sequence code of the signal indicative of the distorted biometric signal; generating a first dataset based on the DNA sequence code; hashing the first dataset to obtain a second dataset; encrypting the second dataset; storing the encrypted second dataset into a blockchain; comparing the second dataset to a test dataset to determine if the second and test datasets are from a related data source and remain unchanged from the distorted biometric of the person; and updating a new transaction record on the blockchain to indicate that the blockchain transaction has been validated.
US10742412B2

According to examples, an apparatus may include a security enclosure, a main processor housed in the security enclosure, and a physical security monitoring control unit (PSMCU) processor housed in the security enclosure. The PSMCU processor may cause the apparatus to switchably operate between a first mode and a second mode. In the first mode, the PSMCU processor may allow access by the main processor to a first cryptographic key while preventing access by the main processor to a second cryptographic key. In addition, in the second mode, the PSMCU processor may allow access by the main processor to the second cryptographic key while preventing access by the main processor to the first cryptographic key.
US10742406B2

A method implemented in a computing device includes: generating an initial key from key injection or based on a value provided by at least one physical unclonable function (PUF); generating an obfuscated key based on the initial key; and storing the obfuscated key in a non-volatile memory.
US10742395B2

Hardware acceleration supports complex software processes. In particular, a hardware security module provides encryption support for transaction chains. In one implementation, the security module circuitry provides high-speed security features and acceleration of the security features for blockchain processing.
US10742390B2

A method for a Mobile Industry Processor Interface (MIPI) master device for improving clock recovery at a MIPI slave device includes: transmitting a symbol sequence including a plurality of consecutive symbols which include at least one of a first symbol value and a second symbol value to the MIPI slave device prior to transmitting packet data to the MIPI slave device, wherein the first symbol value and the second symbol value bring relatively larger encoding jitters than other symbol values.
US10742384B2

A method and device for determining available communication sub-channels in an OFDM communication system is disclosed. The method comprises the steps of transmitting, on at least one first sub-channel, information regarding sub-channels available for a first transmission of at least one first data packet, receiving, on at least one second sub-channel, information regarding sub-channels available for a second transmission, determining at least one set of available sub-channels based on the information regarding the first and second transmissions. In one aspect of the invention, at least one set of the determined available sub-channels is further provided to a receiving system. The information is being provided in a separate transmission, or within a data packet, or within each subsequent data packet or in selected data packets.
US10742372B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that a resource spread multiple access scheme is enabled, wherein the bit and/or symbol level resource spreading happens in time and/or frequency domain through bits or symbol level repetition and spreading. Furthermore, the UE may process bits of codewords and modulated symbols using a set of spreading sequences and a set of scrambling sequences. The UE may transmit the modulated symbols with a discrete-Fourier-transform (DFT)-spread (DFT-s) waveform based at least in part on processing the modulated symbols using the set of spreading sequences and the set of scrambling sequences. Numerous other aspects are provided.
US10742368B2

A wireless access point transmits a protocol data unit (PDU) that includes data and signaling for a plurality of user devices. The PDU spans a channel in frequency and an interval in time, and includes a first signaling section, a second signaling section and a traffic action. For each of a plurality of subchannels of the channel: the first signaling section includes (within the subchannel) a corresponding redundant copy of common signaling information for the user devices associated with the access point; the second signaling section includes (within the subchannel) a corresponding set of user-specific signaling information for a corresponding group of one or more of the user devices; and the traffic section includes (within the subchannel) a corresponding set of traffic data for the corresponding group of one or more user devices. Subchannels sizes may be configurable. A signaling set CRC may be included per subchannel.
US10742365B2

To enable delivery confirmation for data transmitted from a base station to a terminal apparatus via the access point. An apparatus according to an example aspect of the present invention includes an information acquisition unit configured to acquire a data unit from a packet data convergence protocol (PDCP) layer of a base station, and a communication processing unit configured to transmit the data unit to a terminal apparatus via an access point of a wireless local area network using a protocol enabling delivery confirmation.
US10742359B2

A message system includes a first node that may send a message to a second node, provide metadata associated with the message, and send the metadata to a database. The database may determine that the message was not received by the second node based upon the metadata and a current time, and direct the first node to resend the message to the second node in response to determining that the message was not received. The first node further may resend the message.
US10742353B2

Methods, systems, and devices for wireless communications are described. In accordance with the described techniques, communicating devices (e.g., an encoder and decoder) may apply an orthogonal cover code to a polar codeword to reduce cross-correlation between different codewords. For example, such techniques may reduce power consumption at a decoding device by providing for earlier decoding termination (e.g., as a result of the reduced cross-correlation). Techniques for generating the cover codes (e.g., on a per-aggregation level basis) and applying the cover codes (e.g., within a search space) are described. Additionally or alternatively, the described techniques may relate to seeding of reference signals used to support decoding of the codewords. Improved orthogonality between reference signal seeds may further suppress codeword recipient ambiguity.
US10742348B2

An endpoint element of a distributed antenna system includes processing circuitry configured for processing a plurality of digital signals for conditioning the signals and compression circuitry configured for compressing at least one of the digital signals according to a compression scheme to yield at least one compressed digital signal and compression settings. The digital signals are combined into a single digital stream and combined and time division multiplexed onto a serial data link with the compression settings. The digital signals are also transmitted with compression settings to another endpoint element over the serial data link.
US10742344B2

Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method, R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) are divided into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequences is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
US10742341B2

A distributed antenna system for transceiving radio signals in several frequency ranges is described. The system comprises a control unit with at least one first port for forwarding first radio signals in a first frequency range and one second port for forwarding second radio signals in a second frequency range. A plurality of remote units is connected to the control unit via a distributor network. The remote units have first antenna elements for transceiving the radio signals in the first frequency range and second antenna elements for transceiving the radio signals in the second frequency range. The control unit comprises a modulator for converting the second radio signals to a further frequency range and the remote units have a demodulator for converting the second radio signals from the further frequency range to a different frequency range.
US10742331B2

An underwater communications system is provided that transmits electromagnetic and/or magnetic signals to a remote receiver. The transmitter includes a data input. A digital data compressor compresses data to be transmitted. A modulator modulates compressed data onto a carrier signal. An electrically insulated, magnetic coupled antenna transmits the compressed, modulated signals. The receiver that has an electrically insulated, magnetic coupled antenna for receiving a compressed, modulated signal. A demodulator is provided for demodulating the signal to reveal compressed data. A de-compressor de-compresses the data. An appropriate human interface is provided to present transmitted data into text/audio/visible form. Similarly, the transmit system comprises appropriate audio/visual/text entry mechanisms.
US10742324B1

A semiconductor-based Mach-Zehnder modulator (MZM) is configured for push-pull bias dithering to control the MZM bias at a desired set point. When two such MZM modulators are connected in parallel to form an IQ modulator, bias settings for both MZMs and the IQ bias may be controlled from an output of the IQ modulator to minimize both the IQ offset and the quadrature error of the output signal constellation even for non-ideal MZMs with low extinction ratios.
US10742302B2

A wireless communication device for transceiving signals by using carrier aggregation is provided. The wireless communication device includes a first antenna configured to transmit a first signal to an outside of the wireless communication device or receive a second signal from the outside; a first transmitter connected to the first antenna via a first node and configured to generate the first signal by combining plural transmitting carrier signals received over a plural transmitting carriers; and a first receiver connected to the first antenna via the first node and configured to divide the second signal into a plural receiving carrier signals received over a plural receiving carriers. The first receiver includes a first receiving amplifier commonly connected to a plural carrier receivers configured to amplify the second signal received from the first antenna and to divide the receiving carrier signals, respectively.
US10742301B2

A network node and a method performed by the network node for scheduling transmissions between the network node and one or more wireless devices in the same physical layer resources are provided. The method comprises selecting a beam for a transmission between the network node and a first one of the wireless devices; and determining if a portion of physical layer resources remains available after allocating portions of physical layer resources to a first set of one or more wireless devices within transmission range of the selected beam. The method further comprises if at least a portion of physical layer resources remains available, adjusting the selected beam such that a second set of one or more additional wireless devices not within transmission range of the initially selected beam are within transmission range of the adjusted beam.
US10742298B2

There is provided mechanisms for beam management. A method is performed by a radio transceiver device. The method comprises performing a beam management procedure by simultaneously transmitting a first reference signal in a first set of beams and a second reference signal in a second set of beams. The first set of beams is transmitted at a first antenna array of the radio transceiver device and in a first polarization. The second set of beams is transmitted at a second antenna array of the radio transceiver device and in a second polarization.
US10742296B2

Embodiments of this application provide a MU-MIMO data transmission method, to implement pairing scheduling on UE and improve resource usage. The method includes: obtaining, by a base station, a first precoding matrix indicator PMI of first user equipment UE, where a first rank of the first UE is 1; obtaining, by the base station, a second PMI of second UE, where a second rank of the second UE is 1, and a weighted value corresponding to the first PMI and a weighted value corresponding to the second PMI form a weighted value corresponding to a third PMI whose rank is 2; and separately performing, by the base station by using the third PMI and a same time-frequency resource, data transmission with the first UE and the second UE that are paired, where a pairing gain of the first UE and the second UE is greater than a preset threshold.
US10742294B2

Embodiments provide a channel state information reporting method, including: determining, by a terminal, R first precoding matrix indicators PMIs of M first reference signal resources, and determining a channel quality indicator CQI based on the R first PMIs, where M and R are integers greater than or equal to 1; and reporting, by the terminal, channel state information, where the channel state information includes the R first PMIs and N CQIs.
US10742283B2

Transmit diversity schemes may be used for sending sequence-based signals over multiple antennas. For example, a user equipment (UE) may determine an uplink sequence to be transmitted to a base station using multiple antennas. The UE may utilize a transmit diversity scheme for the multiple-antenna transmission of the uplink sequence, where the transmit diversity scheme utilized may be based on a number of symbol periods during which the sequence is transmitted. In accordance with the transmit diversity scheme, the UE may use multiple transmit antennas to transmit different sequences from respective antennas. In other examples, the UE may transmit the uplink sequence using different time or frequency resources. Additionally, the UE may use some combination of different transmit diversity schemes for sequence-based signals. In some aspects, the base station may provide an indication of the transmit diversity scheme that the UE is to use for transmitting the uplink sequence.
US10742281B2

A transmission scheme for transmitting a first modulated signal and a second modulated signal in the same frequency at the same time. According to the transmission scheme, a precoding weight multiplying unit multiplies a precoding weight by a baseband signal after a first mapping and a baseband signal after a second mapping and outputs the first modulated signal and the second modulated signal. In the precoding weight multiplying unit, precoding weights are regularly hopped.
US10742277B2

A base station includes a memory holding information on P terminals in connecting to the base station, where P is an integer of 3 or more, a determination unit that determines L terminals to transmit a reference symbol used for measurement of channel state information indicating a state of a propagation path to the base station from among the P terminals based on the information on the P terminals, at every data transmission cycle, where L is an integer satisfying 2≤L
US10742273B2

Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, systems and methods for a link margin procedure that accommodates reporting link parameters, such as link margin, for multiple streams.
US10742269B2

Embodiments of devices that improve radio frequency (RF) communication between an on body device and a second device are disclosed. Some of these embodiments pertain to a secondary communication system that captures an RF signal transmitted in a first directional pattern and retransmits it in the second directional pattern. Other embodiments pertain to a secondary communication system that provides an additional antenna positioned in a different location with which a user can communicate.
US10742264B2

A cable modem system for discovering interference groups (IGs) includes an infrastructure and a cable modem termination system (CMTS). The infrastructure is for transferring data. The CMTS is configured to initiate generation of test signals by a set of cable modems (CMs), obtain a set of test measurements for the set of CMs, discover interference groups (IGs) of the set of CMs based on the obtained set of test measurements and assign a plurality of upstream and downstream channels for the set of CMs that use orthogonal frequency division multiplexing (OFDM) based on the discovered IGs.
US10742261B2

Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
US10742254B1

A leakage compensation circuit includes a compensation digital to analog converter (DAC) and an adjustment circuit. The compensation DAC is configured to: receive a first digital signal associated with a transmitter of a transceiver; generate a compensation analog signal using the first digital signal; and provide the compensation analog signal to a receiver of the transceiver. The adjustment circuit is configured to generate the first digital signal by adjusting a second digital signal from the transmitter based on one or more adjustment parameters.
US10742253B2

A radio frequency (RF) front-end apparatus is provided. In examples discussed herein, the RF front-end apparatus can be configured to communicate RF signals in millimeter wave (mmWave) RF frequencies (e.g., ≥12 GHz). The RF front-end apparatus includes an RF front-end circuit and an antenna element. The RF front-end circuit includes a transmit path and a receive path for transmitting and receiving RF signals, respectively. The antenna element includes an input port(s) and an output port(s) that are coupled to the transmit path and the receive path, respectively. The antenna element can be configured to enable impedance matching between the input port(s) and the transmit path, as well as between the output port(s) and the receive path. As a result, it may be possible to reduce insertion losses in the RF front-end circuit, thus helping to improve performance of the RF front-end apparatus, particularly in support of mmWave communications.
US10742251B2

An expandable device for use with a portable electronic device includes a body, a button, a platform, and a locking device. The body has a first end, a second end, and a longitudinal axis, and is movable between an expanded configuration and a collapsed configuration. The button is coupled to the first end of the body, and the platform includes an outer surface and a collar extending away from the outer surface. The collar defines a cavity. The locking device is carried by the second end of the body, and at least a portion of the locking device is adapted to be removably disposed in the cavity of the platform for releasably coupling the body to the platform. The locking device is rotatable relative to the platform between an unlocked configuration, in which the body is removable from the platform, and a locked configuration, in which the body is secured to the platform.
US10742250B1

An electronic device may include a display formed at a front face and a backside circuitry module formed at a rear face that opposes the front face. The backside circuitry module may be surrounded by coil structures and may be aligned with a protrusion in a rear wall housing at the rear face. The backside circuitry module may include a substrate to which sensor components or other components may be mounted. In particular, sensor circuitry, sensors, transceiver circuitry, connector circuitry, etc. may be mounted to the substrate. Antenna structures may be embedded within the substrate along with conductive paths for the sensor components and other components mounted to the substrate. Support structures in the backside circuitry module may support the substrate, sensor components, and other components. If desired, antenna structures may be formed on the support structures.
US10742249B2

A method for controlling a specific absorption rate (SAR) of a wireless communications device and a wireless communications device, and the wireless communications device includes a first antenna and a second antenna. The method includes transmitting, by the wireless communications device, a radio frequency signal using the first antenna, and stopping using the first antenna and starting transmitting the radio frequency signal using the second antenna when transmit power of the first antenna is greater than first preset power and a first time period elapses to enable the wireless communications device to meet an SAR standard. There is no backoff of antenna transmit power in a process of controlling the SAR of the wireless communications device. Therefore, communication quality of the wireless communications device is ensured while the SAR standard is met.
US10742234B2

Aspects of the present disclosure provide various apparatuses and methods for retransmitting code blocks (CBs) and code block group (CBG) definitions that can improve CBG-based data retransmission efficiency. When an interference pattern is bursty and does not align with CBG or symbol boundary, the disclosed CBG definitions can reduce or avoid retransmission of successfully received CBs along with the CBs that need to be retransmitted.
US10742233B2

Efficient encoding and decoding of data for storage in polymers is provided. In various embodiments, an input file is read. The input file is segmented into a plurality of segments. A plurality of packets is generated from the plurality of segments by applying a fountain code. Each of the plurality of packets is encoded as a sequence of monomers. The sequences of monomers are screened against at least one constraint. An oligomer is outputted corresponding to each sequence that passes the screening.
US10742229B2

A system includes an input shuffling circuit and digital-to-analog conversion circuitry. The input shuffling circuit includes a data input, a data output, and a control input. The input shuffling circuit is operable to receive, via the data input, an N-bit binary value, where N is an integer. The input shuffling circuit is operable to route each of the N bits of the N-bit binary word to one or more of M bits of the data output to generate an M-bit value, where M=2N, and the routing is based on a control value applied to the control input. The input shuffling circuit can be configured either in a dynamic element matching (DEM) mode or a regular binary to thermometer mode. The digital-to-analog conversion circuitry is operable to convert the M-bit value to a corresponding analog voltage and/or current. M different values of the control value may result in M different routings of the N bits of the binary word.
US10742225B1

A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells. The at least one comparator circuit is configured to output a comparison signal based on the cell output signals of the sampling cells. Additionally, the SAR ADC comprises a calibration circuit configured to supply at least one respective control signal to the respective second switch circuit of the sampling cells for controlling the second switch circuits.
US10742224B2

A circuit includes a first ring oscillator with a plurality of stages, each coupled via a voltage follower cross-coupling to a plurality of stages of a second ring oscillator. Further ring oscillators may be coupled to the first ring oscillator and the second ring oscillator. Additionally, the voltage follower cross-coupling for each of the stages may include one or more first voltage follower having a first strength, and one or more second voltage follower having a second strength different than the first strength.
US10742223B2

A method and device for calibrating an RC oscillator, a storage medium and a processor are provided. The method may include: in a first communication time period, a frequency of a first RC oscillator is adjusted at a first communication frequency point; at the first communication frequency point, the frequency of the first RC oscillator is adjusted according to a default gear of the first RC oscillator sequentially, and at least one of a corresponding gear value and a corresponding frequency when the first device end may receive or may not receive data sent by a second device end is recorded; a first target frequency and a first target gear value of the first RC oscillator are determined according to the at least one of a corresponding gear value and a corresponding frequency; and the first device end is controlled to communicate with the second device end at a second communication frequency point which is determined by the first target gear value in a second communication time period.
US10742221B2

A circuit device includes an oscillation circuit that generates an oscillation signal by using an resonator, a processing circuit that controls the oscillation circuit, and a storage circuit that stores temperature compensation data of an oscillation frequency of the oscillation signal. The processing circuit generates specific PUF information of the circuit device on the basis of the temperature compensation data.
US10742220B1

A programmable clock divider having reset circuits configured to receive a DP count comprises a first flip-flop having a clock input, a first output, and one of the DP inputs configured to receive a clock signal, a plurality of flip-flops connected to form a ripple counter configured to each receive a DP input, a clock input, and a reset input to provide a first output coupled to the clock input of a subsequent flip-flop of the plurality of flip-flops, each subsequent flip-flop having its clock input coupled to the first output of the preceding flip-flop, a first reset circuit coupled to the flip-flops configured to provide an out signal in response to the flip-flops obtaining the DP count, and a second reset circuit configured to provide a reset signal to the reset input of the plurality of flip-flops in response to the out signal from the first reset circuit.
US10742216B1

Systems, circuits, and methods for clock domain crossing for an interface between logic circuits are provided. A circuit is configured to allow an exchange of signals between a first logic circuit clocked using a first clock signal having a first frequency and a second logic circuit clocked using a second clock signal having a second frequency different from the first frequency. The circuit includes a first circuit segment configured to receive a first control signal to select the second logic circuit and a second control signal to indicate an initiation of an access operation, and ensure that the second control signal maintains a relationship with the first control signal based on the second clock signal. The circuit further includes a second circuit segment configured to receive, from the second logic circuit, a third control signal indicating a readiness of the second logic circuit to complete the access operation.
US10742214B2

A manual operating element for operating an electrically adjustable piece of furniture includes a handle body comprising a mounting body, a handle section connected to the mounting body and an elastic member operatively connected to the handle section. The mounting body is adapted to be attached to a component of the piece of furniture. The handle section is adapted for gripping by a user. A force sensor is operatively connected to the elastic member and serves to detect a directional force value corresponding to a force applied to the handle section. A touch sensor is used to detect a touch value as a function of the user touching the handle section. A communication unit is arranged to transmit the force value and the touch value or a signal derived from the force value and the touch value to a controller of the piece of furniture.
US10742210B2

A drive circuit drives switches that are connected to each other in parallel. The drive circuit includes individual discharge paths, a common discharge path, blocking units, a discharge switch, off-holding switches, and a drive control unit. The drive control unit selects, as target switches to be driven to be turned on, at least two switches among the switches. The at least two switches include a first switch and a second switch. The first switch is last to be switched to an off-state among the at least two switches that are selected as the target switches and switched to an on-state. The second switch is other than the first switch among the at least two switches. The off-holding switches includes a first off-holding switch and a second off-holding switch. After switching the second off-holding switch to an on-state, the drive control unit switches the discharge switch to an on-state.
US10742206B2

A switching circuit and a method for providing a switch array having an on resistance is presented. The switch array has a plurality of switches, where each switch is arranged to be in different configuration states. The states include an enabled configuration and a disabled configuration. The switching states include an on state and an off state. Each switch is held in the off state when in the disabled configuration. Control circuitry sets the switches to either the enabled configuration or the disabled configuration, and a memory element coupled to the control circuitry and arranged to store configuration data for setting the configuration state of each of the switches. The control circuitry sets the configuration state of the switches based on a signal received from the memory element. The on resistance of the switch array depends on the switching state of the switches and their individual on resistances.
US10742203B2

A delay line circuit with a calibration function, includes N delay modules and a calibration module. The N delay modules are serially coupled to each other. The calibration module generates a calibration start signal and a calibration stop signal according to a calibration signal and a clock signal, and the calibration start signal is outputted to the N delay modules, so that the N delay modules output N delay signals according to N control signals and the calibration start signal. The calibration module calibrates the N control signals according to the N delay signals and the calibration stop signal, so that the N delay modules generate N calibrated delay signals according to the N calibrated control signals and the clock signal. A generation time instant of the calibration stop signal is later than a generation time instant of the calibration start signal.
US10742174B2

Embodiments of RF amplifiers and RF amplifier devices include a transistor, a multiple-section bandpass filter circuit, and a harmonic termination circuit. The bandpass filter circuit includes a first connection node coupled to the amplifier input, a first inductive element coupled between the first connection node and a ground reference node, a first capacitance coupled between the first connection node and a second connection node, a second capacitance coupled between the second connection node and the ground reference node, and a second inductive element coupled between the second connection node and the transistor input. The harmonic termination circuit includes a third inductive element and a third capacitance connected in series between the transistor input and the ground reference node. The harmonic termination circuit resonates at a harmonic frequency of a fundamental frequency of operation of the RF amplifier.
US10742169B2

An oscillator includes a resonator and an integrated circuit element. The resonator includes a resonator element and a resonator element container accommodating the resonator element. The integrated circuit element includes an inductor. The resonator and the integrated circuit element are stacked on each other. The resonator includes a metal member, and the metal member does not overlap the inductor when viewed in a plan view.
US10742165B2

A photovoltaic (PV) module sub-circuit for an energy generation system includes a plurality of PV sub-modules coupled together via external cables, the plurality of PV sub-modules includes a first PV sub-module and a second PV sub-module, a negative output terminal coupled to the first PV sub-module, a positive output terminal coupled to the second PV sub-module, and a plurality of connectors external to the PV sub-modules and coupling the PV sub-modules together to form the PV module sub-circuit. The sub-circuit further includes a bypass mechanism including a first terminal coupled to only the negative output terminal and the first PV sub-module, and a second terminal coupled to only the positive output terminal and the second PV sub-module, the bypass mechanism configured to prevent current flow in a first direction and allow current flow in a second direction opposite of the first direction.
US10742161B2

A photovoltaic module installation roof renewal method for installing a photovoltaic module on a roof of a building constructed with a roof frame having a repetitively formed crest and root includes the steps of: interposing an insulator at the roots of the roof frame; producing a photovoltaic module installation roof panel in a length corresponding to the length of the roof at a roof renewal site by using a portable roll foaming machine to transport the photovoltaic module installation roof panel onto the roof; installing the photovoltaic module installation roof panel on the roof frame at which the insulator is interposed; fastening a bracket for installing a photovoltaic module on the photovoltaic module installation roof panel; and installing the photovoltaic module on the bracket.
US10742158B1

A circuit for split sine wave alternating ground paths. The current circuit consists of two DC motors that act as individual power and ground paths for one other DC motor using AC voltage. Each motor supplies power and ground for one leg of a third DC drive motor.
US10742156B2

A control apparatus controls rotating electrical machine which is applied to a vehicle in which an engine is automatically stopped in the case where predetermined automatic stop conditions are satisfied, and, the engine is automatically restarted in the case where predetermined restarting conditions are satisfied, the rotating electrical machine receiving supply of an exciting current from a transistor-chopper type exciting circuit in which a first pair of facing arms of a bridge circuit is configured with power transistors, and a second pair of arms is configured with diodes, and the rotating electrical machine having a power generation function based on rotational force of the engine. The control apparatus executes first grounding control in which, during automatic stop of the engine, among the first pair of arms, the power transistor connected on an earth side of the rotating electrical machine is put into an ON state.
US10742155B2

A variety of methods, controllers and electric machine systems are described that facilitate pulsed control of electric machines (e.g., electric motors and generators) to improve the machine's energy conversion efficiency. Under selected operating conditions, the electric machine is intermittently driven (pulsed). The pulsed operation causes the output of the electric machine to alternate between a first output level and a second output level that is lower than the first output level. The output levels are selected such that at least one of the electric machine and a system that includes the electric machine has a higher energy conversion efficiency during the pulsed operation than the electric machine would have when operated at a third output level that would be required to drive the electric machine in a continuous manner to deliver the desired output. In some embodiments, the second output level is zero torque.
US10742152B2

A motor control apparatus includes an inverter comprising switching elements, current detection means for detecting a phase current value, conversion means for converting the phase current value into a digital AD conversion value, and current control means for controlling a three-phase AC motor by switching the switching elements using a current command value based on the AD conversion value. When the conversion means determines that an amplitude of the current command value is greater than or equal to a threshold, it acquires the phase current value at timings of at least one of t=τ/8, 3τ/8 and t=5τ/8, 7τ/8 converts the acquired phase current value into the AD conversion value. When the conversion means determines that the amplitude of the current command value is smaller than the threshold, it acquires the phase current value at a timing of t=τ/2, converts the acquired phase current value into the AD conversion value.
US10742148B2

An electric rotating machine having a stator and a rotor, wherein the rotor is provided with rotor windings connected to electric contacts to carry a field current. A control device is provided to adjust the field current carried by the rotor windings. At least one sensor is provided to give information about the temperature at the location of the at least one sensor. The at least one sensor is located on or embedded in the rotor windings, and the at least one sensor is connected to the control device such that the control device is able to read the information given by the at least one sensor. The control device is further arranged to adjust the field current carried by the rotor windings and/or power output or power input of the electric rotating machine based on the information given by the at least one sensor.
US10742140B2

The present invention relates to a innovative magnetic tension lock(MTL) control system which guides the MagLev module in both vertical and horizontal movement. The MagLev module moves on its inherent magnetic force and is guided by the MTL control system. The MagLev module with MTL control system can be used in products of various applications. It can be made at efficient cost to perform unique function. It can provide magnetic cushioning, which is great for seat, bed and other body-supporting furniture. It can also be applied as a cushioning layer against outside impact, thus it can be mounted onto the surface of heavy duty equipment or even the vessel sailing in icy water. It functions on its magnetic energy for load capacity and only requires compact battery power for its MTL control system. Thus it saves energy and reduces impact on the environment. It can replace the traditional MagLev module that runs on electricity otherwise.
US10742136B2

In a method of compensating for a DC offset of a high-voltage AC output from a Modular Multilevel Converter (MMC) including at least one phase leg, the MMC is connected to a three-phase high-voltage AC grid via a grid transformer. The method includes, in at least one DC offset correcting device, measuring the DC offset by in each of the at least one DC offset correcting device: obtaining a high-voltage AC signal in the MMC, removing high-voltage AC components from the obtained high-voltage AC signal by means of a passive higher-order filter to obtained an analogue filtered signal, converting the analogue filtered signal to a digital signal by means of an analogue-to-digital converter, removing remaining AC components from the digital signal by means of a digital filter to obtain the DC offset, and in a controller comparing the obtained offset with a reference value and forming a control signal based on said comparing. The method also includes transmitting the control signal from each of the at least one DC offset correcting device to a control device of the MMC. The method also includes, the control device mapping the control signal(s) from the at least one DC offset correcting device to the at least one phase leg. The method also includes, based on the mapping, the control device sending switching commands to the semiconductor switches of MMC cells in each of the at least one phase leg to compensate for the DC offset.
US10742135B2

The invention relates to an energy recovery rectifier device (16), in particular for an industrial plant (2), for connection to an AC system (8), comprising an energy recovery rectifier (24) and a buffer capacitor (46) that is connected in parallel to the DC side (30) of the energy recovery rectifier (24). A step-up converter (52) is connected between the buffer capacitor (46) and the energy recovery rectifier (24). The invention further relates to a method (86) for operating an energy recovery rectifier device (16) as well as to an industrial plant (2) comprising an energy recovery rectifier device (16).
US10742126B2

Transformation device including a transformer, first electrical components and connections, the transformer including a first winding and a second winding, the first electrical components being connected via the connections between first terminals of the first winding, the first electrical components extending over an integration surface situated between the connections, the integration surface, the connections and a portion of the first winding forming portions of circulation of a first current circulation loop, the transformation device being arranged for a connection current to circulate in the first current circulation loop, each portion of circulation being wider than it is long in the line of circulation of the connection current.
US10742123B1

A switch-mode DC-DC power converter includes one or more input terminals and output terminals, and a transformer coupled between the input and output terminals. The transformer includes a plurality of winding sets. Each winding set includes a primary winding and a secondary winding magnetically coupled with one another. The primary winding and the secondary winding include the same number of turns. The primary windings of the plurality of winding sets are connected in series and the secondary windings of the plurality of winding sets are connected in parallel. The power converter also includes at least one spacer positioned to separate an adjacent pair of the plurality of winding sets. A magnetic coupling between the adjacent pair of the plurality of winding sets is less than the magnetic coupling between the primary winding and the secondary winding within each winding set.
US10742117B2

One example includes a power supply system. The system includes a switch system comprising a switch that is configured to generate a switching voltage at a switching node in response to an input voltage. The system also includes a non-linear capacitance charge-pump coupled to the switching node and being configured to provide an output current in response to the switching voltage. The output current can have an amplitude that varies non-linearly with respect to an amplitude of the switching voltage. The switch system further includes an output stage configured to generate an output voltage on an output node in response to the output current.
US10742103B2

An apparatus for operating as DC motor and DC generator is provided. Two permanent magnets are placed to be able to rotate with a shaft and one coil is placed outside the circumference of the permanent magnets and one device for making electric current flow in the coil is placed. Two secondary cell batteries are used to supply electric current to the coil. The secondary cell batteries are charged by using back-emf which occurs in the coil. If the shaft rotates without using the secondary cell batteries, the secondary cell batteries are charged by the rotating permanent magnets.
US10742102B2

A stator assembly has coils in a distributed winding configuration. A poly-phase switched reluctance motor assembly 3002 may include a stator assembly with multiple coils in a distributed winding configuration. The stator assembly may have a central bore into which a rotor assembly having multiple poles is received and configured to rotate. A method of controlling a switched reluctance motor may include at least three phases wherein during each conduction period a first phase is energized with negative direction current, a second phase is energized with positive current and there is at least one non-energized phase. During each commutation period either the first phase or second phase switches off to a non-energized state and one of the non-energized phases switches on to an energized state with the same direction current as the first or second phase that was switched off. The switched reluctance motor may include a distributed winding configuration.
US10742101B2

Provided are an insertion method and an insertion apparatus for efficiently and reliably inserting a plurality of coil elements aligned in a ring shape into respective slots of a stator core. In an insertion method of inserting, the insertion method includes a coil element alignment process S3 of forming an assembly body 50 by assembling the plurality of coil elements 40 in a ring shape in the state where the turn portions 42 alternately overlap each other, a supporting process S42 of supporting the assembly body 50 by using the turn portions 42, and an insertion process S45 of allowing the assembly body 50 and the stator core 60 to be close to each other and inserting the leg portions 41 of the coil elements 40 of the assembly body 50 into the slots 61.
US10742100B2

A coil segment, in particular for a stator coil, wherein the coil segment has a conductor bundle, wherein the conductor bundle has a multiplicity of electrical conductors, wherein the conductor bundle has a form fit, wherein the conductor bundle has at least one cutout for feeding coolant. Furthermore, a method for manufacturing a stator coil, a stator coil having a coil segment according to the present invention, a machine having a stator coil according to the present invention, and a vehicle having a machine according to the present invention.
US10742097B2

The cold pressure welding apparatus includes a first holding part capable of sandwiching a first flat conductor, a second holding part disposed opposite to the first holding part and capable of sandwiching a second flat conductor, and a drive part for moving the first holding part and the second holding part. The drive part can move the first holding part and the second holding part between a first direction separated position and a close position along a first direction. The drive part can move the first holding part and the second holding part between a second direction separated position and a sandwiching position along a second direction.
US10742095B2

An electronics housing, in particular for a pump electronics of an electric motor-powered auxiliary pump for a motor vehicle for conveying a fluid. The electronics housing has a housing shell and an electrical plug. The plug protrudes at least partially through the housing shell, and the plug is at least partially covered with a first material which swells upon contact with the fluid.
US10742090B2

The decelerating device according to the disclosure includes first and second planetary gear mechanisms arranged in an inner space of a hollow type electric motor having an annular rotor. The first planetary gear mechanism includes a first ring gear integral with the rotor, a non-rotatable first carrier for supporting a first pinion gear engaged with the first ring gear to be rotatable, and a first sun gear engaged with the first pinion gear. The second planetary gear mechanism includes a second ring gear integral with the rotor, a second carrier supporting a second pinion gear engaged with the second ring gear to be rotatable and connected to the output shaft, and a second sun gear engaged with the second pinion gear and connected to the first sun gear.
US10742086B2

A permanent magnet machine may include a stator a rotor in concentric arrangement with the stator and configured for rotation relative to the stator, the rotor having a plurality of protruding magnets arranged thereon, wherein, the protruding magnets provide for a more lightweight machine with a lower moment of inertia.
US10742084B2

A motor includes a stator and a rotor. The rotor is rotatable about an axis. The rotor includes a core including a plurality of pole segments arranged arcuately about the axis. The rotor further includes a plurality of arcuately arranged magnets alternating arcuately with the pole segments, such that each of the magnets is at least in part interposed between a pair of adjacent pole segments. The plurality of pole segments includes a plurality of first-polarity pole segments having a first polarity and a plurality of second-polarity pole segments having a second polarity that is different than the first polarity. The rotor further includes a connecting element connecting at least some of the first-polarity pole segments to one another without connecting the second-polarity pole segments to the first-polarity pole segments.
US10742080B2

A rotor mechanism includes a plurality of rotor bars and a rotor core. The rotor bars are disposed along the edge of the rotor core. The rotor core has a plurality of magnetic flux-barrier units and at least one flux channel. Each magnetic flux-barrier unit extends from one of the rotor bars to another rotor bar. The flux channel passes through the flux-barrier units and surrounds an axis of the rotor core, wherein each magnetic flux-barrier unit is a magnetic flux barrier, and the area between the adjacent magnetic flux-barrier units and the flux channel are pathways for magnetic flux.
US10742078B2

An electric motor assembly includes a primary electric motor including a primary rotor assembly and a primary stator assembly configured to be actuated to cause the primary rotor assembly to rotate based on an amount of magnetic flux in the rotor assembly. The assembly also includes a secondary electric motor including a secondary rotor assembly and a secondary stator assembly and a controllable magnetic device coupled to at least one of the primary rotor assembly and the secondary rotor assembly. The assembly also includes a controller configured to actuate the secondary electric motor based on a failure of the primary electric motor, and apply electric current to the controllable magnetic device to reduce back electromotive force (BEMF) caused by rotation of the primary rotor assembly during actuation of the secondary electric motor.
US10742077B2

A soft magnetic laminated core is provided which comprises first laminations and second laminations arranged in a stack having a stacking direction substantially perpendicular to a major surface of the first laminations and the second laminations. The first laminations comprise a first soft magnetic alloy and the second laminations comprise a second soft magnetic alloy different from the first soft magnetic alloy. The first laminations and the second laminations are distributed in the stacking direction throughout the stack. The first laminations and/or the second laminations comprise an insulating coating that is thermally stable up to at least 850° C.
US10742076B2

A locator for locating power outlets and power receivers. A sensor is provided in a power receiver for detecting a detection signal emitted by a remote power outlet. A processor uses the detected signal to compute location coordinates of the power outlet.
US10742075B2

An electronic device according to one embodiment of the present disclosure includes a conductive coil, a power generation circuit, and one or more processors operatively connected to the power generation circuit and may be configured to: compare an amount of transmission power to be supplied to a power reception device with designated threshold power amount, determine a designated frequency to be a frequency of a control signal for controlling the power generation circuit when the amount of transmission power is equal to or less than the designated threshold power amount, determine a phase of the control signal based at least in part on the amount of transmission power and/or the designated frequency when the designated frequency is determined to be the frequency of the control signal, transmit the control signal having the designated frequency and the phase to the power generation circuit to generate, based at least in part on the control signal, transmission power corresponding to the amount of transmission power, and supply the transmission power generated by the power generation circuit to the power reception device wirelessly via the conductive coil.
US10742071B2

The present disclosure describes aspects of wireless power transfer for stationary applications. In some aspects, a system includes a transmitter and receiver separated by a wireless gap with a membrane. The transmitter has an inverter circuit to invert direct current (DC) power from a DC power source to alternating current (AC) power. The transmitter also has a transmitting circuit that includes a first resonant coil configured to resonate at a frequency of the AC power. The first resonant coil is also configured to wirelessly transmit the AC power across the wireless gap. The receiver has a receiving circuit that includes a second resonant coil configured to resonate based on resonance of the first resonant coil and to receive the wirelessly transmitted AC power. Additionally, the first and second resonant coils are configured as primary and secondary windings, respectively, of a transformer to transform the wirelessly transmitted AC power.
US10742068B2

Systems, methods, and products are described herein for identifying deviations within a power system. Using time-synchronized measurement devices, a set of voltages and currents associated with a plurality of electrical components within the power system are continuously measured. For each electrical component of the plurality of electrical components, a representative set of parameters are recursively determined based on the measured set of voltages and currents. For each electrical component, an electrical characteristic value is determined based on the representative set of parameters. For each electrical component, a deviation of the electrical component is identified based on comparison of the determined electrical characteristic value with a reference value of the electrical characteristic of the electrical component or based on identifying the deviation by means of a filtered rate of change. An alert of the deviation is provided for further characterization of an abnormality in the power system.
US10742067B2

A display cart includes a pedestal, a lifting frame, and a power supply apparatus including a battery arranged within the pedestal and configured to supply power to an electric apparatus, an external power supply configured to supply power to the battery and/or the electric apparatus, and a capacity management system. The capacity management system includes a control device, a power delivery device, and a capacity statistic device. The control device determines output power of the electric apparatus. The capacity statistic device determines a remaining capacity in the battery, calculates a remaining power supply duration according to the output power of the electric apparatus, and sends a statistic result to the control device. The control device further controls the power delivery device to supply power to the electric apparatus according to the statistic result.
US10742061B2

A smart functional vehicle component includes a vehicle component, a leather sheet fixed over a surface of the vehicle component, a flexible electronic circuit contacting an A-surface of the leather sheet and including a printed and cured conductive ink, and a pigmented coating arranged over the electronic circuit. The circuit includes a wireless transmitter, which is configured to generate an oscillating electromagnetic field when an associated portable electronic device is within a predetermined distance from the wireless transmitter. The circuit may also include an electronic element such as a light source, a sensor, or a switch. When the circuit includes a light source, the pigmented coating inhibits or prevents the circuit and the light source from being visible through the pigmented coating, but light emitted by the light source is visible through the pigmented coating.
US10742048B2

A caseback has multiple, arc-shaped, ferrous, metal contacts that serve a dual purpose. The metal contacts i) establish an input connection between a battery for the wearable electronic device and charging prongs of a charger and ii) establish a magnetic coupling between the wearable electronic device and multiple magnets in the charger to hold the metal contacts of the wearable electronic device and the charging prongs of the charger in place during a charging of the battery. A male extension extends from a surface of the caseback to couple into a female receptor of the charger. i) The ferrous metal contacts' relationship with a positioning of the magnetics in the charger in combination with ii) the male extension coupling into the female receptor use magnetic and mechanical coupling to establish and control an alignment of the metal contacts with the charging prongs in three dimensions, a Z-axis, an X-axis, and a Y-axis.
US10742041B2

A power-on/off command is output to a breaker for switching when a frequency difference between a plurality of electric power supply sources is within a predetermined range and a phase difference between the plurality of electric power supply sources is within a predetermined range, in switching of electric power supply between the plurality of electric power supply sources. A generator drive rotation speed of a transmission device is feedback controlled so that the frequency difference is maintained at a value within the predetermined range and the phase difference is maintained at a value within the predetermined range when the detected frequency difference is within the predetermined range and the detected phase difference is within the predetermined range. A generator rotation speed command is calculated by adding to the rotation speed command of the transmission device an output value obtained by subjecting the detected phase difference to a proportional-integral-control.
US10742014B2

A sealing boot for protecting an electrical interconnection includes: a main body having a cavity configured to house an interconnection of two electrical connectors; and a neck merging with one end of the main body and having a cylindrical inner surface that defines a bore that is continuous with the cavity of the main body, the inner surface having an inner diameter that is less than an inner diameter of the cavity of the main body. The inner surface of the neck includes a helical projection comprising a main artery and two tributaries, the tributaries each intersecting a section of the main artery at one end and merging with an end of the main artery at an opposite end.
US10742011B2

An electrical connection assembly includes an electrical box including a housing having an internal surface defining an internal volume of the housing. An electrical connector is positioned outside the internal volume of the housing and fixed to the housing with a fastener. The housing includes an aperture having an opening defining an insertion path extending from a location external to the housing to a location within the internal volume of the housing. The assembly includes a plug having a flange portion and a plurality of resilient legs. A bracket for mounting an electrical box to a structure includes a corner connecting a first flange with a second flange. An assembly including an electrical box and a bracket is also provided.
US10742007B2

A wire management duct having is provided with a wire channel along the length of the duct. In an embodiment, the duct is further comprising a mounting lip to mount the duct onto a mounting rail of photovoltaic array mounting rail system. In another embodiment, a wire management system is comprised of one or more wire management ducts which may be mounted parallel to the mounting rails of photovoltaic array mounting rail system or perpendicular to the rails using an attachment clip. In a further embodiment, mounting clips are provided to attach the wire management ducts directly to the frame of a photovoltaic module.
US10741993B2

A laser component including a molded body, and a laser chip embedded into the molded body and configured to emit a laser beam in an emission direction, wherein a surface of the molded body includes a deflection section arranged and inclined relative to the emission direction such that a laser beam emitted by the laser chip impinges on the deflection section and is subjected to total internal reflection at the deflection section.
US10741992B2

An unrepeatered transmission system includes a receiver coupled to a receive span; a transmitter coupled to the receive span; and a plurality of cascaded amplifiers in the receive span with dedicated fiber cores to supply one or more optical pumps from the receiver to each amplifier, wherein the plurality of cascaded amplifiers increase system reach by increasing the length of a back span in an unrepeatered link.
US10741991B2

A narrowband laser apparatus may be provided with a laser resonator including optical elements for narrowing a spectral linewidth, a spectrometer configured to detect spectral intensity distributions of multiple pulses included in a pulsed laser beam output from the laser resonator, a spectral waveform producer configured to produce a spectral waveform by adding up the spectral intensity distributions of the multiple pulses, a device function storage configured to store a device function of the spectrometer, a wavelength frequency function generator configured to generate a wavelength frequency function which represents a frequency distribution of center wavelengths of the multiple pulses, and a deconvolution processor configured to perform deconvolution processing on the spectral waveform with the device function and the wavelength frequency function.
US10741982B1

A powered wall plate with at least two electrical plug prongs. A protruding front face extends from the front surface and has a plurality of electrical current apertures configured to receive an electrical plug. A spacer may be placed between the wall plate and the electrical device to close a gap. A plurality of LED lights is located along a bottom edge of the front surface, a photocell is exposed on the front surface of the wall plate, and a control switch has an on position, an off position, and an auto position. A circuit between the front face and a rear surface of the wall plate is operatively coupled to a USB port on a side surface of the front face. The USB port is configured to provide power when power is supplied to the at least two electrical plug prongs.
US10741980B2

An illuminated power receptacle includes a base having at least one set of contacts for receiving a plug. Each set of contacts having at least two openings for receiving a respective prong of a plug. There is a cover mounted on the base with an outlet member corresponding to each set of contacts. Each outlet member includes an outlet face with an opaque material and an outer periphery. Each outlet face includes at least two openings configured to receive and guide a respective prong of the plug into the set of at least two openings of the corresponding set of contacts. Each outlet member also includes an outlet rim made of a translucent material disposed about the outer periphery of the outlet face. There is light source disposed between the base and the cover that transmits light that passes through each outlet rim and is blocked by the opaque material.
US10741979B2

A vehicle harness structure and an additional connection member are provided, according to which part numbers of wire harnesses are reduced and superfluous attachment in the wire harness is avoided. The vehicle harness structure includes a basic harness for interconnecting a plurality of main devices to be mounted in common on target vehicles, an additional connection member having one end connected in a branched manner to a communication line or a signal line of the basic harness and another end connected to at least one auxiliary device to be optionally post-mounted on the target vehicles, and a control function section provided in the additional connection member to control the operation of the auxiliary device.
US10741976B1

A shield connector includes a male shield terminal (20) mounted in a male housing (10), male inner conductors (37) constituting the male shield terminal (20) and to be connected to female inner conductors (78) by connecting both housings (10, 70), a male outer conductor (21) surrounding the male inner conductors (37) via a male dielectric (31) and configured to contact a female outer conductor (76) by connecting the both housings (10, 70), a tube (25) formed in the male outer conductor (21) and surrounding the female outer conductor (76) with the housings (10, 70) connected, and resilient contact pieces (26) formed in the male outer conductor (21) and to be resiliently connected to an outer periphery of the female outer conductor (76). The tube (25) is continuous over an entire periphery, thereby restricting an expanding deformation thereof.
US10741965B2

The present disclosure relates to an electrical power transmission and outlet system. The electrical power transmission and outlet system may include an electrical power transmission and outlet device and an external power storage unit. The electrical power transmission and outlet device may include a housing having an opening for receiving an external plug, a connector in the housing for connecting with the external power storage unit; and a plurality of electrical conductors in the housing connected to the connector. When the external plug is inserted into the opening, the conductors are electrically connected to the external plug and disconnected from the connector, and when the external plug is pulled out of the opening, the conductors are electrically disconnected from the external plug and reconnected to the connector.
US10741959B2

A connector 10 disclosed by this specification includes a male connector 20 and a female connector 50 connectable to each other. The male connector 20 includes a male terminal 30 and a male housing 21 having a receptacle 22 and configured to hold the male terminal 30. The female connector 50 includes a female terminal 60 having a connecting portion 61 to be connected to the male terminal 30 and a female housing having a female terminal accommodating portion fittable into the receptacle 22 and configured to hold the female terminal. A protrusion projecting toward the male terminal is provided on an inner surface of the receptacle. The female terminal accommodating portion is provided with a slit into which the protrusion is to be inserted. The connecting portion is provided with an escaping recess configured to allow the protrusion inserted into the slit and projecting inwardly of the female terminal accommodating portion to escape.
US10741954B1

In one embodiment, a female data-connector device includes a housing having a socket to insert therein a first paddle-card having a first form-factor and a second paddle-card having a second form-factor, the socket includes an upper and lower surface, with N contact pins arranged in a first row and M contact pins arranged in a second row on the upper surface, P contact pins arranged in a first row and Q contact pins arranged in a second row on the lower surface, the M and Q and some of the N and P contact pins are arranged to make contact with contact pads of the first paddle-card, the N and P contact pins are arranged to make contact with contact pads of the second paddle-card, N is greater than M, and P is greater than Q, and termination legs to be connected to a printed circuit board.
US10741953B1

An apparatus may include an actuator, a heat-rejecting medium, and a receptacle for receiving a pluggable module. The pluggable module may be operable to be inserted into the receptacle in a first direction. The actuator may be operable to be translated in the first direction by the insertion of the pluggable module into the receptacle. The heat-rejecting medium may be operable to be translated in a second, different direction by the actuator when the actuator is translated in the first direction. The translation of the heat-rejecting medium in the second direction may be operable to cause the heat-rejecting medium to become thermally coupled to the pluggable module when the pluggable module is inserted into the receptacle.
US10741952B2

The electrical connector is equipped with a retention mechanism for securing mounting a heat sink upon a CPU which is received within an insulative housing of the connector. The retention mechanism includes a pair of seats, a pair of towers fixed to the pair of seats, respectively, a pressing device retained between the pair of towers in a deformable manner. The pressing device is intimately seated upon the heat sink to significantly press the heat sink against the CPU when the pressing device is deformed in a tensional status.
US10741947B2

An electronic interconnect may include a substrate. The substrate may include a passageway in the substrate. The passageway may extend from a first surface of the substrate toward a second surface of the substrate. The passageway may be closed at an end of the passageway. The electronic interconnect may include a plated through hole socket coupled to the passageway. The electronic interconnect may include a contact. The contact may include a pin. The pin may be configured to engage with the plated through hole socket. The electronic interconnect may include a solder ball. The solder ball may be coupled to the plated through hole socket.
US10741932B2

The techniques described herein relate to a Radio Frequency (RF) communication module for a hand-held mobile electronic device. The Radio Frequency (RF) communication module includes a circuit board and a plurality of antennas disposed on a top side and bottom side of the circuit board. The plurality of antennas comprise a first subset of antennas comprising end-fire antennas and a second subset of antennas comprising broadside antennas. The first subset of antennas and the second subset of antennas also have a bandwidth of approximately 40 percent. The Radio Frequency (RF) communication module also includes a shielded area comprising circuitry coupled to the circuit board for controlling the antennas.
US10741927B2

A filter whose absorption rate for a radio wave changes depending on a waveform of a radio wave includes: a conductive member; a rectifier circuit that links two locations of the conductive member; and an RL circuit including an inductor and a resistor, the inductor generating an electromotive force using an electric current rectified by the rectifier circuit and the resistor converting the electric current to heat.
US10741912B2

A feed network, steering apparatus and system for a steerable antenna array are described. The feed network includes a waveguide assembly including first and second radial transverse electromagnetic (TEM) waveguides, and first and second variable phase shifters positioned in the respective TEM waveguides. The variable phase shifters cause additional progressive electrical phase shifts in respective rings of radiating elements, directly proportional to the angular position of the radiating elements in the ring, from 0 to a controllable integer multiple of 2π radians. The feed network includes first and second phase-mode feed probes coupled to the respective radial TEM waveguides, which provide respective phase-mode feed ports. When the feed network is coupled to the antenna array, two consecutive-order phase modes are provided at the phase-mode feed ports. The orders of the phase modes are selectable using a phase shift control signal controlling the integer multiple of the variable phase shifters.
US10741908B2

An antenna system is disclosed. The antenna system comprises a first antenna adapted to a first frequency band and a second antenna adapted to a second frequency band different than the first frequency band. The first antenna has a radiator provided on a first side of a dielectric substrate and at least one resonator provided on a second opposite side of the dielectric substrate. The at least one resonator is partially covered by the radiator and resonates at a frequency in the second frequency band.
US10741906B2

An electronic device may be provided antennas and control circuitry. The antennas may be arranged in an array of unit cells. Each unit cell may include a first antenna that conveys signals in a first frequency band higher than 10 GHz and a second antenna that conveys radio-frequency signals in a second frequency band higher than the first frequency band. A first of the unit cells may be provided with a first set of antennas that transmits radio-frequency signals in a third frequency band higher than the second frequency band. A second of the antenna unit cells may be provided with a second set of antennas that receives the radio-frequency signals after being reflected off of external objects. The control circuitry may perform spatial ranging operations by processing the transmitted and received signals in the second frequency band.
US10741901B2

An apparatus includes a stacked patch radiator having (i) a lower patch and (ii) an upper patch located above and separated from the lower patch. The upper patch includes first and second conductive patches that are separated from one another. The apparatus also includes a heating circuit integrated in the stacked patch radiator. At least a portion of the heating circuit is positioned between the first and second conductive patches of the upper patch. The stacked patch radiator can be configured to radiate at a specified frequency band and can have a thickness that is less than one tenth of wavelengths within the specified frequency band. The upper patch can include conductive vias electrically connecting the conductive patches. The conductive patches and the conductive vias can form an isolation cage configured to reduce a signal loss associated with a presence of at least the portion of the heating circuit between the conductive patches.
US10741900B2

A dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station. The dielectric filter includes a body made of a solid-state dielectric material, where a plurality of indentations are disposed at a first surface of the body and where at least one of a hole or a groove is disposed between adjacent indentations of the plurality of indentations, and a conducting layer, wherein the first surface and other surfaces of the body, surfaces of the plurality of the indentations, and an interior of the at least one of the hole or the groove are covered with the conducting layer.
US10741889B2

A multiple-zone thermocouple battery module temperature monitoring system is provided configured to determine a plurality of temperatures along a depth of the battery module at different locations. The system may include a number of temperature probes each including a first temperature sensor oriented at a base of a group of cells in the module and a second temperature sensor oriented at an upper portion of the group of cells in the module. Providing upper and lower battery cell temperature sensors in each probe of the system allows a battery management system to detect and record a temperature gradient of the battery cells in the module at a number of different locations. These recordings can determine a gradient and temperature difference between the upper and lower battery cell portions over an operable threshold difference, and command a thermal management system to return the battery module to limits within the operable threshold.
US10741887B2

A fixing structure of voltage detection terminal includes a voltage detection terminal and a resin case having insulation property. The voltage detection terminal includes a flat plate portion, a busbar connection portion that bends from an upper end of the flat plate portion in an extending direction perpendicular to an up-down direction, and a crimping portion connected to an end portion of an electrical wire. The resin case includes a terminal accommodating portion accommodating the voltage detection terminal. The busbar connection portion is bonded to a plane surface of a busbar in the up-down direction to overlap with the busbar. The terminal accommodating portion includes projections that block movement in the extending direction of the flat plate portion in the terminal accommodating portion, and a latch projection that blocks movement in the up-down direction of the voltage detection terminal in the terminal accommodating portion.
US10741881B2

The secondary battery includes a case in which a positive electrode lead and a negative electrode lead are provided, wherein the case includes an external layer exposed to the outside, an insulation layer disposed in the case and insulated, a conductive layer stacked between the external layer and the insulation layer, made of a conductive material, and having one side coming into contact with the positive electrode lead and the other side coming into contact with the negative electrode lead, and a safety member disposed at a center of the conductive layer to prevent electricity from flowing through the conductive layer at a predetermined temperature or less and melted at the predetermined temperature or more to allow the electricity to flow through the conductive layer.
US10741869B2

A fuel cell stack (100) includes a first power generation element, a first supporting substrate (5a), a second power generation element, a second supporting substrate (5b) and a communicating member (3). The first supporting substrate (5a) includes a first substrate main portion, a first dense layer, and a first gas flow passage. The first dense layer covers the first substrate main portion. The first gas flow passage extends from a proximal end portion (501a) to a distal end portion (502a). The second supporting substrate (5b) includes a second substrate main portion, a second dense layer, and a second gas flow passage. The second dense layer covers the second substrate main portion. The second gas flow passage extends from a proximal end portion (501b) to a distal end portion (501b). The communicating member (3) extends between the distal end portion (502a) of the first supporting substrate (5a) and the distal end portion (502b) of the second supporting substrate (5b) and communicates between the first gas flow passage and the second gas flow passage.
US10741862B2

A device for manufacturing a fuel cell component is provided. The device includes a movement device configured to load a gas diffusion layer from a magazine when the gas diffusion layer is loaded to an inlet of a conveyor and unload the gas diffusion layer from an outlet side of the conveyor. An adhesive layer forming device that is disposed over the conveyor forms an adhesive layer in an edge region of the gas diffusion layer. A drying device is configured to dry the adhesive layer formed in the gas diffusion layer. An inspection vision is configured to detect an image of the gas diffusion layer that the adhesive layer is formed. Additionally, a controller operates the movement device, the adhesive layer forming device, and the drying device and configured to use the image to determine a shape of the adhesive layer formed in the gas diffusion layer.
US10741860B2

A fuel cell apparatus corresponds to a first slave apparatus among a plurality of fuel cell apparatuses that includes a master apparatus and slave apparatuses including the first slave apparatus and a second slave apparatus. The first slave apparatus includes a cell stack, a communication unit, and a controller. The communication unit communicably connects to the master apparatus and the second slave apparatus. The controller controls the cell stack on the basis of control information acquired from the master apparatus. The controller transmits a master candidacy message indicating assumption by proxy of functionality of the master apparatus to the second slave apparatus from the communication unit when the controller detects that the master apparatus has lost functionality.
US10741857B2

A fuel cell system includes a fuel cell, a water storage unit configured to store water recovered from the fuel cell and be able to drain the stored water, a water usage unit configured to use the water in the water storage unit, and a control unit configured to control a drain of the water from the water storage unit. The control unit is configured to, when a first predetermined time has elapsed since a last drain of the water from the water storage unit, drain the water from the water storage unit. The control unit is configured to, when it is predicted that the water in the water storage unit is used by the water usage unit within a second predetermined time shorter than the first predetermined time, not drain the water from the water storage unit even when the first predetermined time has elapsed since the drain of the water from the water storage unit.
US10741848B2

Provided is a copper foil. The copper foil includes a copper layer and a protective layer disposed on the copper layer, wherein a surface of the protective layer has a maximum height roughness (Rmax) of 0.6 μm to 3.5 μm, a peak density (PD) of 5 to 110, and an oxygen atomic amount of 22 at % (atomic %) to 67 at %.
US10741847B2

A cathode active material including a lithium nickel composite oxide; and a coating layer including a lithium metal pyrophosphate on the core.
US10741844B2

Decomposition of an aqueous electrolyte solution when an aqueous lithium ion secondary battery is charged and discharged is suppressed, and the operating voltage of the battery is improved. The aqueous lithium ion secondary battery includes an anode, a cathode, and an aqueous electrolyte solution, the anode including a composite of an anode active material and polytetrafluoroethylene, wherein peaks of the polytetrafluoroethylene at around 1150 cm−1 and at around 1210 cm−1 are observed in FT-IR measurement of the composite, but a peak of the polytetrafluoroethylene at around 729 cm−1 is not observed in Raman spectroscopy measurement of the composite.
US10741825B2

A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
US10741824B2

A battery includes a main body having a space therein, and including a channel communicating between an outside and the space; a pair of electrodes adjoining the space; and a valve that closes the channel responsive to pH.
US10741812B2

Methods of scavenging acid in a lithium-ion electrochemical cell are provided. An electrolyte solution that contains an acid or is capable of forming the acid is contacted with a polymer comprising a nitrogen-containing acid-trapping moiety selected from the group consisting of: an amine group, a pyridine group, and combinations thereof. The nitrogen-containing acid-trapping moiety scavenges acidic species present in the electrolyte solution by participating in a Lewis acid-base neutralization reaction. The electrolyte solution comprises a lithium salt and one or more solvents and is contained in the electrochemical cell that further comprises a first electrode, a second electrode having an opposite polarity from the first electrode, and a porous separator. Lithium ions can be cycled through the separator and electrolyte solution from the first electrode to the second electrode, where acid generated during the cycling is scavenged by the polymer comprising a nitrogen-containing acid-trapping moiety.
US10741809B2

A vehicle battery case is provided. The battery case includes a lower panel and at least one transverse member that is disposed on the lower panel to increase transverse rigidity. Additionally, at least one longitudinal member is disposed on the lower panel to increase longitudinal rigidity, and a sidewall member is attached to an upper surface of the lower panel along a rim of the lower panel.
US10741806B2

The present invention relates to a pressure relief element (11) to be used as an overpressure safety means in devices where a gaseous medium must be rapidly released in case of overpressure, wherein the pressure relief element (11) has at least one notch (9) which is designed as a predetermined breaking point where the pressure relief element (11) breaks at a certain level of overpressure, thereby irreversibly opening an exhaust path for the gaseous medium. The present invention also relates to a pressure relief device of an electrochemical battery, comprising such a pressure relief element and a battery comprising such a pressure relief device.
US10741805B1

A first holder holds a plurality of layers associated with a battery submodule that is being assembled. A first and second pair of actuators, while the plurality of layers is held by the first holder, extend so that the first and second pair of actuators apply pressure to the plurality of layers. While the first and second pair of actuators are extended and applying pressure to the plurality of layers, the first holder retracts. A second holder holds a container associated with the battery submodule that is being assembled and extends so that the container gradually surrounds the plurality of layers. While the container gradually surrounds the plurality of layers, the first and second pair of actuators sequentially retract.
US10741802B2

A steel foil for an electrical storage device container, including a steel foil, a metal chromium layer layered on the steel foil, and a hydrated chromium oxide layer layered on the metal chromium layer, in which the concentration of Fe from a surface of the hydrated chromium oxide layer to a depth of 10 nm is less than 10% by mass, the area ratio of a site having an arithmetic mean roughness Ra of 10 nm or more in a visual field of 1 μm at the surface of the hydrated chromium oxide layer is less than 20%, and a site having an arithmetic mean roughness Ra of less than 10 nm in a visual field of 1 μm has an arithmetic mean roughness Ra of 3 nm or less in a visual field of 1 μm at the surface of the hydrated chromium oxide layer, is adopted.
US10741797B2

An OLED display and a method of manufacturing thereof are disclosed. In one aspect, the display includes a scan line formed over a substrate and configured to transfer a scan signal, a data line and a driving voltage line crossing the scan line and respectively configured to transfer a data voltage and a driving voltage, and a switching transistor electrically connected to the scan line and the data line and including a switching drain electrode configured to output the data voltage. The display also includes a driving transistor including a driving gate electrode, a driving drain electrode, and a driving source electrode electrically connected to the switching drain electrode. The display further includes a storage capacitor including a first storage electrode electrically connected to the driving gate electrode and a second storage electrode formed on the same layer as the driving voltage line.
US10741788B2

Disclosed is a display device having a reduced non-display area. The display device includes an organic cover layer disposed on an encapsulation unit, an inner dam disposed between a substrate hole and a plurality of light-emitting elements, and a blocking element disposed between the substrate hole and the inner dam, the blocking element being disposed under the organic cover layer, whereby it is possible to prevent damage to a light-emitting stack. In addition, since the substrate hole is disposed in an active area, it is possible to reduce the size of a non-display area.
US10741784B2

An organic light emitting diode (OLED) incorporating an enhanced light extraction apparatus in the transparent conductive oxide layer is disclosed. The apparatus for light extraction may comprise a transparent substrate, a transparent electrode comprising one or more discontinuities, and an organic light emitting material stack. The transparent electrode may be disposed on the transparent substrate and comprise a series of features or discontinuities that enhance light extraction improve energy efficiency in the OLED device. The discontinuities may be discrete or continuous and may interrupt the conductivity of the transparent conductive oxide layer.
US10741782B2

A light-emitting device is optimized for radiative recombination and minimizes non-radiative recombination. The light-emitting device includes an emissive layer, a first electrode and a second electrode from which charges are generated, a first charge transport layer that injects charges from the first electrode into the emissive layer, and a second charge transport layer that injects charges from the second electrode into the emissive layer. At least one of the charge transport layers includes a mixture of a first nanoparticle population and a second nanoparticle population, and the first nanoparticle population and the second nanoparticle population are conductive nanoparticles that are energetically non-aligned as between the first nanoparticle population and the second nanoparticle population. Nanoparticles of the first nanoparticle population and the second nanoparticle population are energetically non-aligned with each other by being made of different materials, by having nanoparticles of different sizes, and/or by having nanoparticles of different shapes.
US10741776B2

The present invention provides a flexible light-emitting device which is a flexible device with which the light leakage is less liable to occur even if it is deformed. In order to achieve the above object, the flexible light-emitting device of the present invention includes a light-emitting layer, a low refractive index layer, and a high refractive index layer, wherein the light-emitting layer, the low refractive index layer, and the high refractive index layer are stacked in this order, the low refractive index layer has a refractive index lower than that of the light-emitting layer and has a haze of less than 5%, and the high refractive index layer has a refractive index higher than that of the low refractive index layer.
US10741775B2

The invention provides emissive materials and organic light emitting devices using the emissive materials in an emissive layer disposed between and electrically connected to an anode and a cathode. The emissive materials include compounds with the following structure: wherein at least one of R8 to R14 is phenyl or substituted phenyl, and/or at least two of R8 to R14 that are adjacent are part of a fluorenyl group. The emissive materials have enhanced electroluminescent efficiency and improved lifetime when incorporated into light emitting devices.
US10741774B2

A heterocyclic compound represented by Formula 1 and an organic electroluminescence device including the same in an emission layer. In Formula 1, Z is represented by Formula 2-1 or 2-2. In Formula 2-2, X1 to X3 are each independently CR10 or N, and at least one of X1 to X3 is N.
US10741773B2

A compound, an organic light-emitting device, and a display apparatus, the compound being represented by Formula 1:
US10741764B2

A method for producing a frame-equipped vapor deposition mask sequentially includes preparing a vapor deposition mask including a metal mask having a slit and a resin mask having an opening corresponding to a pattern to be produced by vapor deposition at a position overlapping the slit, the metal mask and the resin mask being stacked, retaining a part of the vapor deposition mask by a retainer and stretching the vapor deposition mask retained by the retainer outward, and fixing the vapor deposition mask in a state of being stretched to a frame having a through hole. During stretching, any one or both adjustments of a rotating adjustment and a moving adjustment of the vapor deposition mask are performed with respect to the vapor deposition mask in the state of being stretched or with the vapor deposition mask being stretched.
US10741763B2

A division mask includes a main body including at least one opening pattern, and a clamping portion at an edge of the main body, the clamping portion having an increasing width with respect to an increasing distance from the main body, and the clamping portion including a fan-out portion extending from the main body and including at least one dummy pattern, and at least one branch portion having a decreasing width with respect to an increasing distance from the fan-out portion.
US10741755B2

An array of cross point memory cells comprises spaced first lines which cross spaced second lines. Two memory cells are individually between one of two immediately adjacent of the second lines and a same single one of the first lines.
US10741754B2

A method for manufacturing a semiconductor memory device includes forming a first silicon layer on a bottom conductive layer, transforming the first silicon layer into a first polysilicon layer, forming a second silicon layer stacked on the first polysilicon layer, and a third silicon layer stacked on the second silicon layer, transforming the second and third silicon layers into second and third polysilicon layers, wherein the first and third polysilicon layers have a first doping type, and the second polysilicon layer has a second doping type different from the first doping type, forming an amorphous silicon layer on the third polysilicon layer, and forming a top conductive layer on the amorphous silicon layer.
US10741751B2

A semiconductor structure includes a memory element disposed on a first metal layer. A first cap layer is disposed on the first metal layer and sidewalls of the memory element. A first dielectric layer is disposed on a top surface of the first cap layer on the first metal layer and a portion of the first cap layer on the sidewalls of the memory element. A second metal layer is disposed on the first dielectric layer and sidewalls of the first cap layer. A second cap layer is disposed on a top surface of the second metal layer. A second dielectric layer is disposed on the second cap layer. A via is in the second dielectric layer and exposes a top surface of the memory element. A third metal layer is disposed on the second dielectric layer and in the via.
US10741748B2

Back end of line (BEOL) metallization structures and methods according to aspects of the invention generally include forming an interconnect structure including a recessed via structure in an interlayer dielectric. The recessed via structure is lined with a liner layer and filled with a first metal such as copper, tungsten, aluminum, alloys thereof or mixtures thereof. The recessed portion is filled with a second metal such as tantalum, titanium, tungsten, cobalt, ruthenium, iridium, platinum, nitrides thereof, or mixtures thereof, which in combination with the liner layer provides effective barrier properties for the bulk first metal.
US10741741B2

A thermoelectric device with multiple headers and a method of manufacturing such a device are provided herein. In some embodiments, a thermoelectric device includes multiple thermoelectric legs, a cold header thermally attached to the thermoelectric legs, and a hot header thermally attached to the thermoelectric legs opposite the cold header. At least one of the cold header and the hot header includes at least one score line. According to some embodiments disclosed herein, this the thermal stress on the thermoelectric device can be greatly reduced or relieved by splitting the header into multiple pieces or by scoring the header by a depth X. This enables the use of larger thermoelectric devices and/or thermoelectric devices with an increased lifespan.
US10741737B2

A light emitting device package includes a package substrate and a submount on the package substrate. An upper surface of the submount includes a central region, first and second base regions spaced from the package substrate, relative to the central region, and a sloped region between the central region and the first and second base regions. A light emitting device chip is in the central region. A first electrode layer is between the central region and the light emitting device chip and extends onto the sloped region and the first base region. A second electrode layer is between the central region and the light emitting device chip, extends onto the sloped region and the second base region, and is spaced apart from the first electrode layer. First and second reflective layers are on the first and second electrode layers, respectively, and overlap the sloped region.
US10741735B2

The present disclosure provides a configuration and technique of fabricating remote phosphor optics (such as lenses) for downconverting LEDs, replacing the prior art solid hemispherical lenses with a novel thin-shell hemispherical lens that can be used with a wide range of encapsulating materials, including low index materials such as air and methyl silicones. The present disclosure further provides a configuration and technique whereby the remote phosphor lenses can be used with an LED array.
US10741719B2

This CIP application builds on Ge quantum dot superlattice (QDSL) based field effect transistors where Ge quantum dot arrays are used as a high carrier mobility channel. The QDSL diodes claims that were withdrawn are included. The diodes are used as light emitting devices and photodetectors. A combination of QDC-FETs, light emitting devise, photodetectors are vertically stacked to form a versatile 3-dimensional integrated circuit. Nonvolatile memories using floating quantum dot gates are included in vertical stacking format. Nonvolatile random access memories are integrated as a stack. Also described is the use of 3-layer stack of QDC-FETs making compact electrical circuits interfacing pixels for an active matrix flat panel displays that results in high resolution. Ge or Si quantum dot transport channel based devices processing spin polarized electrons introduced by magnetic tunnel junctions are described for multi-state coherent logic.
US10741717B1

Embodiments relate to a micro light-emitting-diode (μLED) fabricated using a self-aligned process. To fabricate the μLED, a metal layer is deposited on a p-type semiconductor. The p-type semiconductor is on an n-type semiconductor and the n-type semiconductor is on a top side of a substrate. The metal layer is patterned to define a p-metal. The p-type semiconductor is etched using the p-metal as an etch mask. Similarly, the n-type semiconductor is etched using the p-metal and the p-type semiconductor as an etch mask. A negative photoresist layer is deposited over the patterned p-metal and the p-type semiconductor. The negative photoresist is then exposed from the back side of the substrate, thus exposing the regions of the negative photoresist that are not masked by the p-metal. The negative photoresist is then developed to expose the p-metal.
US10741709B2

Provided is a ventilative solar cell and a solar cell module. The solar cell includes: a cell substrate; and a photoelectric conversion layer formed on the cell substrate so as to convert solar energy into electrical energy, wherein the cell substrate and the photoelectric conversion layer include a plurality of through holes that form an air passage extending from a front surface of the solar cell, on which sunlight is incident, to a rear surface thereof.
US10741706B2

A photovoltaic device includes a substrate layer having a plurality of three-dimensional structures formed therein providing a textured profile. A first electrode is formed over the substrate layer and extends over the three-dimensional structures including non-planar surfaces. The first electrode has a thickness configured to maintain the textured profile, and the first electrode includes a transparent conductive material having a dopant metal activated within the transparent conductive material. A continuous photovoltaic stack is conformally formed over the first electrode, and a second electrode is formed on the photovoltaic stack.
US10741703B2

Solar devices and methods for producing solar devices are disclosed. In some examples, a solar device includes solar cells arranged in a shingled manner such that adjacent long edges of adjacent ones of the solar cells overlap. The adjacent long edges have a non-linear shape that has protruding portions. The solar device includes contact pads arranged in the protruding portions of the adjacent long edges such that the contact pads of the adjacent ones of the solar cells are electrically connected.
US10741702B2

Certain aspects of the present disclosure provide a variable transistor-based capacitive element implemented on a glass or dielectric substrate. Such a variable transistor-based capacitive element may be suitable for use as a tunable capacitor in a passive-on-glass (POG) device, for example. One example device having a tunable capacitance generally includes a glass or dielectric substrate and a transistor disposed above the glass or dielectric substrate. The transistor has a gate region, a drain region, and a source region, wherein a capacitance of the transistor is configured to vary based on a voltage between the gate region and the drain region.
US10741697B2

A thin film transistor is provided. The thin film transistor includes an oxide semiconductor layer on a substrate, a gate electrode insulated from the oxide semiconductor layer to overlap at least a portion of the oxide semiconductor layer, a source electrode connected to the oxide semiconductor layer, and a drain electrode spaced apart from the source electrode and connected to the oxide semiconductor layer. The oxide semiconductor layer includes a first oxide semiconductor layer on the substrate and a second oxide semiconductor layer on the first oxide semiconductor layer, the first oxide semiconductor layer includes nitrogen of 1 at % to 5 at % concentration with respect to number of atoms, and the second oxide semiconductor layer has a nitrogen concentration which is lower than a nitrogen concentration of the first oxide semiconductor layer and a gradient of the nitrogen concentration such that the nitrogen concentration is lowered in a direction closer to the gate electrode.
US10741695B2

A transistor having high field-effect mobility is provided. In order that an oxide semiconductor layer through which carriers flow is not in contact with a gate insulating film, a buried channel structure in which the oxide semiconductor layer through which carriers flow is separated from the gate insulating film is employed. Specifically, an oxide semiconductor layer having high conductivity is provided between two oxide semiconductor layers. Further, an impurity element is added to the oxide semiconductor layer in a self-aligned manner so that the resistance of a region in contact with an electrode layer is reduced. Further, the oxide semiconductor layer in contact with the gate insulating layer has a larger thickness than the oxide semiconductor layer having high conductivity.
US10741693B2

A thin film transistor includes a gate electrode, an active layer formed of oxide semiconductor material on a substrate, and a gate insulation layer therebetween. The active layer includes a channel region corresponding to the gate electrode, a source region at one side of the channel region, and a drain region at the other side of the channel region. The source region includes a first upper portion and the drain region includes a second upper portion that includes the oxide semiconductor material and Si.
US10741689B2

A semiconductor device and fabrication method are provided. The method includes: providing a base substrate; forming a first dielectric layer on the base substrate; forming a target gate structure in the first dielectric layer and on the base substrate, where a first groove is formed above the target gate structure and in the first dielectric layer; forming a second groove by etching the first dielectric layer on sidewalls of the first groove to expand an opening of the first groove; forming a protective layer in the second groove; and forming conductive plugs in the first dielectric layer on sides of the target gate structure and the protective layer. The protective layer has a dielectric constant greater than the first dielectric layer.
US10741686B2

A method for manufacturing a semiconductor device according to an embodiment includes implanting impurity ions into a SiC layer in a direction of <10-11>±1 degrees, <10-1-1>±1 degrees, <10-12>±1 degrees, or <10-1-2>±1 degrees.
US10741682B2

High-electron-mobility transistor (HEMT) devices are described in this patent application. In some implementations, the HEMT devices can include a back barrier hole injection structure. In some implementations, the HEMT devices include a conductive striped portion electrically coupled to a drain contact.
US10741671B2

A method for manufacturing a semiconductor device, includes: forming a dummy gate structure on a semiconductor substrate; forming a plurality of gate spacers on opposite sidewalls of the dummy gate structure; removing the dummy gate structure from the semiconductor substrate; forming a metal gate electrode on the semiconductor substrate and between the gate spacers; and performing a plasma etching process to the metal gate electrode, wherein the plasma etching process comprises performing in sequence a first non-zero bias etching step and a first zero bias etching step.
US10741668B2

The present disclosure relates to semiconductor structures and, more particularly, to replacement metal gate structures and methods of manufacture. The structure includes at least one short channel device including a dielectric material, a workfunction metal, and a capping material, and a long channel device comprising the dielectric material, the workfunction metal and fluorine free gate conductor material.
US10741666B2

A method for forming a high electron mobility transistor (HEMT) includes forming a buffer layer on a transparent substrate. The method further includes forming a barrier layer on the buffer layer. A channel region is formed in the buffer layer adjacent to the interface between the buffer layer and the barrier layer. The method further includes forming a dielectric layer on the barrier layer. The method further includes forming source/drain electrodes through the dielectric layer and the barrier layer and disposed on the buffer layer. The method further includes forming a shielding layer conformally covering the dielectric layer and the source/drain electrodes. The method further includes performing a thermal process on the source/drain electrodes.
US10741659B2

A semiconductor device comprising a first field insulating film around at least a part of a first fin type pattern and at least a part of a second fin type pattern, a second field insulating film between the first fin type pattern and the second fin type pattern and protruding from the first field insulating film and a first gate structure which extends over the first and second field insulating films in a second direction intersecting with a first direction, and includes a first portion on the first field insulating film, and a second portion on the second field insulating film, wherein a first width of the first portion of the first gate structure is greater than a second width of the second portion of the first gate structure.
US10741646B2

Exemplary FET devices having 2D material layer active regions and methods of fabricating thereof are described. For example, a black phosphorus active region has a first thickness in the channel region and a second, greater, thickness in the source/drain (S/D) region. The BP in the S/D region has a sidewall that interfaces a contact disposed over the FET. A gate electrode is disposed over the channel region. In some embodiments, the sidewall has passivated edge. In some embodiments, the sidewall is nonlinear. In some embodiments, the stress layer is disposed over the 2D material layer.
US10741644B2

A semiconductor device is provided. The semiconductor device includes a substrate; an active layer disposed on the substrate; a via through the active layer; and a plurality of electrodes disposed on the active layer and into the via. Additionally, a package structure that includes the semiconductor device is also provided. The electrode is electrically connected to the substrate through the via.
US10741638B2

A semiconductor device includes a doped Si base substrate, one or more device epitaxial layers formed over a main surface of the doped Si base substrate, a diffusion barrier structure, and a gate formed above the diffusion barrier structure. The diffusion barrier structure includes alternating layers of Si and oxygen-doped Si formed in an upper part of the doped Si base substrate adjacent the main surface of the doped Si base substrate, in a lower part of the one or more device epitaxial layers adjacent the main surface of the doped Si base substrate, or in one or more additional epitaxial layers disposed between the main surface of the doped Si base substrate and the one or more device epitaxial layers.
US10741622B2

The present application discloses a method of fabricating an organic light emitting diode display substrate having a subpixel region and an inter-subpixel region. The method includes forming a pixel definition layer on the base substrate, the pixel definition layer being formed in the inter-subpixel region and defining the subpixel region of the organic light emitting diode display substrate; forming an insulating dielectric layer on a side of the pixel definition layer distal to the base substrate, the insulating dielectric layer being formed to define a first aperture region greater than the subpixel region; and, subsequent to forming the insulating dielectric layer, forming an organic light emitting layer in each subpixel region using a mask plate placed on the insulating dielectric layer.
US10741617B2

A pixel structure includes a plurality of pixel units including three-primary-color sub-pixel groups and a plurality of fourth sub-pixels which are alternatively arranged. The fourth sub-pixel has a color different from that of the three-primary-color sub-pixel groups. The fourth sub-pixel is arranged between two adjacent three-primary-color sub-pixel groups.
US10741612B2

Disclosed is a display device including a solar cell so as to use power produced by a solar energy, and a method for manufacturing the same, wherein the display device includes light-emitting areas provided on a lower substrate, and a solar cell layer provided on an upper substrate confronting the lower substrate, and provided to produce power by absorbing light, wherein the light-emitting areas include first to third light-emitting areas, and the solar cell layer includes first to third organic solar cell layers which are disposed to areas corresponding to the first to third light-emitting areas.
US10741603B2

A method for manufacturing an image sensor comprises: forming a trench around a photodiode, wherein the photodiode comprises a first doped region with a first conductivity type dopant formed in a semiconductor substrate with a second conductivity type dopant; forming a covering portion in the trench, the covering portion with the second conductivity type dopant covering at least a portion of a sidewall or a bottom wall of the trench, wherein a doping concentration of the covering portion is higher than a doping concentration of the semiconductor substrate; and diffusing the second conductivity type dopant in the covering portion into the semiconductor substrate so as to form a second doped region with the second conductivity type dopant surrounding the at least a portion of the sidewall or the bottom wall of the trench.
US10741602B2

An image sensor including at least one pixel for collecting charge in its photodiode is provided. The image sensor comprises: a substrate having a first surface on a front side and a second surface on a back side, a photodetector formed in the silicon substrate and having a light-receiving surface on the second surface, and a first layer with positive charges disposed on the second surface, the first layer being configured to form an electron accumulation region at the light-receiving surface of the photodetector for suppressing a dark current at a back side interface of the image sensor. A method for fabricating an image sensor including a first layer with positive charges is also provided.
US10741593B1

A pixel cell includes a photodiode disposed in a semiconductor material layer to accumulate image charge photogenerated in the photodiode in response to incident light. A storage transistor is coupled to the photodiode to store the image charge photogenerated in the photodiode. The storage transistor includes a storage gate disposed proximate a first surface of the semiconductor material layer. The storage gate includes a pair of vertical transfer gate (VTG) portions. Each one of the pair of VTG portions extends a first distance into the semiconductor material layer through the first surface of the semiconductor material layer. A storage node is disposed below the first surface of the semiconductor material layer and between the pair of VTG portions of the storage gate to store the image charge transferred from the photodiode in response to a storage signal.
US10741586B2

A transistor array panel includes a transistor which includes a gate electrode, a semiconductor layer on the gate electrode, and a source electrode and a drain electrode on the semiconductor layer. The semiconductor layer includes a first portion overlapping the source electrode, a second portion overlapping the drain electrode, and a third portion between the first portion and the second portion. The first portion, the second portion, and the third portion have different minimum thicknesses.
US10741583B2

A semiconductor memory device includes a connecting member including a semiconductor material, a first electrode film, a first insulating film, a stacked body and three or more semiconductor pillars. The stacked body includes second electrode films and second insulating films that alternately stacked. The semiconductor pillars are arrayed along two or more directions, extend in a stacking direction, pierce through the stacked body and the first insulating film, and are connected to the connecting member. The device includes a third insulating film provided between the semiconductor pillars and the stacked body and between the connecting member and the first electrode film. A charge storage layer is provided at least between one of the second electrode films and the third insulating film.
US10741578B2

Embodiments of 3D memory devices having an inter-deck plug and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a first memory deck including interleaved conductor and dielectric layers above the substrate, a second memory deck including interleaved conductor and dielectric layers above the first memory deck, and a first and a second channel structure each extending vertically through the first or second memory deck. The first channel structure includes a first memory film and semiconductor channel along a sidewall of the first channel structure, and an inter-deck plug in an upper portion of the first channel structure and in contact with the first semiconductor channel. A lateral surface of the inter-deck plug is smooth. The second channel structure includes a second memory film and semiconductor channel along a sidewall of the second channel structure. The second semiconductor channel is in contact with the inter-deck plug.
US10741575B2

A vertical type semiconductor device includes a substrate that has a plurality of trenches, a support pattern that fills the plurality of trenches and protrudes from a top surface of the substrate, a semiconductor layer disposed on the substrate that fills a space between the support patterns, a stacked structure disposed on the support pattern and the semiconductor layer that includes a plurality of insulation layers and a plurality of first conducive patterns that are alternately and repeatedly stacked, and a plurality of channel structures that penetrate through the structure and the semiconductor layer and that extend into the support pattern. Each channel structure includes a channel layer. At least a portion of the channel layer makes contact with the semiconductor layer.
US10741571B2

A vertical memory device includes a channel, gate lines, and a cutting pattern, respectively, on a substrate. The channel extends in a first direction substantially perpendicular to an upper surface of the substrate. The gate lines are spaced apart from each other in the first direction. Each of the gate lines surrounds the channel and extends in a second direction substantially parallel to the upper surface of the substrate. The cutting pattern includes a first cutting portion extending in the first direction and cutting the gate lines, and a second cutting portion crossing the first cutting portion and merged with the first cutting portion.
US10741564B2

An SRAM device includes first, second and third transistors, which are used as a pass gate transistor, a pull-down transistor, and a pull-up transistor, respectively. A channel region of each transistor may include a plurality of semiconductor sheets that are vertically stacked on a substrate. The semiconductor sheets used as the channel regions of the first and second transistors may have a width greater than the semiconductor sheets used as channel regions of the third transistor.
US10741559B2

The disclosure relates to a structure and methods of forming spacers for trench epitaxial structures. The method includes: forming a spacer material between source and drain regions of respective first-type gate structures and second-type gate structures; growing source and drain material about the first-type gate structures, confined within an area defined by the spacer material; and growing source and drain material about the second-type gate structures, confined within an area defined by the spacer material.
US10741552B2

Methods for preventing step-height difference of flash and logic gates in FinFET devices and related devices are provided. Embodiments include forming fins in flash and logic regions; recessing an oxide exposing an upper portion of the fins; forming an oxide liner over the upper portion in the flash region; forming a polysilicon gate over and perpendicular to the fins in both regions; removing the gate from the logic region and patterning the gate in the flash region forming a separate gate over each fin; forming an ONO layer over the gates in the flash region; forming a second polysilicon gate over and perpendicular to the fins in both regions; planarizing the second polysilicon gate exposing a portion of the ONO layer over the gates in the flash region; forming and patterning a hardmask, exposing STI regions between the flash and logic regions; and forming an ILD over the STI regions.
US10741551B2

An integrated circuit die that may have one vertical transistor and one horizontal transistor is disclosed. The transistors may have substantially different breakdown voltages. The vertical transistor may be used in power circuitry applications and the horizontal transistor may be used in logic circuitry applications.
US10741548B2

A semiconductor device includes a vertical protection device having a thyristor and a lateral trigger element disposed in a substrate. The lateral trigger element is for triggering the vertical protection device.
US10741544B2

A method of fabricating a semiconductor device includes forming one or more fins on a substrate. The method includes forming a first active area and a second active area, each including an n-type dopant, on the substrate at opposing ends of the one or more fins. The method further includes forming a third active area including a p-type dopant on the substrate adjacent to the first active area and the second active area.
US10741542B2

High-voltage semiconductor devices with electrostatic discharge (ESD) protection and methods of fabrication are provided. The semiconductor devices include a plurality of transistors on a substrate patterned with one or more common gates extending across a portion of the substrate, and a plurality of first S/D contacts and a plurality of second S/D contacts associated with the common gate(s). The second S/D contacts are disposed over a plurality of carrier-doped regions within the substrate. One or more floating nodes are disposed above the substrate and, at least in part, between second S/D contacts to facilitate defining the plurality of carrier-doped regions within the substrate. For instance, the carrier-doped regions may be defined from a mask with a common carrier-region opening, with the floating node(s) intersecting the common carrier-region opening and facilitating defining, along with the common opening, the plurality of separate carrier-doped regions.
US10741529B2

A planar dual die package includes a package substrate and first and second semiconductor dice disposed side by side on a first surface of the package substrate. Outer connectors are disposed on a second surface of the package substrate, and the second surface of the package substrate includes a command/address ball region and a data ball region. Each of the first and second semiconductor dice includes die pads disposed in a command/address pad region corresponding to the command/address ball region and in a data pad region corresponding to the data ball region. Each of the first and second semiconductor dice are disposed on the package substrate so that a first direction from the command/address ball region toward the data ball region coincides with a second direction from the command/address pad region toward the data pad region.
US10741521B2

A semiconductor package manufacturing method includes preparing a flexible film including input wire patterns and output wire patterns, preparing a semiconductor chip including metal bumps, attaching the semiconductor chip to one side of the flexible film, such that the metal bumps are connected to either one or both of the input wire patterns and the output wire patterns, and attaching a first absorbing and shielding tape to another side of the flexible film, wherein the first absorbing and shielding tape includes an absorption film and a protective insulating film disposed on the absorption film.
US10741512B2

An embodiment is a method including forming a first passive device in a first wafer, forming a first dielectric layer over a first side of the first wafer, forming a first plurality of bond pads in the first dielectric layer, planarizing the first dielectric layer and the first plurality of bond pads to level top surfaces of the first dielectric layer and the first plurality of bond pads with each other, hybrid bonding a first device die to the first dielectric layer and at least some of the first plurality of bond pads, and encapsulating the first device die in a first encapsulant.
US10741509B2

An antenna module includes a connection member including at least one wiring layer and at least one insulating layer, an antenna package including a plurality of antenna members transmitting or receiving a radio frequency (RF) signal and a plurality of feed vias respectively electrically connected to the plurality of antenna members at one end and respectively electrically connected to a wiring corresponding to the at least one wiring layer at the other end, and positioned on a first surface of the connection member, an integrated circuit (IC) disposed on a second surface of the connection member and electrically connected to the wiring corresponding to the at least one wiring layer to receive an intermediate frequency (IF) signal or baseband signal and transfer an RF signal or receive an RF signal and transfer an IF signal or baseband signal, and a filter filtering an IF signal or a baseband signal.
US10741497B2

The present disclosure relates to semiconductor structures and, more particularly, to contact and interconnect structures and methods of manufacture. The structure includes: a single damascene contact structure in electrical contact with a contact of a source region or drain region; and a single damascene interconnect structure in a wiring layer and in direct electrical contact with the single damascene contact structure.
US10741496B2

An embodiment of a semiconductor device includes a semiconductor substrate, a first dielectric layer disposed over a semiconductor substrate, a source electrode and a drain electrode formed over the semiconductor substrate within openings formed in the first dielectric layer, a gate electrode formed over the semiconductor substrate between the source electrode and the drain electrode, and a protection layer disposed on the source electrode, the drain electrode, and the first dielectric layer, wherein a first edge of the protection layer terminates the protection layer between the source electrode and the gate electrode, and a second edge of the protection layer terminates the protection layer between the gate electrode and the drain electrode. A method for fabricating the semiconductor devices includes forming a first dielectric layer over the semiconductor substrate, forming source and drain electrodes, depositing the protection layer over the source and drain electrodes, and forming the gate electrode.
US10741490B2

Device, package structure and method of forming the same are disclosed. The device includes a die encapsulated by an encapsulant, a conductive structure aside the die, and a dielectric layer overlying the conductive structure. The conductive structure includes a through via in the encapsulant, a redistribution line layer overlying the through via, and a seed layer overlying the redistribution line layer. The dielectric layer includes an opening, wherein the opening exposes a surface of the conductive structure, the opening has a scallop sidewall, and an included angle between a bottom surface of the dielectric layer and a sidewall of the opening is larger than about 60 degrees.
US10741489B2

A rectangular via extending between interconnects in different metallization levels can have a planform with a width equal to the width of the interconnects and a length equal to twice the width and can be aligned along a long dimension with a length of the upper interconnect. In an integrated circuit layout, the planform can be centered over the width of the lower interconnect, allowing for misalignment during fabrication while maintaining a robust electrical connection. The bottom of the via may be aligned with an upper surface of the lower interconnect or may include portions below the lower interconnect's upper surface. Fewer adjacent routing tracks are blocked by use of the rectangular via than would be blocked using redundant square vias, while ensuring reliability of the electrical connection despite potential misalignment during fabrication.
US10741482B2

A semiconductor device package includes a carrier, a first conductive post and a first adhesive layer. The first conductive post is disposed on the carrier. The first conductive post includes a lower surface facing the carrier, an upper surface opposite to the lower surface and a lateral surface extended between the upper surface and the lower surface. The first adhesive layer surrounds a portion of the lateral surface of the first conductive post. The first adhesive layer comprises conductive particles and an adhesive. The first conductive post has a height measured from the upper surface to the lower surface and a width. The height is greater than the width.
US10741477B2

Semiconductor devices and methods of forming the same are disclosed. One of the semiconductor devices includes a first conductive layer, an organic layer, a silicon layer, a magnetic layer and a second conductive layer. The organic layer is disposed over and exposes a portion of the first conductive layer. The silicon layer is disposed on and in contact with the organic layer. The magnetic layer is disposed over the first conductive layer. The second conductive layer is disposed over the organic layer and the magnetic layer to electrically connect the first conductive layer.
US10741475B2

A delivery roll (1) for thermal interface components, the roll comprising a carrier tape (10), an adhesive layer (10a), and a plurality of thermal interface components (20), wherein the adhesive layer (10a) is arranged on a surface of the carrier tape (10); each thermal interface component (20) comprises a top liner (22), a bottom liner (26) and a thermal interface pad (24) arranged therebetween; the carrier tape (10) supports the plurality of thermal interface components (20) by the adhesive adhering to the bottom liner (26) of each thermal interface component (20); and the plurality of thermal interface components (20) is arranged in a spaced apart manner along the carrier tape (10). The invention also relates to a manufacturing method for a delivery roll.
US10741469B2

The invention provides a semiconductor device. The semiconductor device includes a gate structure over fin structures arranged in parallel. Each of the fin structures has a drain portion and a source portion on opposite sides of the gate structure. A drain contact structure is positioned over the drain portions of the fin structures. A source contact structure is positioned over the source portions of the fin structures. A first amount of drain via structures is electrically connected to the drain contact structure. A second amount of source via structures is electrically connected to the source contact structure. The sum of the first amount and the second amount is greater than or equal to 2, and the sum of the first amount and the second amount is less than or equal to two times the amount of fin structures.
US10741461B2

A fan-out semiconductor package includes: a first interconnection member having a through-hole; a semiconductor chip disposed in the through-hole, having an active surface having a connection pad disposed thereon and an inactive surface opposing the active surface, and having a protrusion bump disposed on the connection pad; an encapsulant encapsulating at least portions of the first interconnection member and the inactive surface of the semiconductor chip; and a second interconnection member disposed on the first interconnection member and the active surface of the semiconductor chip. In the fan-out semiconductor package, step portions of the protrusion bumps may be removed.
US10741460B2

An interconnect assembly includes a bond pad and an interconnect structure configured to electrically couple an electronic structure to the bond pad. The interconnect structure physically contacts areas of the bond pad that are located outside of a probe contact area that may have been damaged during testing. Insulating material covers the probe contact area and defines openings spaced apart from the probe contact area. The interconnect structure extends through the openings to contact the bond pad.
US10741442B2

Embodiments described herein relate generally to one or more methods for forming a barrier layer for a conductive feature in semiconductor processing. In some embodiments, an opening is formed through a dielectric layer to a conductive feature. A barrier layer is formed in the opening along a sidewall of the dielectric layer and on a surface of the conductive feature. Forming the barrier layer includes depositing a layer including using a precursor gas. The precursor gas has a first incubation time for deposition on the surface of the conductive feature and has a second incubation time for deposition on the sidewall of the dielectric layer. The first incubation time is greater than the second incubation time. A conductive fill material is formed in the opening and on the barrier layer.
US10741437B2

A multilayer semiconductor on insulator structure is provided in which the handle substrate and an epitaxial layer in interfacial contact with the handle substrate comprise electrically active dopants of opposite type. The epitaxial layer is depleted by the handle substrate free carriers, thereby resulting in a high apparent resistivity, which improves the function of the structure in RF devices.
US10741434B2

An apparatus for placing ultra-small electronic devices into pockets on a carrier tape for packing has at least one holding element, a movement mechanism, a conveying mechanism and a positioning mechanism. The positioning mechanism further includes first and second positioning devices coupled to the conveying mechanism, wherein the second positioning device is mounted on the first positioning device. In use, the conveying mechanism conveys the carrier tape to move each pocket to a receiving position and the movement mechanism moves each holding element to place the electronic device into a respective pocket at the receiving position. The positioning mechanism adjusts a relative position between the electronic device and the respective pocket by adjusting the carrier tape, the first and second positioning devices being for coarse and fine positioning of the conveying mechanism respectively.
US10741429B2

A system for controlling a parameter of a plant associated with a substrate processing chamber is disclosed. A measuring circuit measures a response of the plant associated with the substrate processing chamber when the parameter of the plant is changed. A model generating circuit determines a delay and a gain of the plant based on the response. The model generating circuit generates a model of the plant based on the delay, the gain, and a time constant of the plant. A predicting circuit receives a set point for the parameter and a measurement of the parameter, generates a value of a prediction of the parameter based on the set point for the parameter and the measurement of the parameter using the model, wherein the value of the prediction of the parameter does not include the delay, compares the value of the prediction of the parameter with the set point to generate a control signal, and controls the parameter of the plant based on the control signal.
US10741423B2

A substrate cleaning apparatus and related apparatuses/methods are disclosed. In one embodiment, a substrate cleaning apparatus includes: a first spindle group including a first driving spindle having a first driving roller configured to rotate a substrate and an idler spindle having a driven roller rotated by the substrate; a second spindle group including a plurality of second driving spindles each having a second driving roller configured to rotate the substrate; a cleaning mechanism configured to clean the substrate rotated by the first driving roller and the plurality of second driving rollers; and a rotation detector configured to detect the rotational speed of the driven roller. The driven roller is positioned on the opposite side to a direction in which the substrate receives a force from the cleaning mechanism.
US10741418B2

A method for producing a power semiconductor module arrangement having a base plate and a contact element configured to, when the base plate is arranged in a housing, provide an electrical connection between an inside and an outside of the housing, includes: connecting an electrically insulating first layer to the base plate; and connecting the contact element to the first layer. Connecting the first layer to the base plate includes forming a third layer on the base plate or on the first layer and mounting the first layer on the base plate such that the third layer attaches the first layer to the base plate. Connecting the contact element to the first layer includes forming a second layer on the first layer or on the contact element and mounting the contact element on the first layer such that the second layer attaches the contact element to the first layer.
US10741412B2

A semiconductor device and method of manufacture are provided. In some embodiments a divergent ion beam is utilized to implant ions into a capping layer, wherein the capping layer is located over a first metal layer, a dielectric layer, and an interfacial layer over a semiconductor fin. The ions are then driven from the capping layer into one or more of the first metal layer, the dielectric layer, and the interfacial layer.
US10741398B2

A method for forming reliefs on a face of a substrate is provided, successively including forming a protective screen for protecting at least a first zone of the face; an implanting to introduce at least one species comprising carbon into the substrate from the face of the substrate, the forming of the protective screen and the implanting being configured to form, in the substrate, at least one carbon modified layer having a concentration of implanted carbon greater than or equal to an etching threshold only from a second zone of the face of the substrate not protected by the protective screen; removing the protective screen; and etching the substrate from the first zone selectively with respect to the second zone.
US10741393B2

Embodiments described herein relate to substrate processing methods. The methods include forming a patterned hardmask material on a substrate, forming first mandrel structures on exposed regions of the substrate, and depositing a gap fill material on the substrate over the hardmask material and the first mandrel structures. The first mandrel structures are removed to expose second regions of the substrate and form second mandrel structures comprising the hardmask material and the gap fill material. Fin structures are deposited on the substrate using the second mandrel structures as a mask.
US10741389B2

A method of growing a two-dimensional transition metal dichalcogenide (TMD) thin film and a method of manufacturing a device including the two-dimensional TMD thin film are provided. The method of growing the two-dimensional TMD thin film may include a precursor supply operation and an evacuation operation, which are periodically and repeatedly performed in a reaction chamber provided with a substrate for thin film growth. The precursor supply operation may include supplying two or more kinds of precursors of a TMD material to the reaction chamber. The evacuation operation may include evacuating the two or more kinds of precursors and by-products generated therefrom from the reaction chamber.
US10741384B2

A process of depositing a silicon nitride (SiN) film on a nitride semiconductor layer is disclosed. The process includes steps of: (a) loading an epitaxial substrate including the nitride semiconductor layer into a reaction furnace at a first temperature and converting an atmosphere in the furnace into nitrogen (N2); (b) raising the temperature in the furnace to a second temperature while keeping pressure in the furnace at a first pressure higher than 30 kPa; (c) converting the atmosphere in the furnace to ammonia (NH3) at the second temperature; and (d) beginning the deposition by supplying SiH2Cl2 as a source gas for silicon (Si) at a second pressure lower than 100 Pa. A feature of the process is that a time span from when the temperature in the furnace reaches the critical temperature to the supply of SiH2Cl2 is shorter than 20 minutes, where the first pressure becomes the equilibrium pressure at the critical temperature.
US10741382B2

A method of forming a nanostructure comprises forming a directed self-assembly of nucleic acid structures on a patterned substrate. The patterned substrate comprises multiple regions. Each of the regions on the patterned substrate is specifically tailored for adsorption of specific nucleic acid structure in the directed self-assembly.
US10741377B2

An ion guide includes electrodes and an RF generator. The electrodes extend in a Z-axis that is straight or curved with a radius that is larger than a distance between the electrodes. The electrodes are made of carbon filled ceramic resistors, silicon carbide, or boron carbide to form bulk resistance with specific resistance between 1 and 1000 Ohm*cm. Conductive Z-edges are disposed on each electrode. An insulating coating is disposed on one side of each electrode and oriented away from an inner region of the ion guide surrounded by said electrodes. At least one conductive track per electrode is attached on a top side of the insulating coating. The conductive track is connected to one conductive electrode edge. The RF generator has at least two sets of secondary coils with DC supplies connected to central taps of the sets of secondary coils to provide at least four distinct signals.
US10741369B2

A semiconductor manufacturing apparatus according to an embodiment comprises a chamber capable of containing a substrate therein. A mount part can have the substrate mounted thereon. A first member is provided between an inner wall of the chamber and a plasma generation region above the mount part. An optical transmitter is provided in an opening that is provided in the first member to extend from a side of the inner wall of the chamber to the plasma generation region or provided in gaps between a plurality of the first members.
US10741364B1

In one embodiment, the present disclosure may be directed to a matching network coupled to an RF source and a plasma chamber and including an electronically variable capacitor (EVC) and a control circuit. The control circuit receives parameter signals and determines corresponding parameter values. For each parameter value, the control circuit determines whether the parameter value is relevant to the matching activity and whether the parameter value is relevant to a second activity of the matching network. The matching network carries out the matching activity based on the parameter values determined to be relevant to the matching activity, and carries out the second activity based on the parameter values determined to be relevant to the second activity.
US10741363B1

A radio frequency (RF) generator includes a RF power source configured to generate an output signal at an output frequency. The RF generator includes a frequency tuning module. The frequency tuning module generates a frequency control signal that controls the output frequency of the RF power source. The frequency control signal includes a frequency tuning signal component and a perturbation signal component. The perturbation signal varies an electrical parameter of the output signal. The frequency tuning signal is adjusted in accordance with a change in output signal in response to the perturbation signal.
US10741362B2

An impedance matching method includes: calculating an output impedance of a theoretical circuit model set in advance from actual values of two variable components and a measured value of an input impedance; calculating values of the two variable components at the time of impedance matching through an arithmetic operation under a matching condition in the theoretical circuit model based on the calculated value of the output impedance assuming that the output impedance due to matching transition has the same value; and controlling the actual values of the variable components of the impedance matching device to correspond to the calculated two variable component values.
US10741359B2

An electron microscope includes: a display control unit which sequentially acquires electron microscope images of a sample and causes a display unit to display the electron microscope images as a live image; an analysis area setting unit which sets an analysis area on the sample based on a designated position on the live image designated by pointing means; and an analysis control unit which performs control for executing elemental analysis of the set analysis area. The analysis area setting unit sets, as the analysis area, an area on the sample which corresponds to a continuous area including the designated position and having brightness comparable to brightness of the designated position.
US10741355B1

A multi-beam charged particle system includes: a vacuum enclosure having an opening covered by a door; a particle source configured to generate charged particles, wherein the particle source is arranged within the vacuum enclosure; at least one multi-aperture plate module including at least one multi-aperture plate and a base; and a transfer box having an opening covered by a door. The at least one multi-aperture plate includes a plurality of apertures. The base is configured to hold the at least one multi-aperture plate. The base is configured to be fixed relative to the vacuum enclosure such that the multi-aperture plate module is arranged in an interior of the vacuum enclosure such that, during operation of the particle beam system, particles traverse the plural multi-aperture plates through the apertures of the plates.
US10741343B2

A keypad device includes a circuit board having raised buttons disposed on a first surface of the circuit board, resilient switches disposed on a periphery of the first surface, and through-holes, wherein each of the raised buttons and switches, when actuated, closes a circuit on the circuit board and affects an input to the device. The keypad device includes a faceplate fastened to the circuit board, the faceplate having an array of openings configured to allow the buttons to pass through, bosses extending from a first surface of the faceplate toward the circuit board and positioned to pass through the through-holes on the circuit board, and plungers aligned above and in contact with the resilient switches such that when the plate is pressed toward the circuit board, in a region at or near a subject plunger, the subject plunger actuates the resilient switch that is in contact with the plunger.
US10741342B2

This application relates to illuminated dome switches and a dome switch assembly having a first contact carried by a switch base and a dome shaped structure coupled to and supported by the switch base, the dome shaped structure comprising a material that is flexible and capable of internally transmitting visible light. The switch assembly can include a second contact coupled to the dome shaped structure and arranged opposite the first contact, and a light source configured to emit visible light, the light source in optical communication with the dome shaped structure such that at least some of the visible light emitted by the light source passes into the material and is subsequently emitted by the material in a generally uniform manner.
US10741340B2

A symbol button for a vehicle includes: a button body; a button surface portion positioned at an upper portion of the button body; a symbol printing portion positioned on the button surface portion; an anti-plating portion positioned at a lower portion of the button body; and a metal plating layer positioned at the outside of a button excluding the symbol printing portion and the anti-plating portion.
US10741338B1

Provided is a handcart circuit breaker and a contact device thereof including a contact arm and a moving contact. Inner walls of a cylindrical contact finger base in axial direction respectively have a contact finger groove with a spring contact finger for plugging the contact arm and a fixed contact; a rear of the contact finger base sleeves with a front of the contact arm having a positioning groove larger than a fitting end of the support pin, the contact finger base has support pins extending into the contact finger base; a diameter of a circle corresponding to the fitting end of each support pin is larger than a diameter of a circle corresponding to a bottom of each positioning groove; the contact finger base connects with the contact arm and an elastic support structure is arranged between the contact arm and the inner wall of the contact finger base.
US10741328B2

A multi-layer ceramic electronic component includes: first internal electrodes each including a first main electrode and a first drawn portion extending from the first main electrode to a first end surface facing in a first direction; and second internal electrodes each including a second main electrode and a second drawn portion extending from the second main electrode to a second end surface facing the first end surface in the first direction, the first and second internal electrodes being alternately laminated, the first drawn portion having a width dimension along a second direction that decreases toward the first end surface and having a predetermined width dimension in the first end surface, the second direction being orthogonal to the first direction, the second drawn portion having a width dimension along the second direction that increases toward the second end surface and having the predetermined width dimension in the second end surface.
US10741322B2

Decorative, multi-layer surfacing materials, surfaces made therewith, methods of making such and wireless power transmission using the same, which surfacing materials comprise: a first resin-impregnated paper layer and a second resin-impregnated paper layer, and a first conductive material having a first terminus and a second terminus and capable of carrying an electric current from the first terminus to the second terminus; wherein the first conductive material is disposed on a first surface of the first resin-impregnated paper layer; wherein the first resin-impregnated paper layer and the second resin-impregnated paper layer are disposed in a stacked and compressed such that the first conductive material is encapsulated between the first resin-impregnated paper layer and the second resin-impregnated paper layer; and wherein at least one of the first resin-impregnated paper layer, the second resin-impregnated paper layer or an optional additional resin-impregnated paper layer is a decorative layer.
US10741318B2

A spin current magnetization rotational element is provided in which deterioration in the degree of integration is prevented from being caused and a magnetization rotation can be easily realized. A spin current magnetization rotational element includes a spin-orbit torque wiring which extends in a first direction, a first ferromagnetic layer which is laminated in a second direction intersecting the first direction; and a first magnetic field applying layer which is disposed to be separated from the first ferromagnetic layer in the first direction and configured to apply an assistant magnetic field assisting a magnetization rotation of the first ferromagnetic layer to the first ferromagnetic layer.
US10741315B2

A magnetic body constituted by magnetic grains bonded together via oxide film, which magnetic grains contain a Fe—Si-M soft magnetic alloy (where M is a metal element more easily oxidized than Fe) that contains sulfur atoms (S). The magnetic body preferably contains 0.004 to 0.012 percent by weight of S, 1.5 to 7.5 percent by weight of Si, and 2 to 8 percent by weight of metal M.
US10741309B2

In various embodiments, superconducting wires incorporate diffusion barriers composed of Ta alloys that resist internal diffusion and provide superior mechanical strength to the wires.
US10741308B2

An electrical cable includes a conductor assembly having a first conductor, a second conductor and an insulator surrounding the first conductor and the second conductor. The insulator has an outer surface. The conductor assembly extends along a longitudinal axis for a length of the electrical cable. The first conductor has a first core and a first conductive layer on the first core. The second conductor has a second core and a second conductive layer on the second core. The first and second cores are dielectric. The electrical cable includes a cable shield around the conductor assembly engaging the outer surface of the insulator and providing electrical shielding for the first and second conductors. The cable shield extends along the longitudinal axis.
US10741300B2

The present invention provides a thick-film paste composition for printing the front side of a solar cell device having one or more insulating layers. The thick-film paste comprises an electrically conductive metal and an oxide composition dispersed in an organic medium that includes microgel particles and an organopolysiloxane.
US10741298B2

A scintillator panel has a barrier rib structure, whereby opposing light-receiving substrates can be aligned with high precision and bonded with a photoelectric conversion element. In the scintillator panel, cells demarcated by lattice shaped barrier ribs formed on a sheet-shaped base member are filled with a phosphor for receiving radiation and emitting light, thereby configuring a pixel structure. The scintillator panel has portions in which the lattice-shaped barrier ribs are exposed on both a front surface and a back surface in a portion of a non-display region of the panel external periphery. The exposed parts are optically transparent.
US10741297B2

The invention utilizes one exposure without moving parts to provide multiple x-ray views of an object. It relies on a 3D detector, which can be a stack of film plates, and a specified focusing x-ray optic. The x-ray optic, discussed below, allows collection of x-rays from a localized volume, just like an ordinary optical lens, and the stacked film plate, or other 3D detector design, allows collection of the multiple focal plane information from one line of sight.
US10741292B2

The present invention extends to methods, systems, and computer program products for remote medical analysis. Advances in mobile devices offer a way to connect animals and veterinarians in ways other than physical proximity. Using a phone's camera to take photos or and/or video and send those to a veterinarian allows greater degree of detail to be communicated in triaging or diagnosing or follow-up for an animal. Additionally, the camera could be used to conduct a video chat between an animal owner and a veterinarian allowing real-time viewing and conversation between the two parties.
US10741289B2

A method for measuring physician efficiency and patient health risk stratification is disclosed. Episodes of care are formed from medical claims data and an output process is performed. Physicians are assigned to report groups, and eligible physicians and episode assignments are determined. Condition-specific episode statistics and weighted episode statistics are calculated, from which physician efficiency scores are determined.
US10741287B2

In an example embodiment, this disclosure provides a non-transitive computer-readable medium on which are stored instructions executable by a processor, the instructions which, when executed by the processor, cause the processor to perform a method. The method includes computing, based on test performance data of a user, at least one of a performance variable characterizing cognitive functioning and a performance variable characterizing neuromotor functioning. For each of the at least one performance variable, a respective score can be computed based on the respective performance variable and based on a set of performance metrics. The method can also include outputting, via an output device, the at least one computed score.
US10741285B2

Embodiments of a method and system for facilitating improvement of a user condition through tailored communication with a user can include receiving a log of use dataset associated with a digital communication behavior at a mobile device, the log of use dataset further associated with a time period; receiving a mobility supplementary dataset corresponding to a mobility-related sensor of the mobile device, the mobility supplementary dataset associated with the time period; determining a tailored communication plan for the user based on at least one of the log of use dataset and the mobility supplementary dataset; transmitting, based on the tailored communication plan, a communication to the user at the mobile device; and promoting a therapeutic intervention to the user in association with transmitting the communication.
US10741277B2

An information processing apparatus acquires, for each of a plurality of three-dimensional images, information about a position where a two-dimensional image included in the three-dimensional image is present, identifies, based on an instruction about a position of a two-dimensional image to be displayed at a display unit, a three-dimensional image to be a target of the instruction, and identifies, based on information about the position specified by the instruction, and the information about the position where the two-dimensional image is present for each of the plurality of three-dimensional images, a two-dimensional image which is included in the identified three-dimensional image, and which is to be displayed at the display unit.
US10741269B2

Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation (CNV) of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by removing within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. Also disclosed are systems and computer program products for evaluation of CNV of sequences of interest.
US10741267B2

A memory cell includes a first anti-fuse element, a second anti-fuse element, and a selection circuit. The first anti-fuse element has a first terminal, a second terminal being floating, and a control terminal coupled to a first anti-fuse control line. The second anti-fuse element has a first terminal coupled to the first terminal of the first anti-fuse element, a second terminal being floating, and a control terminal coupled to a second anti-fuse control line. The selection circuit is coupled to the first terminal of the first anti-fuse element, the first terminal of the second anti-fuse element, and a source line. The selection circuit controls an electrical connection from the source line to the first terminal of the first anti-fuse element and the first terminal of the second anti-fuse element.
US10741266B2

In a semiconductor integrated circuit, an internal circuit is capable of executing a first operation and a second operation concurrently, and an output circuit outputs to the outside of the semiconductor integrated circuit information indicating whether or not the first operation is being executed and information indicating whether or not the second operation is executable.
US10741265B2

The present invention relates to a flash memory cell with only four terminals and decoder circuitry for operating an array of such flash memory cells. The invention allows for fewer terminals for each flash memory cell compared to the prior art, which results in a simplification of the decoder circuitry and overall die space required per flash memory cells. The invention also provides for the use of high voltages on one or more of the four terminals to allow for read, erase, and programming operations despite the lower number of terminals compared to prior art flash memory cells.
US10741261B1

In one embodiment there is a method for calculating a timer at a storage device including a plurality of memory portions for storing data and a memory controller for performing operations on the memory portions, the method comprises receiving a request to perform an initial operation on a memory portion; determining an operational characteristic associated with the initial operation to be performed on the memory portion; and calculating an amount of time for a memory portion timer based on the operational characteristics before the initiation of the initial operation on the memory portion, wherein performance of a subsequent operation for another memory portion is delayed until the amount of time for the memory portion timer has elapsed since initiation of the operation on the memory portion.
US10741260B1

Disclosed are systems and methods of dynamically calibrating a memory control voltage more accurately. According to disclosed implementations, a memory control voltage such as Vpass or Vwlrv may be calibrated during memory operation as a function of the change in slope of total string current, even during increase in the wordline voltage. In one exemplary method, the wordlines are increased in sequence from a start voltage to an end voltage in steps, slope change is measured at every step, the measured slope change is compared against a threshold, and an adjusted memory control voltage is determined as a function of a wordline voltage at which the change in slope reaches the threshold. As such, memory control voltage may be determined and dynamically calibrated with less sensitivity to operating parameters such as temperature, pattern, and/or time of programming.
US10741258B2

Memory having an array of memory cells and a controller for access of the array of memory cells that is configured to generate a data value indicative of a level of a property sensed from a data line while applying potentials to control gates of memory cells of more than one string of series-connected memory cells connected to that data line.
US10741257B1

A method and system are provided for reading a non-transitory memory array. When a default read operation is performed and has failed, a dynamic sensing bit line voltage (VBLC) enhanced read or a dynamic sense time read is performed. According to the dynamic VBLC enhanced read or the dynamic sense time enhanced read, the VBLC or the sense time is increased, and a read is performed with the increased VBLC or increased sense time. If this enhanced read is unsuccessful, and if a maximum VBLC or a maximum sense time has not yet been reached, the VBLC or the sense time is increased again, and another read is performed. Once the maximum VBLC or a maximum sense time has been reached, if the read is still not successful, a read failure is reported.
US10741254B2

A memory system includes a memory device suitable for storing an erase count list where a first erase count of each of a plurality of memory blocks is recorded, and a controller suitable for counting the first erase count of each of the memory blocks, updating the erase count list to reflect the first erase count, selecting victim blocks from the memory blocks, checking a second erase count corresponding to each of the victim blocks, updating a victim block erase count list to reflect the second erase count, comparing the first erase count and the second erase count which correspond to a target victim block, among the victim blocks, and moving data stored in the target victim block to a normal block when the first erase count is equal to the second erase count.
US10741242B2

Memory devices are provided. A memory device includes a voltage generation circuit that includes an offset compensator configured to receive a reference voltage and an offset code and to link the offset code to the reference voltage. The voltage generation circuit includes a comparator configured to compare the reference voltage linked to the offset code with a bit line pre-charge voltage and to output driving control signals. The voltage generation circuit includes a driver configured to output the bit line pre-charge voltage at a target level of the reference voltage in response to the driving control signals. The voltage generation circuit includes a background calibration circuit configured to generate the offset code for performing control so that a target short current flows through an output node of the driver from which the bit line pre-charge voltage is output. Related methods of generating a bit line pre-charge voltage are also provided.
US10741240B2

A semiconductor memory apparatus includes a word line control circuit configured to enable and disable a word line, wherein the word line control circuit comprises a switch which couples and decouples the word line to and from at least one other word line.
US10741239B2

An example apparatus includes a processing in memory (PIM) capable device having an array of memory cells and sensing circuitry coupled to the array. The PIM capable includes a row address strobe (RAS) component selectably coupled to the array. The RAS component is configured to select, retrieve a data value from, and input a data value to a specific row in the array. The PIM capable device also includes a RAS manager selectably coupled to the RAS component. The RAS manager is configured to coordinate timing of a sequence of compute sub-operations performed using the RAS component. The apparatus also includes a source external to the PIM capable device. The RAS manager is configured to receive instructions from the source to control timing of performance of a compute operation using the sensing circuitry.
US10741223B2

An electrical feed-through, such as a PCB connector, involves at least one positioning protrusion protruding from a main body, and may further include multiple positioning protrusions protruding in respective directions from the main body. A data storage device employing such a feed-through comprises an enclosure base with which the feed-through is coupled, where the base comprises an annular recessed surface surrounding an aperture that is encompassed by the feed-through and is at a first level, and at least one recessed positioning surface at a higher level than the first level and extending in a direction away from the annular recessed surface. The positioning protrusion of the electrical feed-through physically mates with the recessed positioning surface of the base, such that the position of the feed-through is vertically constrained by the recessed positioning surface.
US10741217B2

Intelligent synchronization of media or other material output from multiple media devices is contemplated. The intelligence synchronization may include instructing the media devices to coordinate playback in concert with a conductor whereby the conductor acts a focal point or reference for the non-conducting media devices. The non-conductor may transmit sync messaging having data or other information sufficient to facilitate coordinating operation of the non-conductors in a manner sufficient to synchronize output of the media.
US10741216B2

A first method utilizes placeholder tags to facilitate a user's adding a tag to a video scene during a production process of a video. The tag is associated with an item depicted in the video and characterized by size, shape, temporal duration, and spatial location properties with respect to the video scene. A second method facilitates a user's customizing a video scene during a production process of a video, wherein computer-generated graphic content (logo or brand name for the tagged item) is overlaid on the item depicted in the video and associated with the tag. A third method facilitates a user to add a tag to a video scene during a production process of a video, where the video scene is related to another video scene associated with the video, and the method stores data associated with said another video scene to note the tag.
US10741213B1

Video edit information, video modification information, and/or other information may be obtained. Video edit information may define a video edit of video content. Video edit may include one or more portions of the video content and may have a progress length. Video modification information may define one or more criteria for modifying the video edit. One or more portions of the video edit may be identified based on the video modification information. The portion(s) of the video edit may be modified based on the video modification information. A revised video edit information may be generated. The revised video edit information may define a revised video edit of the video content. The revised video edit may include the portion(s) of the video edit modified based on the video modification information. The revised video edit may have a progress length shorter than the progress length of the video edit.
US10741211B2

To enable an HDR image and an HDR image metadata to be stored in an MP4 file, and a reproduction device to reproduce an optimum HDR image based on metadata. In generating the MP4 file that stores HDR image data, the HDR image metadata is recorded in the MP4 file. An HDR image metadata storage box is set to a trak box or a traf box in the MP4 file, and the HDR image metadata is stored. The reproduction device acquires the HDR image metadata stored in the MP4 file, determines whether executing a conversion process of the HDR image read from the MP4 file according to the acquired metadata and display function information of the display unit, and executes an output image generation process according to a determination result.
US10741207B2

The present invention aims at providing a magnetic recording medium that can lower a Curie temperature (Tc) of a magnetic material, without increasing an in-plane coercive force and lowering magnetic properties. The magnetic recording medium is a magnetic recording medium comprising a substrate and a magnetic recording layer, the magnetic recording layer comprising an FePtRh ordered alloy, wherein a Rh content in the FePtRh ordered alloy is 10 at % or less.
US10741203B2

According to one embodiment, a magnetic recording head includes a main magnetic pole which applies a recording magnetic field to a magnetic recording medium, an auxiliary magnetic pole which faces the main magnetic pole across a recording gap, a first magnetic bypass layer which is provided in a recording gap in a track direction, and a second magnetic bypass layer which is provided in the recording gap in the track direction and is arranged at a distance from the first magnetic bypass layer in a track width direction.
US10741201B2

According to one embodiment, a magnetic disk device applies a bias voltage for measurement to a high frequency assist element according to a setting instruction of the bias voltage to measure a conduction current by in a recording head, calculates the resistance value in the supply path of the bias voltage from a relationship between the measured current and the bias voltage for measurement, and changes the bias voltage applied at the time of data recording based on the calculated resistance value.
US10741191B2

The present invention relates to a voice signal processing method according to a state of an electronic device, and an electronic device therefor. An electronic device according to various embodiments comprises: a microphone; and a processor, wherein the processor can be configured to: obtain a voice signal using the microphone, check a state of the electronic device, and generate a first voice signal by filtering the voice signal using a first method, at least based on a determination of the electronic device being in a first state; generate a second voice signal by filtering the voice signal using a second method, at least based on a determination of the electronic device being in a second state; and transmit to an external electronic device a corresponding voice signal of the first voice signal or the second voice signal. In addition, other embodiments are possible.
US10741180B1

Methods and systems for adding functionality to an account of a language processing system where the functionality is associated with a second account of a first application system is described herein. In a non-limiting embodiment, an individual may log into a first account of a language processing system and log into a second account of a first application system. While logged into both the first account and the second account, a button included within a webpage provided by the first application may be invoked. A request capable of being serviced using the first functionality may be received by the language processing system from a device associated with the first account. The language processing system may send first account data and the second account data to the first application system to facilitate an action associated with the request, thereby enabling the first functionality for the first account.
US10741178B2

A method for providing a vehicle AI service is provided. The method includes steps of: an AI service providing device (a) supporting an AI server to extract from a voice of a user (i) at least one of skill candidates including service categories and (ii) at least one of command candidates, to create voice analysis data, and receiving it from the AI server; and (b) (I) analyzing at least one of (i) the voice analysis data, (ii) second data created by analyzing voices of other users within a certain time, (iii) third data created by analyzing voices of the user within a particular time, and (iv) fourth data having information on context of the user, and (II) recognizing an intention included in the voice and determining a final skill and a final command matching the intention; wherein each of the data includes the skill candidates and the command candidates.
US10741170B2

A speech recognition method comprises: generating, based on a preset speech knowledge source, a search space comprising preset client information and for decoding a speech signal; extracting a characteristic vector sequence of a to-be-recognized speech signal; calculating a probability at which the characteristic vector corresponds to each basic unit of the search space; and executing a decoding operation in the search space by using the probability as an input to obtain a word sequence corresponding to the characteristic vector sequence.
US10741164B1

This document describes a method that includes receiving an input signal representing audio captured by a sensor disposed in an active noise reduction (ANR) device, determining, by one or more processing devices, that the ANR device is operating in a first operational mode, and in response, applying a first gain to the input signal to generate a first amplified input signal. The method also includes determining, by the one or more processing devices, that the ANR device is operating in a second operational mode different from the first operational mode, and in response, applying a second gain to the input signal to generate a second amplified input signal, wherein the second gain is different from the first gain. The method further includes processing the first or second amplified input signal to generate an output signal, and generating, by an acoustic transducer, an audio output based on the output signal.
US10741163B2

A road noise-cancellation system, comprising: an actuator disposed in a vehicle cabin; a controller comprising a processor and non-volatile memory, the controller being programmed to: generate a noise-cancellation signal with a noise-cancellation filter including a first plurality of coefficients, the noise-cancellation signal being based on the first plurality of coefficients, the noise-cancellation signal being transduced by the actuator to generate a noise-cancellation audio signal based on the noise-cancellation signal, the noise-cancellation audio signal destructively interfering with an undesired noise in a noise-cancellation zone; adjust the first plurality of coefficients of the noise-cancellation filter based on one or more input signals to provide a second plurality of coefficients; store the second plurality of coefficients in the non-volatile memory during a shutdown sequence or at the end of an interval; and restore the second plurality of coefficients from non-volatile memory to the noise-cancellation filter after (i) startup or (ii) determining that a third plurality of coefficients, provided by a second adjustment, are divergent or unstable.
US10741157B2

An electronic device having a soundproof structure is provided. The electronic device includes a housing including an internal space, an inlet and an outlet formed on one side of the housing, a cooling fan disposed in the internal space, and configured to create an air-flow introduced from the inlet which is discharged to the outlet, and a sound absorbing member disposed to surround, at least in part, a peripheral area of the cooling fan in a direction to not obstruct the air-flow.
US10741151B2

A musical instrument pitch changing apparatus for a musical instrument having at least a first and second string is disclosed. The apparatus includes a bender lever pivotally secured to the musical instrument, a rocker arm pivotally secured to the instrument with a bender saddle for varying the tension in the first string in response to movement of the bender lever between the first and second positions. A mount secures the rocker arm and bender saddle to the first selected string in a first bending configuration or to the second selected string in a second bending configuration. The rocker arm and bender saddle is movable between the first selected string and the second selected string of the musical instrument.
US10741149B2

Methods and apparatus are disclosed for providing visual assistance to a flight crew on an aircraft during flight. The method comprises generating a graphical user interface (GUI) element that displays a target aircraft symbol that represents a target aircraft and a horizontal range symbol that represents a pre-selected horizontal distance ahead of an ownship aircraft. The method further comprises positioning the target aircraft symbol at a variable position on the GUI element away from the horizontal range symbol, wherein the distance between the target aircraft symbol and the horizontal range symbol is proportional to an actual horizontal distance between the target aircraft position and the pre-selected horizontal distance ahead of the ownship aircraft; and causing the GUI element and the symbols to be displayed on a cockpit display.
US10741144B2

Provided are a data communication system for a high speed interface and a data transmission apparatus and a data reception apparatus of the data communication system. The data communication system includes the data transmission apparatus that configures a packet including a command and a plurality of components, determines a run length of data of the packet, and performs encoding, and the data reception apparatus that decodes the data of the encoded packet.
US10741143B2

Systems and techniques for streaming video with dynamic jitter tolerance are described. In one example, a system includes a server executing an application and generating image frames associated with the application at a frame rate, and a client which displays the image frames on a display that has a predetermined refresh rate and which monitors arrival times of the image frames in relation to the predetermined refresh rate. The server is further configured to dynamically change the frame rate based on the monitoring so that the frame rate more closely corresponds to the predetermined refresh rate of the client's display.
US10741142B1

One or more resistors or resistances are integrated in a 7-bit DVR or PVCOM integrated circuit. A 7-bit DVR or PVCOM integrated circuit includes a 7-bit DAC. The integrated resistors or resistances (R1, R2, or RSET, or any combination) reduces the number of external components, reduces the number of pins, and increases the accuracy of the DVR or PVCOM circuit. The least significant bit (LSB) of the DAC depends only on ratios of internal resistors, which can be made very accurate and independent of temperature.
US10741137B2

A display driving device is provided, which includes a detecting circuit, a comparing circuit coupled to the detecting circuit, and a timing control circuit coupled to the comparing circuit. The detecting circuit detects, and sends to the comparing circuit, a common voltage from each of a plurality of regions in the display panel. The comparing circuit compares the common voltage with a reference voltage and determines whether it is normal. Based on the determination result from the comparing circuit, the timing control circuit adjusts a data voltage of a region having an abnormal common voltage so as to allow a positive data voltage and a negative data voltage of the region to be symmetrical to the common voltage of the region. A display driving method based on the display driving device and a display apparatus having the display driving device are also disclosed.
US10741124B2

The present disclosure provides a pixel circuit, a display panel, and a display device. The pixel circuit includes: first and second scan signal input terminals; a data signal input terminal; a first power supply signal input terminal; a light-emitting control signal input terminal; a reference voltage input terminal; first to sixth transistors, a first capacitor, and a piezoresistor having a first electrode electrically connected to a first electrode plate of the first capacitor, and a second electrode electrically connected to a first electrode of the third transistor.
US10741123B2

A gate driver and a display device including the same are disclosed. The gate driver includes a plurality of stages. Each stage includes a first transistor outputting a first clock signal as a scan signal in accordance with a first node, a second transistor outputting a gate-off voltage as the scan signal in accordance with a second node which is activated as opposed to the first node, a first controller activating the first node to a gate-on voltage in response to a start signal or a carry signal and a fourth clock signal, and a second controller activating the second node to the gate-on voltage in response to a second clock signal and a third clock signal.
US10741113B2

A display device includes a display panel including a plurality of pixels, a gate driving circuit outputting a plurality of gate signals to the pixels, and a detection circuit receiving a first gate signal and a second gate signal among the gate signals, comparing a first voltage difference between a first high voltage of the first gate signal and a reference voltage with a second voltage difference between a second high voltage of the second gate signal and the reference voltage to obtained a compared result, and determining whether the first and second gate signals are normal signals based on the compared result.
US10741112B2

A protection circuit is disclosed, applied to a display apparatus. The display apparatus includes a voltage level shifter and a plurality of clock signal lines coupled to the voltage level shifter. The protection circuit includes a plurality of switches. At least one of the switches includes a control terminal, an input terminal, and an output terminal. The control terminal is coupled to a first clock signal line in the clock signal lines. The input terminal is coupled to a second clock signal line in the clock signal lines. The control terminal determines, according to a first clock signal provided by the first clock signal line, whether to conduct the input terminal and the output terminal, and the output terminal outputs a second clock signal provided by the second clock signal line. The output terminals of the switches are coupled to a node, and when the first clock signal line and the second clock signal line are short-circuited, the first clock signal and the second clock signal are pulled down as low-level signals, and the node outputs a protection signal.
US10741109B2

In one example, a quadrilateral display includes a shroud including a first section, a second section, a third section and a fourth section, the first section, the second section, the third section and the fourth section being rotatably disposed relative to adjacent ones of the first section, the second section, the third section and the fourth section and a plurality of anchors including a first anchor attached to the first section, a second anchor attached to the second section, a third anchor attached to the third section and a fourth anchor attached to the fourth section, the plurality of anchors being disposed in a first position within the shroud in a stowed position and a second position within the shroud in a deployed position. A first elastic member connects the first anchor and the second anchor to bias the first section and the second section toward one another about the first joint and a second elastic member connects the third anchor and the fourth anchor to bias the third section and the fourth section toward one another about the second joint. The first elastic member and the second elastic member bias the shroud from a stowed position to a deployed position with the first section, the second section, the third section and the fourth section forming a quadrilateral shape when the plurality of anchors are positioned in the second position.
US10741105B2

A wireless image processing system includes a splitter software and processing apparatus configured to receive or forward picture element data. Image data in a computer may be split, wirelessly transmitted, and processed to form an any size integrity image/video display on a building or structure, meanwhile no physical damage may be done on or to the building or no physical cabling obstacle for image or video dividing and combining at a lighting show.
US10741100B2

An improved reconfigurable label assembly is presented. The assembly includes a container, a front panel, a back panel, a bottom panel, and an optional pair of attachment elements. The bottom panel is disposed between and substantially parallel to the front and back panels in a first configuration to form a label attached to and completely separable from the container. The label is disposed along an outer surface of the container in the first configuration and is configurable to form a receptacle in a second configuration. The front and back panels are separable and the bottom panel is expandable to form the receptacle after the label is removed from the container. The receptacle is capable of holding a consumable product. The receptacle is reconfigurable to the label after use as the receptacle so that the label may be directly reattached to the container. The optional attachment elements cooperate to releasably secure the front, back, and bottom panels to the container in the first configuration.
US10741098B2

One embodiment provides an apparatus. The apparatus includes a lightweight cryptographic engine (LCE), the LCE is optimized and has an associated throughput greater than or equal to a target throughput.
US10741085B2

A flight planning system for providing a flight planning tool on a client device comprises a flight planning module, a weather module, and an airport module; and a flight planning application programming interface configured to communicate with the modules and client device and receive, via interface hardware of the client device, a request for information associated with a selection of one of a plurality of tools corresponding to one of the modules; the flight planning module configured to: retrieve, based on the tool selection, information responsive to the request from at least one of: a third-party device via the flight planning API; or another of the plurality of modules; generate an aviation flight plan based on the information responsive to the request; and transmit, via the API, the flight plan to the client device, the flight plan configured for display via a display device of the client device.
US10741078B2

A method for providing a traffic safety service of a traffic safety service server communicating with a client terminal includes: receiving sensor data of each sensor from the client terminal; classifying the sensor data into data according to at least one specific time slot for each sensor and calculating a safety score of each of the at least time slot; calculating an average of the safety scores of the at least time slot and calculating a safety score for each sensor, and calculating a safety index on the basis of the safety score for each sensor and a weight assigned to each sensor.
US10741076B2

Approaches presented herein enable recipient-actualized internal vehicle-to-vehicle honking. More specifically, an action of a first vehicle is monitored and a communication is obtained from a second vehicle. In response to the obtainment of the communication, it is determined whether the action of the first vehicle violates a rule. In the case that the action of the first vehicle violates a rule, responsive to the communication, a honk indication, perceptible to an occupant of the first vehicle, is actualized inside the first vehicle. In the case that the action of the first vehicle does not violate a rule, the communication from the second vehicle is rejected, and the honk indication is not actualized inside the first vehicle. A response can be transmitted to the second vehicle indicating if the honk indication was actualized inside the first vehicle.
US10741054B1

A method and apparatus for generating a message, or message prefix, is provided herein. During operation a message generator will have knowledge of a status of devices connected to form a personal-area network (PAN) and/or have knowledge of a current incident type assigned to a user. The message generator will then provide messages to the user based on the status of associated PAN devices and/or the incident type.
US10741045B2

A system and method for providing child emergency monitoring services and reporting includes monitoring in real-time a current temperature associated with the geography of a daycare center; and executing an alert notification sequence based on at least one user not checking-in at a check-in device at the daycare center prior to an expected check-in time. Moreover, the alert notification sequence may be initiated when a current temperature exceeds a maximum predefined limit. Also provided is an intelligent child seat for use in vehicles that monitors ambient temperature in the vehicle along with other factors and provides emergency notification signals when the ambient temperature exceeds a predefined limit.
US10741044B1

A monitoring system for monitoring a person comprising a first device configured to detect a first event in or near the building and a second device configured to detect a second event in or near the building is disclosed. The system may further comprise a memory for storing one or more rules each configured to identify an alert condition for a person in or near the building based on the first and/or second events in or near the building and a communications module configured to communicate with a remote device over a network. A controller may be configured to apply the one or more rules to the first and second detected events in the space to identify one or more alert conditions and determine what, if any, action is required, and if action is required, provide an alert to the remote device via the communications module.
US10741042B2

A method for assessing health risk of a resident at a facility includes: tracking a first series of locations of a first wearable device associated with a resident of the facility; and tracking a first series of activities detected by the first wearable device; calculating a baseline action profile of the resident based on the first series of locations and the first series of activities; tracking a second series of locations of the first wearable device; tracking a second series of activities detected by the first wearable device; calculating a second action profile of the resident based on the second series of locations and the second series of activities; and in response to a deviation between the baseline action profile and the second action profile exceeding a deviation threshold, transmitting a prompt to a care provider associated with the facility to investigate a health status of the resident.
US10741041B2

The techniques and systems described herein determine whether a computing device is within a particular range to communicate with a monitoring device. If the computing device is within the particular range, the computing device is configured to communicate with the monitoring device via a primary monitoring communication mode (e.g., a radio frequency RF channel). If the computing device is outside the particular range, the computing device is configured to communicate with the monitoring device via a secondary monitoring communication mode (e.g., a Wi-Fi channel or a mobile telephone network MTN channel). The computing device receives, from the monitoring device via the primary monitoring communication mode or the secondary monitoring communication mode, monitoring information associated with a monitored subject (e.g., a baby) or associated with an area in which the monitored subject is located (e.g., a room of a residential dwelling).
US10741020B1

A system which enables a user to log into one or more gaming establishment management systems using both of a biometric identifier capture device of a gaming establishment device and also using a biometric identifier capture device of an identified user's mobile device.
US10741013B2

A game system capable of suppressing the variation in the remaining number of prizes between multiple game machines is provided. A game system includes two game machines that each provide a game and a prize discharge mechanism that discharges a capsule from among multiple capsules that contain a plurality of physical prizes. Additionally, the prize discharge mechanism discharges a capsule when a prize condition is satisfied in at least one of the two game machines.
US10741010B2

A gaming system including an electronic gaming machine and an associated player chair configured to operate with the electronic gaming machine to provide player tactile feedback based on player eye gaze data, and thus provide enhanced physical player interaction.
US10741005B1

A game machine for performing hip/pelvic thrusting game or exercise is disclosed. The game machine may include a floor plate, at least one post member, a torso member, a shaft member, a thrusting pad element and a means for providing resistance. The shaft member is partially inserted into a receiving face of the torso member. The means for providing resistance to a reciprocating motion of the shaft member may be located inside the torso member and is configured in such a manner that the reciprocating shaft member is moved in and out of the torso member by the thrusting motion of the game player. The game machine may be connected to the internet to allow for players to compete remotely and for players to maintain an account storing game playing records and information.
US10740995B2

A system for providing controlled access and tracking location of an individual within a restricted area includes access cards, access control devices, location tracking devices, a gateway device, and a server. The access card includes identification data which facilitates the access control devices to provide physical access to the individual into the restricted area. The access cards also transmit beacon signals to facilitate the access control devices and the location tracking devices to track location of the individual within the restricted area. The gateway device is connected to the access control devices and the location tracking devices. The server is connected to the gateway device.
US10740986B2

A method performed by an electronic device is described. The method includes receiving a set of frames. The set of frames describes a moving three-dimensional (3D) object. The method also includes registering the set of frames based on a canonical model. The canonical model includes geometric information and optical information. The method additionally includes fusing frame information of each frame to the canonical model based on the registration. The method further includes reconstructing the 3D object based on the canonical model.
US10740982B2

Computing devices for automatic placement and arrangement of objects in computer-based 3D environments are disclosed herein. In one embodiment, a computing device is configured to provide, on a display, a user interface containing a work area having a template of a 3D environment and a gallery containing models of two-dimensional (2D) or 3D content items. The computing device can then detect, via the user interface, a user input selecting one of the models from the gallery to be inserted as an object into the template of the 3D environment. In response to detecting the user input, the computing device can render and surface on the display, a graphical representation of the 2D or 3D content item corresponding to the selected model at a location along a circular arc spaced apart from the default viewer position of a viewer of the 3D environment by a preset radial distance.
US10740973B2

Systems and methods for ultrasonic collision management in virtual, augmented, and mixed reality (xR) applications are described. In some embodiments, an Information Handling System (IHS) may include a processor and a memory coupled to the processor, the memory having program instructions stored thereon that, upon execution by the processor, cause the IHS to: execute an xR application to display an xR image to a user of the IHS; and detect, via an ultrasonic sensor coupled to the processor, a potential physical interaction between the user and a physical object during execution of the xR application.
US10740970B1

Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
US10740966B2

A system for generating an object in a mixed reality space obtains a two-dimensional (2D) object having a face with four vertices and determine a visibility and a thickness of one or more edges of the 2D object to be generated. The thickness is based at least in part on a viewing vector and a normal vector for the 2D object. A rendered 2D object with the determined thickness is generated, including rendering the one or more edges with one or more colors to emulate a lighting condition. The rendered 2D object is presented in a mixed reality space that allows the more efficient viewing of an augmented reality environment with a user device.