US10736250B1

A method of manufacturing a transparent flexible silver nanowire-based conducting film and a transparent flexible silver nanowire-based conducting film are provided. The method includes coating conductive nanowires, which shield and absorb electromagnetic interference, on a flexible substrate, sintering the conductive nanowires using a wet sintering process, and coating a polymer layer in which graphene flakes are dispersed on the flexible substrate with the conductive nanowires formed thereon.
US10736244B1

Devices having multiple layers of paint for enhanced thermal performance. Individual paint-layers have specific properties within specific wavelength-ranges. An exemplary device includes an emissive outer layer that has a high emissivity in a first wavelength-range to increase thermal radiation and a high transmittance in a second wavelength-range to reduce solar gain. Underneath the emissive outer layer is a color matching layer that has a high transmittance in the second wavelength-range and absorbs at least some visible light. Underneath the color matching layer is a reflective sublayer that has a high reflectivity in the second wavelength-range. EM radiation within the second wavelength-range passes through the emissive outer layer and color matching layer before being reflected by the reflective sublayer back into the atmosphere. Thus, solar gain is reduced due to the solar energy within the second wavelength range being reflected off of the device—rather than absorbed as thermal energy.
US10736241B1

A cooling system, e.g. for a hot aisle/cold aisle datacenter system, can detect local pressure differences between the hot and cold aisle by way of a conduit containing a temperature sensor positioned between the hot aisle and cold aisle. The temperature sensor can detect a temperature of airflow between the aisles by the temperature sensor in the conduit. This conduit is defined by a frame or insert that includes a first opening and a second opening separated by a nonzero distance and that is configured to penetrate a containment element separating the hot aisle and cold aisle. The cooling system can, based on the interstitial temperature, determine a direction of flow of the airflow between the hot region and the cold region and detect recirculation between the hot region and the cold region based on the direction of flow.
US10736238B2

A semiconductor device may include a stack in which a cooler and a semiconductor module are stacked, the semiconductor module housing a semiconductor element; a contact plate contacting the stack in a stacking direction of the semiconductor module and the cooler; and a spring contacting the contact plate and pressurizing the stack via the contact plate in the stacking direction, wherein the spring may contact a center portion of the contact plate in a direction perpendicular to the stacking direction, and a recess or a cavity may be provided at the center portion of the contact plate, the recess facing the stack.
US10736235B2

A cooling mechanism of high mounting flexibility includes a heat sink including a heat sink body defining an accommodation portion and position-limit sliding grooves and stop blocks fastened to the heat sink body, heat pipes positioned in the position-limit sliding grooves and stopped against the stop blocks, each heat pipe having a hot interface accommodated in the accommodation portion and an opposing cold interface positioned in one position-limit sliding groove, heat transfer blocks each defining a recessed insertion passage for accommodating the hot interfaces of the heat pipes and an opposing planar contact surface for the contact of a heat source of an external circuit board, and an elastic member elastically positioned between the heat sink and the heat transfer blocks.
US10736233B1

A cooling device for an electromagnetic interference filter is disclosed. The cooling device includes a housing. The housing includes a main body having a cavity shaped to receive the electromagnetic interference filter and one or more cooling channels surrounding at least a portion of the cavity in the main body of the housing. The one or more cooling channels define one or more flow paths that are contained completely within the housing. The housing also includes an inlet port and an outlet port. The one or more cooling channels fluidly connect the inlet port to the outlet port, and a cooling medium is configured to flow into the inlet port, through the one or more cooling channels, and exit the housing through the outlet port.
US10736232B1

A fan to be used as a relay node comprises male and female connect ports, a transmission wire set connecting the male and female connect ports, a power acquisition unit, and a signal processing unit. The male connect port is connected to a control source for receiving a working power and a control signal. The female connect port is selectively connectable to the male connect port of another fan to allow the fan electrically connect with another fan. The power acquisition unit is connected in parallel with the transmission wire set for extracting the working power to supply to a driving unit. The signal processing unit is connected to the transmission wire set to obtain and output the control signal to the driving unit, and acts as a relay node to output the control signal to the female connect port, so that the other fan can be controlled.
US10736225B2

A display device reduces or minimizes a stress applied to a display panel in a folded state. The display device includes a display panel including a bendable area; and a panel support portion combined to the display panel and including a multi-joint member to support the bendable area, and the multi-joint member includes: a plurality of hard material portions sequentially arranged in a first direction, mutually combined to be rotated with respect to one another, and including a first surface arranged toward the bendable area; and a soft material portion contacting the first surface and fixed to the plurality of hard material portions.
US10736223B2

A method and apparatus for attaching a display device to an exterior member in an electronic device are provided. The method includes arranging a tube to be at least partially surrounded by a foldable flexible display device, arranging the flexible display device to be at least partially surrounded by the exterior member, the flexible display device and the exterior member being folded, and inflating the tube by injecting gas into the tube. The flexible display device is attached to inner surfaces of the exterior member by the inflation of the tube.
US10736220B2

A substrate includes: a wiring substrate; a lower plate disposed below the wiring substrate; a canted coil spring disposed between the lower plate and the wiring substrate; an electronic component package disposed above the wiring substrate; a sheet disposed between the wiring substrate and the electronic component package and including a plurality of connection members that connects a plurality of first electrodes provided on an upper surface of the wiring substrate and a plurality of second electrodes provided on a lower surface of the electronic component package; an upper plate disposed on the electronic component package; and a coupling member that couples the lower plate and the upper plate, wherein the lower plate, the canted coil spring, the wiring substrate, the sheet, the electronic component package, and the upper plate are laminated and fixed in this order by coupling the lower plate and the upper plate by the coupling member.
US10736214B2

A printed circuit board and a method for the production thereof. The printed circuit board can include a shaped part made of an electrically conducting material and can be used to manage the currents and heat volumes that occur in the field of power electronics.
US10736212B2

A bulk substrate for stretchable electronics. The bulk substrate is manufactured with a process that forms a soft-elastic region of the bulk substrate. The soft-elastic region includes a strain capacity of greater than or equal to 25% and a first Young's modulus below 10% of a maximum local modulus of the bulk substrate. The process also forms a stiff-elastic region of the bulk substrate. The stiff-elastic region includes a strain capacity of less than or equal to 5% and a second Young's modulus greater than 10% of the maximum local modulus of the bulk substrate.
US10736202B2

A method of controlling a luminaire at a first physical location in a physical space to render a lighting effect in the physical space, the method being performed by a control device and comprising steps of: receiving at least one data object for use in rendering the lighting effect, the data object defining at least one virtual object comprising an influence value for the virtual object and a coordinate vector denoting a virtual location of the virtual object in a virtual space; determining the first physical location of the luminaire in the physical space from a map of the physical space; determining a separation between the first physical location of the luminaire and a second physical location in the physical space corresponding to the virtual location of the virtual object in the virtual space; and controlling at least one characteristic of light emitted by the luminaire as a function of the determined separation and the influence value for the virtual object, thereby rendering the lighting effect.
US10736199B2

This information processing method is executed by an electric light bulb light source apparatus, which includes a lighting unit, and a functional unit, the information processing method including: selecting, from any of a parent mode and a child mode, an operation mode for cooperative control with a different electric light bulb light source apparatus with respect to the functional unit, and setting the selected operation mode. In a case where the parent mode is set, the lighting unit is caused to execute a first lighting operation for the parent mode in response to a predetermined lighting control signal relating to an operation of the lighting unit, and a cooperative control signal for causing a second lighting operation for the child mode to be executed is transmitted to the different electric light bulb light source apparatus set to the child mode, the second lighting operation for the child mode being different from the first lighting operation. In a case where the child mode is set, the lighting unit is caused to execute the second lighting operation on the basis of the cooperative control signal transmitted from the different electric light bulb light source apparatus set to the parent mode.
US10736196B2

In some implementations, a device includes terminals to couple with a battery arranged to supply power to the device. The device includes a first winding and a second winding that are arranged to be inductively coupled. The device includes a transistor. The first winding and the second winding are coupled to the positive terminal with opposite polarity. The device includes a light emitting diode (LED). The device is arranged to couple the LED being coupled in parallel with the second winding. The LED is arranged to be reverse biased with respect to the battery.
US10736189B2

A modularized LED lighting system comprising combinations of a control module, a power module and at least one LED light module is provided, wherein two adjacent modules are detachably connected with a connection unit. A novel design uses a single power module and a control module for transmitting a power or a power and a control signal to one or a plurality of LED light module with one or a plurality of connection units detachably and remotely connecting the LED light modules. Alternatively the control module can be integrated with at least the power module or can be integrated with at least the LED light module to become at least a two-module modularized lighting system. The system installation is simplified and the designs are coordinated with advantages such as fast assembly, saving assemble time, saving effort, a neat appearance, no wire entanglement, and flexibility of extending lighting range.
US10736188B2

A power supply is electrically connected between a pair of input terminals and is configured to be supplied with electric power from an AC power supply to generate control electric power. A voltage detector is configured to detect a voltage of the control electric power. A controller is configured to be supplied with the control electric power from the power supply to operate. The controller is configured to control a bidirectional switch based on a detection signal from a phase detector so as to switch the bidirectional switch from an ON state to an OFF state at a switching time point when a variable time corresponding to a dimming level elapses from a starting point of a half period of an AC voltage. A stopper is configured to halt generation of the control electric power by the power supply when the voltage detected by the voltage detector is higher than or equal to a prescribed threshold during an OFF time period from the switching time point to an end time point of the half period.
US10736178B2

A connection method for a wireless system, wherein the wireless system includes an access point, an electronic device, a relay device and an appliance; the electronic device and the relay device are connected to the access point, respectively; the relay device is connected to the appliance via signals; the relay device is adapted to send control commands to the appliance; the connection method includes the following steps: sending a connection request command to a default IP address from the electronic device through the access point for at least one time; determining whether a connection-successful information is received from the default IP address or not. Then, establishing a connection between the electronic device and the relay device, or sending at least one connection request command to at least one different IP address in the same local area network from the electronic device.
US10736175B2

Provided are a method and apparatus for processing data by a terminal. The method ma include: receiving higher layer signaling including indication information requesting for configuring a terminal tunnel protocol entity for processing data transmitted/received through a WLAN carrier, configuring the terminal tunnel protocol entity on the basis of the indication information; and receiving bearer-specific user data and transmitting the bear-specific user data to a terminal user plane entity corresponding thereto.
US10736166B2

Methods, systems, and devices for wireless communication are described that provide for establishment of communication links between nodes in a wireless network, in which an access node (e.g., a node that provides access to a core network) may provide a communication link configuration and resources for communications between multiple nodes. In some cases, an access node may receive a request from a first node to establish a communication link with a second node. The communication link may be, for example, a directional transmission beam that carries data or control information, or a combination thereof, between the first node and the second node. The access node may determine the communication link configuration based on one or more link measurements provided by the first node or second node, and provide the configuration information to one or both of the first node or the second node.
US10736165B2

The present invention relates to a method and an apparatus for logging a radio resource control (RRC) failure of user equipment (UE) and receiving the log. According to one embodiment of the present invention, a method for logging an RRC failure of UE may comprise the steps of: attempting random access; if the failure of random access is sensed, logging information on the failure; and if the success of random access is sensed, transmitting information on the failure logged before the success to a connected base station. According to one embodiment of the present invention, an apparatus and a method which effectively log a channel state or a connection failure can be provided.
US10736162B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal includes receiving packet duplication data radio bearer (DRB) configuration information from a base station, receiving a medium access control (MAC) control element (CE) including information indicating whether packet duplication has been activated from the base station, and determining whether to activate a packet duplication bearer based on the packet duplication DRB configuration information and the MAC CE.
US10736159B2

A display connection system may include a head unit provided in a vehicle, a plurality of display apparatuses provided in the vehicle to receive data from the head unit, and a mobile device configured to recognize a QR code generated by the head unit to establish connection with the head unit via Wi-Fi and to transmit display data to the head unit.
US10736152B2

A method for resolving, by a mobile device, resource collision in a V2X communication environment may comprise the steps of: determining whether resource collision has occurred in a specific resource selected by a plurality of adjacent mobile devices; and, if it is determined that resource collision has occurred, transmitting information on the result of the determination to the plurality of adjacent mobile devices.
US10736149B2

The present disclosure provides a method and an apparatus for random access. The method includes: a communication node obtaining random access information, wherein, the random access information comprises the subframe sequence number of the preamble transmission and the radio frame sequence number of the preamble transmission, or the random access information comprises a time domain position index and a frequency domain position index for sending the preamble; the communication node determining the random access radio network temporary identity (RA-RNTI) according to the random access information.
US10736123B2

Resource scheduling includes pre-dividing a resource block RB into a plurality of sub-RBs and scheduling a UE by using a resource scheduling indication during data transmission to perform data receiving or sending in a position of a corresponding sub-RB. The resource block RB is pre-divided into a plurality of sub-RBs and during data transmission the UE is scheduled by using the resource scheduling indication to perform data receiving or sending in the position of the corresponding sub-RB, thereby improving resource utilization efficiency during transmission of a small data service and improving transmission efficiency of small data.
US10736121B2

In one possible embodiment, a wireless network with dynamic transmission control is provided that includes a multiple of nodes. The nodes include an arbiter and multiple client nodes. The arbiter is configured to control an operation of the client nodes by defining communications operation cycles and allocating a bandwidth to each of the client nodes on a cycle by cycle basis in response to requests for bandwidth from the client nodes.
US10736118B2

A wireless adapter front end for an information handling system may comprise a wireless adapter for receiving content via a transceiving antenna configurable to have a plurality of antenna radiation patterns, and a controller. The controller may execute code instructions to receive a trigger input indicating decreased signal strength, measure RSSI variance of the wireless link, measure a rate of mobility of the information handling system determined from accelerometer data or velocity data, identify an allotted training duration time period associated with the rate of mobility and RSSI variance, identify an optimal antenna pattern associated with a highest quality link within the allotted training duration time period, and instruct the transceiving antenna to operate according to the optimal antenna pattern.
US10736108B2

A management method includes generating frequency information indicative of a frequency band of radio waves available to a first audio system from among a plurality of audio systems, by reference to radio wave information indicative of a frequency band of radio waves used by a second audio system, other than the first audio system, from among the plurality of audio systems, where each audio system includes one or more receiving devices for wireless reception of an audio signal; and transmitting the generated frequency information to the first audio system.
US10736105B2

The present disclosure describes a message transmission method. In one example method, a first signal is received by a first device from a second device using a radio channel. A second signal, corresponding to and different from the received first signal, is transmitted by the second device to the first device. Information carried by the second signal corresponds to one of M state values. A first sequence corresponding to one or more subcarriers occupied by the second signal is directly proportional to a product of a preset second sequence and a third sequence in a state sequence set. Channel information of the radio channel is estimated by the first device according to the received first signal and the preset second sequence. The information carried by the second signal is determined by the first device according to the estimated channel information of the radio channel and the received first signal.
US10736103B2

A communication method and system for supporting a high data transmission rate is provided. The method and system fuses 5G communication systems with IoT technology to transmit data at a higher rate than 4G systems. The communication method and system is applied to intelligent services, based on 5G communication technology and IoT related technology, for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security, safety-related services, etc. A method and apparatus is provided that increases the amount of MBMS, according to the demand increase in MBMS, using an MBMS dedicated carrier, in a mobile communication system.
US10736100B1

A method and system for dynamically reconfiguring an air interface that defines a continuum of frames each divided into a sequence of transmission time intervals (TTIs). The air interface is initially configured according to a first radio access technology (RAT). The base station then detects that at least a threshold extent of wireless client devices (WCDs) served by the base station on the air interface support operation according to a second RAT. And in response, the base station reconfigures the air interface so that certain TTIs per frame instead operate on a second RAT, with the remaining TTIs per frame still operating on the first RAT. The base station then serves WCDs that support the second RAT in the TTIs now configured according to the second RAT, while continuing to serve other WCDs according to the first RAT in the remaining TTIs configured according to the first RAT.
US10736098B2

Generally discussed herein are devices and methods for MIMO communications. A device can include processing circuitry (e.g., PHY and/or MAC layer circuitry) configured to transmit an enhanced sector sweep (ESSW) frame for each of a plurality of transmit sectors, wherein each of the plurality of transmit sectors correspond to a weight vector for the first plurality of antennas, each ESSW frame including a plurality of training units to simultaneously beamforming train one or more responder STAs, receive an SSW feedback frame, each SSW feedback frame indicating a transmit sector of the plurality of transmit sectors and a receive sector of a corresponding STA of the one or more STAs to be used in communication between the initiator STA and the responder STA, and transmit one or more SSW acknowledgement frames to the one or more responder STAs to verify the transmit sector and receive sector to use for communication.
US10736094B2

A method and apparatus for performing a wireless local area network (WLAN) termination (WT) release procedure in a wireless communication system is provided. For the eNodeB (eNB) initiated WT release procedure, the eNB transmits a WT Release Request message to a WT via a Xw interface. For the WT initiated WT release procedure, the eNB receives a WT Release Required message from a WT via a Xw interface, and transmits a WT Release Confirm message to the WT via the Xw interface. The WT is a logical node that terminates the Xw interface.
US10736089B2

A downlink information receiving method and sending method, user equipment, and a network device, where a first user equipment first receives a first data packet, and the first user equipment determines whether the first data packet carries identity-related information of the first user equipment. If the first data packet does not carry identity-related information of the first user equipment, the first user equipment does not need to receive a second data packet.
US10736084B2

A method for supporting activation/deactivation of serving cells by a base station (BS) in a wireless communication system provides decreased overhead and decreased power consumption for a user equipment (UE). The method includes configuring M supportable serving cells in the UE, configuring an indicator indicating activation/deactivation of each of the M serving cells, configuring a medium access control (MAC) message which includes a MAC control element (CE) and a logical channel identifier (LCID), the MAC CE including the indicator configured for each of the M serving cells and having a length corresponding to an integer multiple of 8 bits, the LCID indicating that the MAC CE includes the indicator indicating activation/deactivation of each serving cell, and transmitting the configured MAC message to the UE. Accordingly, a control channel or data channel regarding a component carrier is selectively received depending on whether the component carrier is activated.
US10736082B2

Aspects of the present disclosure provide techniques for informing devices of the use of transmit and receive beams in a beamforming communication system. An exemplary method includes determining a plurality of beam directions for a device to use in different transmission time intervals (TTIs) of a TTI burst, and sending a directional transmission to the device indicating at least one of the beam directions.
US10736077B2

Certain aspects of the present disclosure provide techniques for conveying information regarding a window for system information transmissions. Certain aspects of the present disclosure provide techniques for conveying information regarding a window for transmitting paging downlink control information (DCI) or paging messages.
US10736072B2

Disclosed herein is a network-initiated deregistration method by an access and mobility management function (AMF) in a wireless communication system, including: receiving a first message having a removal reason configured to subscription withdrawn from a unified data management (UDM); and transmitting a deregistration request message for requesting the deregistration to a user equipment (UE), in which the deregistration is enabled to be performed for all accesses in which the UE is registered when the removal cause received from the UDM through the first message indicates the subscription withdrawn of the UE.
US10736064B2

A method for determining synchronization of uplink timing in a machine type communication (MTC) system comprising a machine type communication device (MTCD) and a network element is disclosed that takes advantage of the MTCD being at a fixed location relative to the network element. The method includes receiving at the MTCD an uplink timing adjustment value from the network element and storing the uplink timing adjustment value at the MTCD. The MTCD then uses the stored uplink timing adjustment value from a previous uplink transmission for synchronizing uplink timing for a subsequent uplink transmission from the MTCD to the network element even following a period of inactivity of the MTCD, or expiration of any existing maximum uplink timing alignment period permitted for use of the timing adjustment value by the MTCD, or MTCD clock drift.
US10736060B2

A method for use in a user terminal in a cellular communications system. According to the method, the user terminal applies a first timing advance value to its transmissions to a controlling node, and the user terminal requests communication with the controlling node in a contention based procedure by transmitting an access request (MSG 1), in response to which the controlling node transmits an initiation message (MSG 2) along with a second timing advance value. According to the method, the user terminal uses the first timing advance value if the user terminal loses the contention based procedure, i.e. if the controlling node subsequently continues the initiated communication with said other user terminal.
US10736042B2

An electronic device is provided. The electronic device includes a housing including a front surface and a rear surface, a display, a communication circuit, at least one processor, and a memory. The memory stores instructions which, when executed, cause the at least one processor to receive a signal from outside of the electronic device using the communication circuit, in response to receiving the signal, display a user interface on an elongated region that extends along at least one edge region of the display, and display at least one content corresponding to the signal, while displaying the user interface or after displaying the user interface.
US10736040B1

A communication device mitigates power consumption and communication connectivity lapses in a marginal coverage area with unsatisfactory transmit communication quality and satisfactory receive communication quality of respective uplink and downlinks with a radio access network (RAN) using a first radio access technology (RAT). Based on information of past communication success and failure, a controller of the communication device determines whether communication services can be successfully obtained from the RAN using a second RAT. In response to determining that communication services cannot be successfully obtained using the second RAT, the communication device monitors the downlink with the first RAN using the first RAT to receive any mobile terminated calls. In addition, the communication delays, for a preset period of time, any attempt to establish uplink communication using one of the first and second RATs that are expected to be unsuccessful in the marginal coverage area.
US10736033B2

A method of carrying out dual connectivity with a secondary access node and an apparatus is provided. A mode of operation of a user equipment is determined in dependence on the presence of bearers mapped to the secondary access node. Operating in a first mode occurs when it is determined that one or more bearers are mapped to a secondary access node. Operation in a second mode occurs when it is determined that no bearers are mapped to the secondary no access node. The second mode comprises limiting a listening time to a downlink channel from the secondary access node with respect to the first mode.
US10736025B2

Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity. The 5G NSA radio access system employs a virtual 4G radio access node (RAN) to provide a logical master data connection to a user mobile communications device, and a 5G RAN to provide an additional, secondary high-speed data plane between the user mobile communications device to a core network. The virtual 4G RAN does not provide an actual 4G radio connection over-the-air to the user mobile communications device. Instead, the signaling transported between the user mobile communications device and the virtual 4G RAN is provided over a non-radio connection, such as an internet protocol (IP) connection. In this manner, the deployment of the 5G NSA radio access system employing the virtual 4G RAN can be achieved without updating existing 4G RANs and/or without deploying a new 4G RAN infrastructure.
US10736021B2

A communication apparatus which communicates with a base station, the communication apparatus includes a receiving circuit configured to receive a message from the base station, wherein the message includes at least information identifying if the base station is a hybrid access mode base station; and a transmission circuit configured to transmit a parameter which identifies a user equipment to the base station when the base station is the hybrid access mode base station.
US10736018B2

The present application provides a near field information transmission method and system, an information transmitting client, an information receiving client, and an information system. The information transmitting client transmits an acquisition request to the information system. The information transmitting client receives a random number that corresponds to the acquisition request and is returned by the information system. The random number corresponds to the information of said information transmitting client. The information transmitting client uses the random number as a service set identifier of a hotspot, and the service set identifier is broadcast through a beacon frame of a wireless communication protocol. The present techniques conduct near field information transmission conveniently and accurately.
US10736011B2

A radio terminal according to an embodiment includes a controller having a function of switching data between a wireless wide area network (WWAN) and a wireless local area network (WLAN) based on information configured from the WWAN; and a transmitter configured to transmit, to the WWAN, a WLAN measurement report in response to satisfaction of a predetermined condition, the WLAN measurement report including: a WLAN measurement results; and a WLAN related identifier indicating a WLAN to which the radio terminal has been connected. The predetermined condition includes a condition that the WLAN measurement is configured from the WWAN to the radio terminal.
US10736009B2

The present application discloses handover methods and apparatuses. One specific embodiment of the handover method comprises receiving a handover request message from a source base station by a target base station; determining whether to add a secondary base station for setting up a dual-connectivity for a user equipment (UE) according to the handover request message; and performing a handover operation and a dual-connectivity setup operation in response to the determination of adding the secondary base station. The dual-connectivity can be set up for the UE during the handover in the embodiments.
US10736002B2

An electronic device is disclosed and includes a communication circuit supporting a first communication method and a second communication method, and at least one processor electrically connected to the communication circuit. The at least one processor is configured to obtain connection information about at least one electronic device during communication using the first communication method, and to perform communication connection to one electronic device of the at least one electronic device through the second communication method by using the obtained connection information.
US10736001B2

The application provides a handover processing method and a base station. The method includes: receiving a handover request message sent by a source base station or a core network node; sending a first message, according to the handover request message, to a second target base station to notify the second target base station that a handover of part or all of a service of a user equipment to the second target base station is to be performed; and sending a handover request acknowledge message to the source base station or the core network node to notify the source base station or the core network node to hand over the user equipment to at least one target cell of the first target base station and/or at least one target cell of the second target base station. The present application realizes a multi-cell handover.
US10735984B2

Systems and methods for identifying user density from network data are included herein. Embodiments include a communication tower that allocates communication bandwidth to devices in an area within range of the communication tower. The communication tower can calculate the user density in the area based on the allocation of bandwidth. Further, the types of data and messages exchanged with the devices can indicate the type of device, which can be used to group the devices based on type that are likely associated with a single user. For example, a single user may have a mobile phone, a tablet, and a smartwatch. Additionally, speed of devices can indicate which users are pedestrians. This information can be included in user density information and provided to devices or users to improve public safety, device response to high traffic areas, and so forth.
US10735983B2

The present disclosure relates to a fifth generation (5G) or pre-5G system to be provided to support a higher data transmission rate since fourth generation (4G) communication systems like long term evolution (LTE). A system and method for compensating phase noise of a terminal in support of the system is provided. The method includes measuring first channel state information (CSI) using a reference signal transmitted from a base station, estimating second CSI from the first CSI using a first type reference signal for compensating a common phase error (CPE) and a second type reference signal for compensating the CPE and inter carrier interference (ICI), and feeding back the estimated second CSI to the base station.
US10735964B2

In some implementations, a method includes receiving, from a user of a first device, a request to enable access, through a second device, to a server resource account of an enterprise. The first device includes a first enterprise perimeter including an internal resource and a first enterprise identifier and configured to prevent external resources from accessing the internal resource. A request is wirelessly transmit, to the second device, to the second device for a second enterprise identifier assigned to a second enterprise perimeter included in the second device. Whether to grant access to the internal resource is determined based on a first enterprise identifier assigned to the first device and a second enterprise identifier assigned to the second device.
US10735963B1

A method for wireless communication using a service side-channel signaling and authentication at the physical level. This method comprising the steps of creating at least one transmitting node and one receiving node within a wireless communication channel. Then choosing primary message and a secondary message and generating a valid transmission tag. Then superimposing the valid transmission tag and creating a set of secret codebooks in order to form a side-channel. Then applying key equivocation metric to measure key information leakage to an eavesdropper. Then transmitting said primary message and said secondary message. Then a receiver receiving said primary and said secondary messages detecting fingerprint estimating data combining a key set with the estimated data sending data and key set to a matrix to generate a secret codebook searching for valid tags authenticating and recovering side information.
US10735958B2

A system that incorporates the subject disclosure may include, for example, instructions which when executed cause a device processor to perform operations comprising sending a service request to a remote management server; receiving from the management server an authentication management function and an encryption key generator for execution by a secure element and an encryption engine for execution by a secure device processor, sending a request to establish a communication session with a remote device; and communicating with the remote device via a channel established using an application server. The secure element and the secure device processor authenticate each other using a mutual authentication keyset. The secure element, the secure device processor and the device processor each have a security level associated therewith; the security level associated with the secure device processor is intermediate between that of the secure element and that of the device processor. Other embodiments are disclosed.
US10735948B2

A method for identifying and controlling remote user equipment on a network side includes: receiving, by a session management device, an identifier of a remote user equipment, and generating, based on the identifier, a policy related to the remote user equipment, where the policy includes the identifier of the remote user equipment; sending the policy to a user plane function device; and identifying, by the user plane function device, a packet of the remote user equipment based on the policy, and implementing policy control on the remote user equipment based on the policy. According to the method, the network side can be compatible with service access of the remote user equipment and can perform service management and policy control on the remote user equipment.
US10735947B2

A method for operating a mobile device in a mobile communication network. The method comprises transmitting a mobile device component identifier to a network node within the mobile communication network. The mobile device component identifier identifies at least one hardware or software component of the mobile device. The mobile device component identifier is indicative of capability information specifying at least one capability of the mobile device for communication with the mobile communication network. A corresponding method for operating a network node is also provided.
US10735946B2

Certain embodiments provide a method including obtaining data at a first time using at least one sensor associated with a mobile computing device, the at least one sensor arranged to gather data regarding at least one operating factor for the mobile computing device, the mobile computing device configured to receive market data and execute a trading application. The example method includes analyzing the data obtained from the at least one sensor to determine the at least one operating factor. The example method includes determining a first operating state of the mobile computing device based on the at least one operating factor. The example method includes altering a function of the mobile computing device with respect to the trading application based on the first operating state.
US10735937B2

A management apparatus according to the present invention performs a search of a mesh network for a network device, obtains operation information from the network device found by the search via the mesh network, and further transmits the obtained operation information to a device management system via a mobile network.
US10735934B2

An interactive beverage container includes a beverage container that defines an opening which may be sealed by a closure. The closure may further include circuitry that is configured to transmit data to a mobile device. When the closure is in a closed configuration with the closure attached to the opening, the circuitry does not transmit data to the mobile device and when the closure is in an open configuration with the closure removed from the opening, the circuitry transmits data to the mobile device. The data may include nutritional information, marketing materials, videos, track loyalty programs, and/or provide games or contests.
US10735930B2

A method and an apparatus for sharing an application are provided. The method includes determining whether a target device is located in a communication range of a source device, and in response to the determining that the target device is located in the communication range of the source device, establishing a wireless connection to the target device. The method further includes transmitting, to the target device, a list of shareable applications providable by the source device, receiving, from the target device, a request to access an application among the shareable applications, executing the application, generating a window instance of the executed application for the target device, and transmitting the window instance to the target device.
US10735929B2

Methods and systems are provided for auto-configuring a newly purchased user equipment (UE) device with content consumption material that is associated with a user. These methods and systems are provided by way of receiving, in response to the user having purchased the UE device, purchase information (e.g., a credit card number) and a UE device identifier (e.g., a serial number of a purchased UE device). After receipt of this information, a database is searched to identify a user account that is associated with the purchase information. The user account identifies content consumption material that has been processed by other UE devices to enable the user to consume content. A communication is then transmitted to the UE device that causes the UE device to be configured with the identified content consumption material.
US10735927B2

The present invention provides a vehicle to vehicle (V2V) communication method, a device, and a system, and relates to the field of communications technologies, to resolve a problem that scheduling overheads of physical downlink control channel (PDCCH) information are relatively large in existing V2V communication. The method may include receiving, by a first vehicle terminal, a first SPS configuration parameter that includes a first semi-persistent scheduling (SPS) period and that is sent by the base station. The method may also include receiving first scheduling control information that is used to instruct the first vehicle terminal to perform SPS activation and that is sent by the base station, and sending a V2V data packet to a second vehicle terminal.
US10735922B1

Various systems and methods are provided comprising: a building including one or more facilities each including at least one broadcast short-range communications unit having a fixed location, an application/computer code configured for execution by at least one of a plurality of mobile devices, and at least one server, that, together, are configured to cooperate to trigger one or more mobile device actions including causing to be output visual information, based on particular location-relevant information that is, in turn, based on at least one value.
US10735917B2

A method of communicating between a terminal device and a back-end system assigned to the terminal device, the terminal device receives via a direct wireless communication link an authorization code from the mobile communication device. Responsive to receiving the authorization code, the terminal device transmits via the direct wireless communication link to the mobile communication device a terminal report message which includes a message content part and a message addressing part. The mobile communication device transmits the terminal report message in a forwarding message via a telecommunications network to a remote message processing system determined by the addressing part. The remote message processing system determines from the addressing part the back-end system assigned to the electronic terminal device and transfers the content part of the terminal report message to the back-end system.
US10735916B2

A method for enabling communicating between users, using a vision-based monitoring system. The method includes monitoring an environment for events, by the vision-based monitoring system and making a determination that a detected event involves a local person, in the monitored environment. The method further includes, based on the determination, identifying at least one remote person to be contacted, identifying a communication channel to the at least one remote person, and providing a notification to the at least one remote person, via the identified communication channel.
US10735907B2

A gateway, a tracking device, a server, and a method for tracking assets are provided. The method includes receiving a message from a tracking device. The received message includes an identification parameter associated with the tracking device and indicates at least one of a null location or a location of the tracking device. The method also includes determining whether the received message indicates a valid location of the tracking device, based on whether the location of the tracking device is within a predetermined range of the electronic device. The method also includes augmenting the received message with at least one of location information of the electronic device, and identification information of the electronic device when the received message indicates the null location or the location of the tracking device is not the valid location of the tracking device. The method further includes transmitting the message to a server.
US10735899B1

A server and a corresponding method for communicating over a network with a first mobile device that is registered on the network and configured to transmit, via the network, positional data of the first mobile device to the server. The server including circuitry that outputs an instruction to a first mobile device, computes a time delay incurred in commencing the instruction, authenticates identifying information from the first mobile device, monitors a location of the first mobile device, to determine a displacement of the location of the first mobile device with respect to the location of a second mobile device, updates a factor based on data received by the server from the first and second mobile devices. The server further determines, based on the factor being lower than a predetermined factor threshold, a second instruction to be sent to the first mobile device.
US10735897B2

A method and system of signaling an anomaly state associated with a host asset device. The method, executed in a processor of a server computing device, comprises detecting, using one or more sensors, movement of an embedded device, the embedded device placed within the host asset device in an indoor facility, localizing the embedded device, determining, based on the localizing, that a position of the host asset device is substantially identical to a known nominal position of the embedded device, and signaling, based on the determining, that an anomaly state is associated with the host asset device.
US10735896B2

The present disclosure provides a bilateral social media notification system. In one example, the social network system features the ability for users to have unique identification variables that are searchable. This social networking system also has a series of specific activity tags which may be associated with the unique identifications. Only unique identifications with the same activity tags will be matched and disclosed by the system to ensure no embarrassing rejections occur.
US10735895B2

A plurality of transducers positioned at respective specified locations in a vehicle are actuated to generate a plurality of respective tones. A plurality of respective time differences are determined between times that each respective tone is generated by the respective transducer and the tone is detected by a portable device. A location of the portable device is determined based at least in part on the time differences.
US10735891B1

An approach is provided for cognitive control of channel bandwidth. Devices connected to access point(s) of a network are detected. Locations of the devices are detected. Based on (i) the devices being connected to the access point(s) and (ii) the locations of the devices, a gathering of people is detected as a group of users who are operating the detected devices at a current time within a geographical area that includes the locations of the devices. Data access patterns of the devices are detected. Based on the detected data access patterns and the gathering of people being detected, a quality of service class identifier (QCI) is updated from a normal setting to a new setting to satisfy bandwidth requirements of the devices.
US10735885B1

Providing a virtual acoustic environment comprises determining updates to audio signals based at least in part on information in sensor output, including, for each of multiple time intervals: determining an updated position of a wearable audio device, based at least in part on position information in the sensor output; determining layouts of at least four virtual walls, where the layouts are determined such that the updated position is within a space defined by the virtual walls; determining positions of at least four image audio sources associated with a virtual audio source, where a position of each image audio source is dependent on a layout of a corresponding one of the virtual walls and a position of the virtual audio source; and processing the audio signals using an update determined based at least in part on the respective positions of the virtual audio source and the image audio sources.
US10735877B2

A method includes: initializing a model comprising a parameterized objective function based on first and second assumption on the objective function; obtaining an initial test setting; assigning the initial test setting as a primary test setting; obtaining a secondary test setting based on the model; outputting a primary test signal according to the primary test setting; outputting a secondary test signal according to the secondary test setting; obtaining a user input of a preferred test setting indicative of a preference for either the primary test setting or the secondary test setting; updating the model based on the primary test setting, the secondary test setting, and the preferred test setting; and in accordance with a determination that a tuning criterion is satisfied, updating at least one of hearing device parameters of a hearing device based on hearing device parameter(s) of the preferred test setting.
US10735875B2

An earpiece configured to be worn in an ear canal of a user is disclosed. The earpiece includes an adaptor having an interface configured to receive at least a part of a speaker unit and hereby be attached to the speaker unit. The earpiece includes an adaptable part, preferably a part made of a foam material or a gel material shapeable to fit the ear canal of the user. The adaptable part at least partly surrounds the adaptor. The adaptor has a sound outlet channel and at least one vent.
US10735870B2

There is provided a system for providing hearing assistance to a user, comprising: a table microphone unit (10) for capturing audio signals from a speaker's voice, comprising a microphone arrangement (16) comprising at least three microphones (M1, M2, M3) arranged in a non-linear manner, a beamformer unit (48) comprising a plurality of beamformers (BF1, BF2, . . . ), wherein each beamformer is configured to generate an acoustic beam (B1, B2, . . . ) by beamforming processing of audio signals captured by a subset of the microphones in such a manner that the acoustic beam has a fixed direction, an audio signal analyzer unit (52) for analyzing the beams in order to determine at least one acoustic parameter for each acoustic beam, a beam selection unit (54) for selecting one of the acoustic beams as the presently active beam based on the values of the at least one acoustic parameter, an output unit (60) for providing an acoustic output stream (26), wherein the output unit is configured to provide, during stationary phases of the beam selection, the presently active beam as the output stream, and to provide, during a transition period starting upon switching of the beam selection from a first beam to a second beam, a mixture of the first and second beam with a time-variable weighting of the first and second beam as the output stream so as to enable a smooth transition from the first beam to the second beam during the transition period, a transmission unit (20) for transmitting an audio signal corresponding to the output stream via a wireless link (14); and a hearing assistance device (12) to be worn by the user, comprising a receiver unit (30) for receiving audio signals transmitted from the transmitter of the table microphone unit and an output transducer (40) for stimulation of the user's hearing according to the received audio signals.
US10735869B2

An operation method of a terminal may include: executing a voice call service between the terminal and at least one terminal; determining at least one short-range terminal existing within a preset range from among the at least one terminal, based on location information of the terminal; detecting a howling frequency band in which howling occurs between the terminal and the at least one short-range terminal from among a plurality of frequency bands in which the voice call service is performed, based on information of the plurality of frequency bands; and removing the howling by adjusting a gain of the howling frequency band.
US10735866B2

A MEMS microphone includes a substrate having a cylindrical cavity, a back plate disposed over the substrate and having a plurality of acoustic holes defined therethrough, a diaphragm disposed between the substrate and the back plate, the diaphragm spaced apart from the substrate and the back plate, covering the cavity to form an air gap between the back plate, and being configured to generate a displacement with responding to an acoustic pressure and an anchor extending from an end portion of the diaphragm and extending along a circumference of the diaphragm, and the anchor including a lower surface in contact with an upper surface of the substrate to support the diaphragm, and a connecting portion, which is connected to the diaphragm, presenting a stepped cross section. Thus, the MEMS microphone may have improved flexibility and improved total harmonic distortion.
US10735863B2

A sound producing device includes: a frame having an opening portion; a vibration plate arranged in the opening portion; a vibration support sheet that supports the vibration plate; and a drive mechanism that drives the vibration plate, which are contained in a case. The vibration support sheet includes a vibration plate support portion that covers the opening portion and includes a peripheral fixation portion that is bent from a peripheral edge portion of the vibration plate support portion and that faces an inner end surface of the opening portion. The vibration plate is fixed to the vibration plate support portion. An adhesive layer is interposed at a portion where the peripheral fixation portion faces the inner end surface, and an adhesive pool is formed at a boundary portion between an opening edge portion of the opening portion and the vibration plate support portion.
US10735861B2

An apparatus for reducing cross-talk between transmitted audio signals and received audio in a headset. The headset includes one or more of a set of earphones, a headset frame, a microphone boom with an array of MEMS microphone configured to isolate the earphone audio from the microphone audio, a VOX circuit, low crosstalk cable(s), and/or other components. Sets of microphones may be enabled and/or disabled to reduce cross-talk between received audio signals and transmitted audio signals. The VOX circuit is configured to reduce cross-talk between received audio signals and transmitted audio signals.
US10735860B2

There is provided an apparatus which can include a plurality of speaker drivers and a control processor. The control processor can be configured to flexibly group the speaker drivers. The control processor can be further configured to perform the tasks of controlling directivity of audio output from at least one group and providing time delay to audio output from at least one speaker driver from at least one controlled group so as to generate at least one sound field associable with a dispersed profile.
US10735857B2

A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
US10735854B1

Systems, methods, and computer-readable media are provided for enhancing a user's listening experience by adjusting physical attributes of an audio playback system based on detected environmental attributes of the system's environment.
US10735848B2

The present disclosure relates to an earphone apparatus and method. The earphone apparatus includes an earpiece, including a speaker, configured for arrangement relative to a user's ear for listening to audio from the speaker, a bio-sensor, a motion sensor, and a controller configured to determine an activity state of the user based on aggregated sensor data from the bio-sensor and the motion sensor over time, and to control audio output to the user based on the determined activity state.
US10735846B2

A storage system includes a protective housing member configured to mate with a handheld electronic device. The protective housing member includes at least one accessory station. The accessory station is configured to form between a surface of the protective housing member and a surface of at least one accessory item of the handheld electronic device. The protective housing member includes at least s wireless transmitter and/or an IC chip. The wireless transmitter is configured to facilitate a wireless connection between wireless components of the handheld electronic device and the protective housing member.
US10735843B2

Systems and methods are provided for an eyewear accommodating headset with adaptive and variable ear support. An example headset may comprise an ear cup with two or more distinct sections that differ in one or more characteristics. A first section is adaptively configured to accommodate a temple piece of a pair of eyeglasses of a wearer of the headset, and a second section is configured to maintain contact with a temple of the wearer of the headset. The different sections may comprise different foams (or different parts of foam, each with different characteristics). The characteristics may comprise hardness and/or density. Another example headset may comprise an ear cup with a divot that accommodates the temple piece of the eyeglasses.
US10735834B2

The invention discloses a sensor connection element for a sensor, comprising: an energy store; a first data processing unit, with which is associated a first memory, for processing data and controlling a first wireless module; the first wireless module for transmitting/receiving data to/from a connection device; and a first inductive interface for transmitting energy from the energy store to the sensor, and for transmitting/receiving data to/from the sensor. The invention further discloses an energy-self-sufficient sensor system comprising the sensor connection element and a sensor.
US10735831B2

A system and method for communicating biofeedback to a user through a wearable device that includes collecting physiological data of at least one physiological property of a user; processing the physiological data into at least one biosignal; monitoring the at least one biosignal for a feedback activation condition; and upon satisfying a feedback activation condition, delivering haptic feedback.
US10735825B1

A system for synchronizing media content playout includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive a first state message from a first media player playing a first media content and a second state message from a second media player playing a second media content, the first media content and the second media content being the same media content. The software code further determines a coordination state for playout of the first media content and the second media content based on one or more of the first and second state messages, and transmits a first coordination message including the coordination state to the first media player and a second coordination message including the coordination state to the second media player to synchronize playout of the first media content and the second media content.
US10735812B2

A method includes sending, from a media device to a display device, media content associated with a channel provided by a content provider, the media content received from a network device associated with the content provider. The method includes analyzing, based on a profile, a data feed from a source external to the content provider to identify content of interest. The method includes sending an indicator from the media device to the display device in response to identifying the content of interest. The method also includes, in response to user input indicating selection of the indicator, sending selectable options associated with presentation of the content of interest to the display device.
US10735804B2

Systems and methods are disclosed herein for adaptively buffering content of a media asset from a media source when a different media asset from a different media source is being played at user equipment. The media guidance application may predict when and which channel or other media source the user is likely to switch to and then buffer content from the predicted channel or other media source accordingly. The pre-tuning buffering may enhance the user experience by reduce tuning latency when the user switches channels.
US10735799B2

In one embodiment, a method plays, a media program in a media player operating in a first mode on an interface. A change in a condition is detected for the media player. Then, the method switches from the first mode to a second mode based on the change in the condition. The second mode restricts movement of the media player. The media player is moved from a first position to a second position upon switching to the second mode and the media player continues to play the media program in the second position.
US10735793B1

The present disclosure relates to a cloud-based system that records and plays back video images. The system includes a recorder service executing on a server and a client application executing on one or more client devices. The client application includes a player program and a recorder program. The recorder program captures screenshots based on a pre-defined list of events and sends the screenshots and a build request referencing the screenshots to the recorder service. The recorder service generates a play file in response to receipt of the build request using the screenshots. The play file includes metadata referencing variation images generated from the screenshots. The play file is configured to be accessible by any of the client devices for generation and playback of a video using the player program.
US10735788B2

The invention relates to a method for packaging media and data for transmission over a broadband communications network link for display at a terminal destination. Features of the method included creating desired media segments for transmission to the terminal destination and for creating targeting information, for example in whole or in part in the form of metadata, for transmission to the terminal destination. Other features include packaging the created media segments and the created targeting information in a single package and unpacking the single package for display of the targeted media at the terminal destination. In another aspect, the invention can provide a method for unpacking media and data for display at a terminal destination implementing, at the terminal destination, receiving a single package containing media segments and instructions regarding handling of the media segments, quickly unpacking the media segments and the instructions from the single package and, based on the unpacked instructions, assembling one or more of the media segments for display at the terminal destination.
US10735782B2

A media system replaces content in a first sequence of media content. The media system presents the first sequence of media content to an end-user and generates a fingerprint of the sequence of media content. The fingerprint is for comparison with a plurality of reference fingerprints so as to identify the first sequence of media content and determine a reference position within the first sequence of media content. The media system sends a request for a replacement sequence of content to a content replacement system, and receives replacement media content selected based on the identified first sequence of media content. The media system presents the replacement media content to the end-user instead of the first sequence of media content. Presenting the replacement media content begins at a position in the first sequence of media content that is determined based on the reference position.
US10735779B2

A system and a method for using the system for targeted broadcast advertising includes a broadcasting medium are provided. The system includes a broadcaster configured to provide a multimedia stream to a viewing device through the broadcasting medium; the multimedia stream including a close captioning string; wherein: the broadcaster is further configured to provide advertisements in the multimedia stream according to a correlation between the close captioning string and a plurality of vendor keywords.
US10735774B2

Clipping may be applied during various operations at an encoder or decoder. The lower and upper bounds for clipping can be differentially encoded with respect to predictors. Fixed predictors can be used, for example, 0 and 2bitdepth for the lower and upper bounds, respectively. Adaptive predictors can also be used. Adaptive predictors can be derived from clipping bounds in previously encoded or decoded pictures, or explicitly signaled in a bitstream. Whether to encode the clipping bounds can be determined based on the number of pixels that have values close to the clipping bounds. Additionally, taking advantage of the clipping operation, the prediction residuals can be smoothed, while the distortion for the block may not necessarily increase.
US10735760B2

A method of coding video data is provided to include resetting one or more tables including motion candidates before coding video blocks that are in a first video region of a picture in a video; coding a video block in the first video region, and determining whether to update the one or more tables using motion information derived for the video block; deriving motion information for a subsequent video block to the video block in the first video region; and coding the subsequent video block using the motion information derived for the subsequent video block; wherein one or more candidates from the one or more table are selectively checked during a motion candidate list construction process which is used to derive the motion information for the subsequent video block.
US10735758B2

Aspects of the disclosure provide methods and apparatuses for video decoding. In some embodiments, an apparatus for video decoding includes processing circuitry. The processing circuitry decodes prediction information for a block in a current coded picture that is a part of a coded video sequence. The prediction information is indicative of a merge submode. Then, the processing circuitry constructs, in response to the merge submode, a candidate list of candidate motion vector predictors for the block. The candidate list includes one or more first candidates that are corner neighbors of the block and at least one second candidate that is a side neighbor of the block. Then, the processing circuitry reconstructs the block according to motion information associated with the second candidate.
US10735757B2

The present invention relates to a video decoder and controlling method thereof. Particularly, the present invention is characterized in dividing a block into subblocks of a prescribed unit, selecting prescribed subblocks according to a priority, and decoding the selected prescribed subblocks.
US10735750B2

A higher coding efficiency for coding a significance map indicating positions of significant transform coefficients within a transform coefficient block is achieved by the scan order by which the sequentially extracted syntax elements indicating, for associated positions within the transform coefficient block, as to whether at the respective position a significant or insignificant transform coefficient is situated, are sequentially associated to the positions of the transform coefficient block, among the positions of the transform coefficient block depends on the positions of the significant transform coefficients indicated by previously associated syntax elements. Alternatively, the first-type elements may be context-adaptively entropy decoded using contexts which are individually selected for each of the syntax elements dependent on a number of significant transform coefficients in a neighborhood of the respective syntax element, indicated as being significant by any of the preceding syntax elements.
US10735742B2

A processing system may obtain a first frame of a first variant associated with a reference copy of a video, where a plurality of variants comprises copies of the video encoded at different bitrates, determine a frame number of the first frame from a visual overlay containing the first frame number, calculate a first image distance between the first frame and a frame of the reference copy having the frame number, determine, from among a plurality of image distances for frames of each variant having the frame number, a closest image distance to the first image distance, the plurality of image distances comprising image distances between frames of the variants and the frame of the reference copy having the frame number, and identify the first frame as being from the first variant in accordance with a variant associated with the first closest image distance.
US10735737B1

A method includes: performing spatio-temporal analysis on each frame of a video frame sequence; determining, based on the spatio-temporal analysis, how well a first region of a first frame of the video frame sequence meets a human-perception criterion; assigning, based on the identification, a bit weight for an encoder to apply in encoding the first region; and encoding, using the encoder, at least the first frame based on the spatio-temporal analysis, wherein the first region is encoded using the assigned bit weight.
US10735735B2

Delta quantized coefficients of a pixel block in a picture in a first representation of a video sequence are encoded based on information derived from estimated quantized coefficients for the pixel block. The delta quantized coefficients represent a difference between actual quantized coefficients of the pixel block derived by encoding at least a portion of the picture in the first representation of the video sequence and the estimated quantized coefficients. The estimated quantized coefficients represent a difference between a reconstructed block of a corresponding picture in a second representation of the video sequence and a prediction block obtained based on intra mode information and/or inter motion information derived by encoding the picture in the first representation of the video sequence.
US10735734B2

Embodiments of the present invention provide an encoder including a quantization stage, an entropy encoder, a residual quantization stage and a coded signal former. The quantization stage is configured to quantize an input signal using a dead zone in order to obtain a plurality of quantized values. The entropy encoder is configured to encode the plurality of quantized values using an entropy encoding scheme in order to obtain a plurality of entropy encoded values. The residual quantization stage is configured to quantize a residual signal caused by the quantization stage, wherein the residual quantization stage is configured to determine at least one quantized residual value in dependence on the dead zone of the quantization stage. The coded signal former is configured to form a coded signal from the plurality of entropy encoded values and the at least one quantized residual value.
US10735724B2

An image encoding method includes: obtaining imaging information determined during a process of capturing an image; generating metadata for determining a compression strength of the image based on the imaging information; determining the compression strength of the image based on the metadata; and encoding the image based on the determined compression strength.
US10735722B2

Aspects of the disclosure provide an apparatus for video coding. The apparatus includes circuitry configured to reconstruct one or more blocks neighboring a first block that is non-square, and determine a range of reference samples required for an intra prediction of the first block based on a shape of the first block. The range includes samples having coordinates of x=[−1], y=[−1 to (dimension1*2+m)], and x=[0 to (dimension2*2+n)], y=[−1]. Dimension1 denotes a length of a first side of the first block, dimension2 denotes a length of a second side of the first block that is perpendicular to the first side of the first block, and m and n are integers greater or equal to 0. The circuitry is further configured to perform the intra prediction based on the reference samples in the determined range.
US10735720B2

A method for decoding a video according to the present invention may comprise: deriving a plurality of reference sample lines for a current block, selecting at least one among the plurality of reference sample lines, determining whether to apply an intra filter to a reference sample included in the selected reference sample line, selectively applying the intra filter to the reference sample according to the determination, and performing intra prediction for the current block using the reference sample.
US10735711B2

A method, system, and computer program product for generating a three-dimensional image from a captured two-dimensional image. The method includes capturing, via a wide-angle camera sensor of an image capturing device, a two-dimensional image of a scene. The method further includes determining depth information of the scene. The method further includes generating, from the depth information, a depth map that depicts a depth of the scene in a third dimension. The method further includes generating a wide-angle three-dimensional image by merging the depth map and the two-dimensional image.
US10735709B2

An unobstructed image portion of a captured image from a first camera of a camera pair, e.g., a stereoscopic camera pair including fisheye lenses, is combined with a scaled extracted image portion generated from a captured image from a second camera in the camera pair. An unobstructed image portion of a captured image from the second camera of the camera pair is combined with a scaled extracted image portion generated from a captured image from the first camera in the camera pair. As part of the combining obstructed image portions which were obstructed by part of the adjacent camera are replaced in some embodiments. In some embodiments, the obstructions are due to adjacent fisheye lens. In various embodiments fish eye lenses which have been cut to be flat on one side are used for the left and right cameras with the spacing between the optical axis approximating the spacing between the optical axis of a human person's eyes.
US10735689B2

A transmission management apparatus manages transmission states of a plurality of transmission terminals including a first transmission terminal and a second transmission terminal. The apparatus includes a terminal management table storage unit configured to store therein a terminal management table in which terminal information including an identifier and an identification name of each transmission terminal is managed; a receiving unit configured to receive a terminal information request signal from the first transmission terminal, the terminal information request signal indicating a request for information for identifying the second transmission terminal, the first and second transmission terminals being in transmission therebetween; a terminal state acquisition unit configured to acquire the information for identifying the second transmission terminal from the terminal management table in response to the terminal information request signal; and a transmitting unit configured to transmit the information acquired by the terminal state acquisition unit to the first transmission terminal.
US10735687B1

In a controlled-environment facility resident on-demand controlled-environment facility resident electronic communication recording system and/or method, a controlled-environment facility secure communication platform, or the like, accepts initiation of an electronic communication involving a resident of a controlled-environment facility and establishes an electronic communication link between the resident and another call party. A controlled-environment facility communication and/or media device, or the like enables the resident to participate in the electronic communication, such as via a user interface provided on the controlled-environment facility communication and/or media device, and presents, such as via the user interface provided on the controlled-environment facility communication and/or media device, an option to the controlled-environment facility resident to record at least a portion of the electronic communication, such as via user interface provided on a controlled-environment facility communication and/or media device.
US10735686B2

Enhanced content consumption is provided by establishing a pairing between two computing devices, wherein at least one of the two computing devices provides a primary consumption experience of a digital content item, so that a secondary consumption experience can be provided via operation of at least one of the two computing devices. The method further comprises presenting, using at least one of the two computing devices, the digital content item for consumption by a user. The method further comprises performing one or more supplemental consumption functions with the other of the two computing devices.
US10735681B2

An inspection device includes: an acquisition unit configured to acquire dark-time image data generated in a state where the imaging element is shielded from light; a first generation unit configured to generate average added image data by adding up the dark-time image data and dividing the added-up result by number of frames; a second generation unit configured to generate difference image data in which the average added image data is subtracted from the image data; a first calculation unit configured to calculate, as a lateral streak noise index, a statistical value of the difference image data; a second calculation unit configured to calculate the lateral streak noise indices; a third calculation unit configured to calculate, as the correction value, the correlation degree having a minimum value among the lateral streak noise indices; and a recording control unit configured to record the correction value in a recording unit.
US10735674B2

A system for generating an image of a region of interest (ROI) of a target object, the system including a camera, a target stage configured to receive the target object, the target stage configured to provide a translational movement and a rotational movement of the target object, and a controller. The controller is configured to control the camera and target stage to iteratively shift the target along scan trajectories of sample locations to capture images of each of a plurality of concentric rings and sub-rings of a predefined radial pitch over the ROI, the sample locations represented by polar coordinates defining sectors of each of the sub-rings. The controller is further configured to extract super resolution (SR) pixels from the images to reconstruct an SR image of each of the rings in the polar coordinates, and project the SR images into Cartesian coordinate images.
US10735672B2

Imaging apparatus (100, 200, 1200) includes a semiconductor substrate (312) and an array (202) of pixel circuits (1202, 1204), which are arranged in a matrix on the semiconductor substrate and define respective pixels (212) of the apparatus. Pixel electrodes (1208) are respectively coupled to the pixel circuits, and a photosensitive (1206) is formed over the pixel electrodes. A common electrode (1207), which is at least partially transparent, is formed over the photosensitive film. An opaque metallization layer (1214) is formed over the photosensitive film on one or more of the pixels and coupled in ohmic contact to the common electrode. Control circuitry (208, 1212) is coupled to apply a bias to the common electrode via the opaque metallization layer while correcting a black level of the output values from the pixels using the signals received from the one or more of the pixels over which the opaque metallization layer is formed.
US10735670B2

The present disclosure relates to an information processing apparatus and information processing method that are aimed at enabling arrangements of a plurality of photographing devices to be easily set to an optimum arrangement for generation of three-dimensional data. An evaluation section calculates an evaluation value of an arrangement for generation of the three-dimensional data on the basis of the arrangements of the plurality of photographing devices that photograph two-dimensional image data used to generate the three-dimensional data of a photographic object. For example, the present disclosure is applicable to the information processing apparatus etc. that display information indicating the arrangements of the plurality of photographing devices that photograph the two-dimensional image data used to generate the three-dimensional data of the photographic object.
US10735668B2

A method and system for synchronizing LED lighting to the shutters of fast digital cameras. The system enables capture of multiple lighting schemes to be filmed in a single video take on sequential frames. Since 24 frames per second is the industry standard used broadly in film and television, a 96 FPS camera can capture up to 4 lighting tracks of 24 FPS each in a single take. Each lighting fixture can be changed frame by frame to any desired intensity. The changing of lighting can be synchronized with the times when the shutter is closed so that all frames are complete and are without the visual artifact of the light changing mid frame. This is extremely useful for simple visual effects such as a simulated camera flash, lighting pattern or gun flash. The lighting can be programmed so that by turning on lights at the appropriate intensity while the camera shutters are closed all viewers on set perceive a constant, flicker-free light. The entire system is compatible with existing industry standards.
US10735666B2

An image capturing apparatus comprises a communication unit that performs wireless communication with a plurality of light emitting apparatuses and a control unit that switches to a first communication state in which the plurality of light emitting apparatuses and the image capturing apparatus perform wireless communication at predetermined communication intervals, and a second communication state in which a predetermined light emitting apparatus of the plurality of light emitting apparatuses and the image capturing apparatus perform wireless communication at predetermined communication intervals and the predetermined light emitting apparatus and a light emitting apparatus other than the predetermined light emitting apparatus perform wireless communication at variable communication intervals. The control unit switches to the first communication state or the second communication state according to an operational state of the image capturing apparatus.
US10735654B1

The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
US10735639B2

An information processing apparatus including a plurality of installed application programs activates, when a first application program is executed for using data, a second application program used to obtain the data from an external apparatus. A process of connection to the external apparatus is executed by executing the second application program, and a data format and attribute information stored in the external apparatus are obtained from the external apparatus by executing the second application program. The attribute information on data stored in the external apparatus is displayed on a screen of the second application program such that a result of a determination as to whether the data is usable by the first application program is recognizable based on a format stored in the memory and a format obtained from the external apparatus by executing the second application program.
US10735637B2

A camera module and array camera module with circuit board unit and photosensitive unit and manufacturing method thereof is provided. The array camera module comprises two or more camera lenses and a circuit unit. The circuit unit comprises a circuit board portion for electrically connecting two or more photosensitive sensors of the array camera module, and a conjoined encapsulation portion integrally encapsulated on the circuit board portion. The camera lenses are respectively arranged along the photosensitive paths of the photosensitive sensors.
US10735630B2

An image quality adjustment device includes: a lighting controller that controls a display panel including a plurality of pixels, each including arrangement of a plurality of subpixels such that the display panel displays a measurement image in which a part of the plurality of subpixels is lit; and a first electric filter that removes at least a spatial frequency component greater than or equal to fd/2 from a first image obtained by capturing the measurement image displayed on the display panel using an capture device when a panel spatial frequency determined by a pixel pitch of the pixel in a direction in which the plurality of subpixels are arrayed is set to fd.
US10735629B2

A display device includes a substrate and an active pattern positioned above the substrate and including a plurality of channel regions and a plurality of conductive regions. The display device includes a plurality of scan lines extending substantially in a first direction. The display device includes a data line and a driving voltage line crossing the plurality of scan lines. The display device includes a first transistor including a first channel region among the plurality of channel regions and a first gate electrode. The display device includes a first connector electrically connecting the first gate electrode of the first transistor and a first conductive region among the plurality of conductive regions to each other. The driving voltage line overlaps at least a portion of the first connector along a direction orthogonal to an upper surface of the substrate.
US10735628B2

The disclosure describes a high dynamic range video coding pipeline that may reduce color artifacts and improve compression efficiency. The disclosed pipeline separates the luminance component from the chrominance components of an input signal (e.g., an RGB source video) and applies a scaling of the chrominance components before encoding, thereby reducing perceivable color artifacts while maintaining luminance quality.
US10735624B2

An information processing apparatus (printing apparatus) provides a service to an external apparatus via a communication line. A first communication unit performs communication via a first communication line. A second communication unit performs communication via a second communication line that is different from the first communication line. A provision unit provides a user interface for accepting, from a user, a setting that limits services that are to be provided via the second communication line. A limitation unit limits services that are to be provided via the second communication line, to one or more services out of a plurality of services that the information processing apparatus can provide, according to the setting accepted via the user interface.
US10735618B2

An image processing apparatus processes data for printing an image by relatively moving a printing unit and a printing medium. The printing unit includes a plurality of printing elements arranged in a first direction, and the relative movement is in a second direction that intersects with the first. The apparatus includes an acquisition unit to acquire image data corresponding to an image of one page, a first processing unit to process first image data corresponding to a first processing area of the image by using a common parameter for each pixel arranged in the second direction, for generating first print data that is used for the printing unit, a second processing unit to process second image data corresponding to a second processing area of the image by using a common parameter for each pixel arranged in the second direction, for generating second print data used for the printing unit.
US10735612B2

An image forming apparatus includes a plurality of devices configured to perform different job processing, a control unit configured to control job processing performed by each device, a reception unit configured to receive an instruction for causing the control unit to shift to a state where the job processing is capable of being performed, and a power control unit configured to, when the control unit is shifted to a stand-by state in response to receiving the instruction, supply a power to a device specified based on a job processing function corresponding to an initial screen to be displayed.
US10735610B1

A device (e.g., scanner) for handling a paper holder (binder) having an upper cover, a lower cover, and at least one paper held therein is made available, the device including a control circuit, a lifting mechanism comprising an adhesive member, and an image capturing device. The adhesive member is configured to removably attach to the upper cover of the paper holder. The lifting mechanism is configured to flip the upper cover of the binder open when the adhesive member is attached to the upper cover. The lifting mechanism is configured to detach from the binder and return to its original position after the upper cover is flipped open. The image capturing device is configured to take one or more images of the open binder after the lifting mechanism is detached from the binder and returned to its original position away from the binder after the upper cover is flipped open.
US10735609B2

A printing apparatus having an insert-sheet inserting function includes a plurality of sheet-feeding ports, a printing mechanism that performs printing on paper fed from each sheet-feeding port, and a controller that controls the printing mechanism. In a case where no insert-sheets are present in a sheet-feeding port for insert-sheets when the printing mechanism feeds the insert-sheets from the sheet-feeding port for insert-sheets, the controller selects another sheet-feeding port different from the sheet-feeding port for insert-sheets as a new sheet-feeding port for insert-sheets on the basis of a paper specification of paper used for printing data to be printed and a sheet-feeding port setting.
US10735599B2

The invention is directed to allowing network base stations to receive information from mobile communication terminals about terminal-detected usage of unlicensed band utilization, e.g., due to uncoordinated short-range wireless communication usage in combination with LTE deployments in unlicensed bands. The present invention introduces additional information into automatic neighbor relation (ANR) reporting. The additional information comprises information associated with the unlicensed band utilization. The additional information enables a base station scheduler (e.g., an LTE base station scheduler) associated with a base station to take radio access technology (RAT) utilization other than cellular utilization (e.g., 2G, 3G, LTE, etc.) into account in order to decrease in-device coexistence issues and increase unlicensed band system capacity.
US10735598B2

A system and method for voice communication between sender users and recipient users, and the sender users and external network entities is provided. The system includes a plurality of voice communication domains interacting with each other and with network entities, and a cross-domain coordinator configured to coordinate interaction between the voice communication domains over Internet. Each voice communication domain includes a plurality of personal communication devices (PCDs) associated with the corresponding users, and a voice communication server deployed within the voice communication domain to control operation of the PCDs. Each PCD is controlled and operated by voice user commands provided verbally, and is configured to provide voice communication between a sender user and a recipient user within the same voice communication domain, between the users of different voice communication domains, and between the sender user and the external network entities.
US10735582B2

A system for referring a telephone communication to one of a plurality of financial assistance providers based on lender criteria, the method including the steps of: storing telephone numbers for a plurality of financial assistance providers in memory accessible by a digital electrical computer; obtaining lender criteria for selecting one of the financial assistance providers; storing said criteria for access by said computer; identifying a debtor; selecting one of the financial assistance providers by accessing the criteria, applying the criteria, and accessing one of the stored telephone numbers; and connecting the debtor by telephone to the one of the stored telephone numbers. The system can be used with an intermediary that detects referring information sufficient to identify a referrer identity, to select which one of several financial assistance providers to refer the inbound communication by using a computer to look up and to apply referral criteria responsive to the referrer identity, and to form and track the call referral.
US10735579B2

A computer-implemented method includes: determining, by a computer device, contextual data of plural calls to a callee; generating, by the computer device, a predictive model based on the contextual data of the plural calls; determining, by the computer device, contextual data of a current call to the callee; determining, by the computer device and based on the model and the contextual data of the current call, a probability that the callee will answer the current call; determining, by the computer device and based on the model and the contextual data of the current call, an amount of time to ring for the current call; instructing, by the computer device, a caller device to display the determined probability; and instructing, by the computer device, a callee device to control an amount of rings for the current call based on the determined amount of time to ring.
US10735570B2

A mobile terminal is disclosed. The mobile terminal includes a first body including a first display; and a second body hinge-coupled to the first body, the second body including a second display, wherein the first display includes a first flat display and a first curved display positioned on a side of the first body and extended and curved from the first flat display, wherein the second display includes a second flat display and a second curved display positioned on a side of the second body and extended and curved from the second flat display, wherein at least a portion of the first and second curved displays is deactivated when an outer surface of the first curved display faces an outer surface of the second curved display.
US10735558B2

An agent application executing on a client device retrieves an execute command from a command queue managed by a server and retrieves certificates and configuration settings for establishing a virtual private network (VPN) connection. An enrollment application resident on the client device executes in response to the execute command to modify a network setting of a network interface card (NIC) of the client device and establish a VPN connection with a domain controller located within the corporate domain using the certificate and configuration settings. The enrollment application further transmits a request over the VPN connection to the domain controller to join the corporate domain, wherein a corporate account in a directory service is established for the client device; reverts back to the prior network setting of the NIC and terminates the VPN connection and reboots the client device.
US10735543B2

Systems, methods, devices and non-transitory, computer-readable mediums are disclosed for device-to-device caching. In some implementations, a method includes: registering, by an electronic device, a cache service on a local area network (LAN), the LAN including other registered electronic devices; generating, by the electronic device, a content map for cached content, the content map generated from descriptors of the cached content and including data indicating that the cached content described by the content descriptors is possibly cached or is definitely not cached by the electronic device; advertising, by the electronic device, the registered cache service and the content map; receiving, by the electronic device, a request for content from a requesting electronic device registered on the LAN; determining, by the electronic device, that the requested content is cached; and sending, by the electronic device, the requested content to the requesting electronic device.
US10735539B1

A device can receive a plurality of input event objects that correspond to publications in a publication-subscription deployment, where the plurality of input event objects are associated with respective originating accounts and respective originating signatures. The device can identify, using a query, a set of input event objects, of the plurality of input event objects, based on which of one or more operations are to be invoked, where the query is based on the respective originating accounts and the respective originating signatures, and where the query returns respective output signatures corresponding to the set of input event objects. The device can generate one or more output event objects that include or identify the respective output signatures corresponding to the set of input event objects, and provide, to an event bus, the one or more output event objects to cause the one or more operations to be invoked.
US10735536B2

A method is described of pre-processing real-time data to be processed by one or more real-time analytics services. The method includes: receiving, at a stateless ingress node, data from one or more client devices; transforming the data in real-time at the stateless ingress node; determining in real-time, at the stateless ingress node, a real-time analytics service for the transformed data; and forwarding in real-time the transformed data to the determined real-time analytics service for stateful processing.
US10735534B2

An information processing apparatus includes a specifying unit that specifies an activity degree of each of a plural participants based on biometric information obtained from a living body of each of the plural participants participating in a gathering, an evaluation unit that evaluates each of the plural participants based on the specified activity degree, a selection unit that selects one or more of the plural participants based on an evaluation of the evaluation unit, and a requesting unit that requires an opinion on the gathering from the selected participant.
US10735531B2

Various embodiments are generally directed to cooperation among networked devices to obtain and use a multiple-frame screenshot. In one embodiment, an apparatus comprises a processor circuit executing a sequence causing the processor circuit to receive a signal conveying a context data; retrieve an aspect of a current context of the apparatus; compare the aspect to the context data; determine whether a context defined as appropriate exists to engage in interactions with one or more other computing devices through a network based on the comparison, the interactions comprising providing a network service to the one or more other computing devices; and engage in the interactions with one or more computing devices through the network when the appropriate context to engage in the interactions exists. Other embodiments are described and claimed herein.
US10735522B1

A framework and a method are provided for monitoring and managing software bots that collectively automate business processes. The method includes interfacing with the bots executing on a bot infrastructure. The method also includes obtaining the bot-specific performance data and the infrastructure-level performance data recorded by the bots and the bot infrastructure. The method further includes generating or modifying a bot dependency chain based on the bot-specific performance data and the infrastructure-level performance data. The bot dependency chain represents at least one of dependencies amongst the bots and dependencies amongst the related business processes. The method also includes generating an outcome for the business processes according to the bot dependency chain and the bot-specific performance data and the infrastructure-level performance data recorded by the bots and the bot infrastructure.
US10735517B2

A communication system includes a management device, a reception device, and a transmission device. The reception device and the transmission device are configured to hold first information included in a received first communication message each time the reception device and the transmission device receive the first communication message. The transmission device is configured to manage second information of a management code, and generate a first authenticator from communication data and a management code formed by combining the held first information with the managed second information. The reception device is configured to receive a second communication message transmitted by the transmission device, and authenticate the received second communication message based on a comparison between the first authenticator included in the received second communication message and a regenerated authenticator regenerated based on the received second communication message.
US10735513B2

A method of accessing a remote storage subsystem from a host device separate from the remote storage subsystem and connected via interfaces to a data communications topology is disclosed. In one embodiment, the communications interface comprises an RDMA network fabric. In one embodiment, the method includes queuing a write command or a read command in a submission queue of the remote storage subsystem, and placing a write data into a memory of the remote storage subsystem. The method further includes transmitting a message to the remote storage subsystem indicating the write command or the read command has been submitted in the submission queue, and detecting a command completion status from a completion queue of the remote storage subsystem. The method further includes transmitting a message to the remote storage subsystem indicating the command completion status has been detected.
US10735509B2

The disclosed computer-implemented method for synchronizing microservice data stores may include (i) establishing, at a first network node, an instance of a first microservice for an application and an instance of a distinct second microservice, (ii) establishing, at a distinct second network node, an additional instance of the first microservice and an additional instance of the distinct second microservice, (iii) establishing a single network channel for synchronizing, between the first network node and the distinct second network node, a first data store for the first microservice and a second data store for the distinct second microservice, and (iv) synchronizing the first data store for the first microservice and the second data store for the distinct second microservice. Various other methods, systems, and computer-readable media are also disclosed.
US10735499B2

A control-plane component of a virtual network interface (VNI) multiplexing service assigns one or more VNIs as members of a first interface group. A first VNI of the interface group is attached to a first compute instance. Network traffic directed to a particular endpoint address associated with the first interface group is to be distributed among members of the first interface group by client-side components of the service. The control-plane component propagates membership metadata of the first interface group to the client-side components. In response to a detection of an unhealthy state of the first compute instance, the first VNI is attached to a different compute instance by the control-plane component.
US10735498B2

Embodiments provide a method and a device for interworking between different OTTs. The method includes: obtaining OTT information of a target user; and performing an interworking processing operation between cross-OTT friends according to the obtained OTT information of the target user. Interworking between the cross-OTT friends is implemented by using the foregoing operation.
US10735485B2

An adaptive streaming system is described in which media content is provided by a media server as a sequence of consecutive media segments for being individually requested by a media client. A method implementation performed by a media client of the system comprises the generation of at least one request in relation to a media segment. The media segment is divided into multiple temporally scaling media segment levels and the at least one request includes a reference to at least one temporal level of the media segment. The media client then triggers transmission of the one or more request towards the media server and processes the one or more temporal levels of the media segment received from the media server in response to the one or more requests.
US10735480B2

A method, a related apparatus, and a system for recovering a called service of a terminal are provided. The method includes: when a called request of a user terminal is received, querying an initial proxy-call session control function (P-CSCF) entity with which the user terminal currently registers; if it is detected that the initial P-CSCF is faulty, selecting an available P-CSCF and sending, to the available P-CSCF, a notification message that carries a redundancy identifier, where the redundancy identifier is used to instruct the available P-CSCF to trigger the user terminal to re-register with the P-CSCF; and when a registration complete message sent by the P-CSCF with which the user terminal re-registers is received, delivering the called request to the re-registered P-CSCF to bear a called service of the user terminal.
US10735479B2

Methods, apparatus, systems and articles of manufacture are disclosed to enable voice assistant device communication. An example apparatus includes an environment detector to receive a voice communication request associated with a target household member, the voice communication request to occur at an originating voice assistant device, a device map engine to query a location database to determine a match between one of a plurality of destination voice assistant devices and the target household member, a member discovery engine to transmit a location request to candidate ones of the plurality of destination voice assistant devices when the location database does not include a matching one of the plurality of destination voice assistant devices, and identify a voice signature of the target household member in response to the location request, the voice signature detected at one of the candidate ones of the plurality of destination voice assistant devices, and a broadcast engine to enable a communication session between the one of the candidate ones of the plurality of destination voice assistant devices and the originating voice assistant device.
US10735478B2

A method for setting up communication links to redundantly operated controllers in an industrial automation system, in which a first controller is in an active operating state for controlling or regulating a technical process, and a second controller is in a reserve operating state, from which it is placeable into an active operating state in the event the first controller fails, where the first/second controllers respectively store a device identifier associated with the first/second controllers, information about associations between device names and communication network addresses of the first/second controllers is provided in accordance with a name service protocol within at least one subnetwork associated with the first/second controllers, and where retrieval of a piece of address or name information for one of the two controllers involves automatically providing the piece of address or name information to setup a communication link to the other controller based on the respective device identifier.
US10735476B1

Systems and methods are described for a connection service that identifies connections for providing a data flow between a client computing device and a target computing device. A client computing device can send an API-based connection request to various servers hosting the connection service. The connection service processes the requests to determine a routing path for the connection. Advantageously, the connection service determines various routing paths and further identifies a connection for the data stream using that routing path. Finally, a control service provides control and relays requests to initiate data flows for resources configured for a data flow (e.g., a remote desktop session).
US10735466B2

The invention provides mechanisms for enhancing the security and protection of a computer-based system or network. It relates, in part, to the use of a decoy (which may be termed “honeypot” or “honeynet”) for collecting attacker-related data, and/or diverting malicious behaviour away from legitimate resources. In one embodiment, the invention provides a method comprising the steps of receiving, processing and logging network traffic data of a plurality of users, where the network traffic is received from a plurality of participating users; determining an attacker profile from the network traffic data; determining a honeypot or honeynet configuration based on the attacker profile; and upon receipt of a valid information request from a user of the plurality of users, providing the determined attacker profile and configuration to the user. Additionally or alternatively, it may provide a computer-implemented method comprising the steps of receiving, processing and logging network traffic data; based on processed network traffic data: determining that network traffic originates from an attacker, determining a risk classification; and determining a decoy configuration based on the risk classification; upon receipt of a valid information request from a user, providing the determined risk classification and decoy configuration to the user.
US10735464B2

A computer-implemented method for detecting replay attack comprises: obtaining at least one candidate transaction for adding to a blockchain; verifying if an identification of the candidate transaction exists in an identification database, the identification database comprising a plurality of identifications within a validation range; and in response to determining that the identification does not exist in the identification database, determining that the candidate transaction is not associated with a replay attack.
US10735458B1

A computerized method is described that is adapted to compare extracted features of a received object under analysis with one or more features associated with each known malicious object of a plurality of known malicious objects accessible to the one or more servers. Responsive to determining that the extracted features satisfy a prescribed level of correlation with the one or more features of a first known malicious object of the plurality of known malicious objects, identifying the received object as a malicious object. Also, responsive to determining that the extracted features fail to satisfy the prescribed level of correlation, conducting a second analysis that includes a comparison of the extracted features to the one or more features associated with each of the plurality of known malicious objects being of a type of malware other than malware targeting a specific entity.
US10735457B2

A process to investigate intrusions with an investigation system is disclosed. The process receives forensic facts from a set of forensic events on a system or network. A suspicious fact is identified from the forensic facts. A related fact from the forensic facts is identified based on the suspicious fact.
US10735455B2

A system is provided for anonymously detecting and blocking threats within a telecommunications network. A network analyzer of the system may intercept traffic, or receive log files, related to traffic that passes over the network, collect metadata that includes values of data attributes associated with the traffic, interpret the metadata and therefrom generate and transmit a request for an associated threat score for the value of a data attribute, and receive the associated threat score and based thereon initiate a block or redirection of the traffic. A score requestor of the system may receive and serve the request by either returning the score from local storage or otherwise, generating and transmitting a secondary request to a scoring engine configured to calculate the associated threat score and the associated threat score to the score requestor to return to the network analyzer.
US10735451B1

Systems and methods discussed herein relate to maintaining regulatory compliance by scanning a plurality of systems of an IT infrastructure for security vulnerabilities, detecting vulnerabilities, and generating list of remediation tasks for the detected vulnerabilities. The lists generated are prioritized as to enable compliance of the various systems to internal policies and government regulations, and the system is dynamically updated. Via these systems and methods, it may be determined whether a system will be in compliance by a particular date and/or if remediation lists are regenerated with different priorities and/or group assignments.
US10735449B2

Methods and apparatuses disclosed herein for improved mobile app security testing via bridged native and web user interface interaction. In one example embodiment, a method is provided comprising receiving, by a security instrumentation system, an app for analysis, and discovering, by the security instrumentation system, one or more user interface elements provided by the app. Thereafter, interrogating, by the security instrumentation system, the one or more user interface elements provided by the app and serializing, by the security instrumentation system, the one or more user interface elements. In some embodiments, after serializing the one or more user interface elements, causing presentation of the serialized one or more interface elements via a web browser.
US10735446B2

Embodiments presented herein describe a method for processing streams of data of one or more networked computer systems. According to one embodiment of the present disclosure, an ordered stream of normalized vectors corresponding to information security data obtained from one or more sensors monitoring a computer network is received. A neuro-linguistic model of the information security data is generated by clustering the ordered stream of vectors and assigning a letter to each cluster, outputting an ordered sequence of letters based on a mapping of the ordered stream of normalized vectors to the clusters, building a dictionary of words from of the ordered output of letters, outputting an ordered stream of words based on the ordered output of letters, and generating a plurality of phrases based on the ordered output of words.
US10735442B1

User interfaces are generated by operations that include receive and store formatted static data and dynamic data. A first query is received, and first response data is selected. A user interface is generated containing the first response data and the user interface is displayed. An indication of user selection is received. A second query is generated and second response data is selected. The user interface is updated to a second user interface, which is displayed.
US10735432B2

Aspects of the technology described herein provide a mechanism for controlling access to secure computing resources based on inferred user authentication. A current user may be authenticated and access to secure computing resources permitted based on a determined probability that the current user is a legitimate user associated with the secure computing resource. Legitimacy of the current user may be inferred based on a comparison of user-related activity of the current user to a persona model, which may comprise behavior patterns, rules, or other information for identifying a legitimate user. If it is determined that the current user is likely legitimate, then access to secure information may be permitted. However, if it is determined that the current user is likely illegitimate, than a verification procedure may be provided to the current user, such as a temporal, dynamic security challenge based on recent activity conducted by the legitimate user.
US10735427B2

An electronic device and a program management method therefor are provided. The electronic device includes a communication interface, a memory, at least one processor, and a secure circuitry. The secure circuitry is configured to provide a first public key stored in the secure circuitry to the at least one processor. The at least one processor is configured to transmit the first public key to an external device and receive an encrypted secure program encrypted based on the first public key and a second public key generated by the external device, from the external device. The at least one processor is further configured to transmit the second public key and the encrypted secure program to the secure circuitry. The secure circuitry is configured to decrypt the encrypted secure program based on the second public key and a first private key which is symmetrical to the first public key.
US10735425B2

Systems, methods, and computer program products for an application to securely record and propagate an invocation context for invoking other applications are described. The applications being invoked not only receive a user's authentication token, but also authentication tokens of an entire invocation chain. Accordingly, the applications being invoked can verify a chain of custody through verification of nested, cryptographically signed payloads of a chain of authentication tokens. An application can thus verify identities of each application in the chain of custody, as well as the invocation contexts (e. g. the HTTP request method and path) in which each application in the chain invoked the next application.
US10735412B2

A second user can authorize a first user to take or complete an online action by submitting one or more biometric images. For example, the second user can authorize a purchase by the first user on an online store. The second user can submit the one or more biometric images on the electronic device being used by the first user, or the second user can submit the biometric image or images remotely using another electronic device.
US10735410B2

Systems and methods are provided for authenticating a user for access to a conference session by validating the user's location. The systems and methods may include receiving an image captured with an image-capturing device. The image may be of an object visible to a user from an authorized conference-session location. The image may be associated with the authorized conference-session location. The systems and methods may further include receiving location information indicating the authorized conference-session location, generating challenge questions based on the image, and designating one or more challenge questions for display to the user. The systems and methods may further include receiving a response to the designated challenge questions, validating the user's location based on the response, authenticating the user for access to a conference session based on the response, and granting the user access to the conference session based on the authentication.
US10735409B2

A communication adapter for authentication of a user includes a receiving unit for receiving encrypted credentials, a decryption unit for decrypting the encrypted credentials and an output unit for outputting the decrypted credentials to a terminal device.
US10735406B1

A method implemented on an electronic computing device for facilitating access to user information includes receiving from a user data to be made available for access on the electronic computing device. A time duration for which the data is permitted to be accessed is received from the user. Conditions to be met in order for one of a plurality of entities to access the data are received from the user. A request from an entity is received to access the data. A determination is made as to whether the entity satisfies the conditions. A determination is made as to whether a time at which the request is made is within the time duration. When the entity satisfies the conditions and when the request is made within the time duration, the entity is permitted to access the data.
US10735401B2

Examples of the present disclosure describe systems and methods of determining online identity reputation. In aspects, an online identity of an entity may engage in online interactions. The content provided by the online identity may be accessed and analyzed to determine interaction characteristics and reputation metrics for the online identity. Based on the reputation metrics, the online identity and/or entity (and content therefrom) may be filtered from further online interactions. In some aspects, interaction data may be stored in a data store. An interaction mapping component having access to the data store may analyze the data store data to determine mappings between online identities, entities and interactions. In at least one aspect, an opt-in certificate system may also be provided. The opt-in system may provide an online identity or entity a certificate to securely validate identity.
US10735398B1

Techniques are described for single or multi-factor authentication. An access request is received followed by a prompt for authentication data comprising a segment of a continuous rolling authentication code. Upon receipt of the segment of a continuous rolling authentication code, it is compared to another version of the continuous rolling authentication code generated by an algorithm and shared secret key known to both parties. The access request may be authenticated when the segment of the rolling authentication code received in response to the prompt for authentication data matches a segment the continuous rolling authentication code generated. Otherwise, it is rejected.
US10735394B2

A system provides cloud-based identity and access management. The system receives a request from a client for a resource, authenticates the request, and accesses a microservice based on the request. The system determines, by the microservice, whether the resource is cached in a near cache or in a remote cache, retrieves the resource from the near cache or from the remote cache when the resource is cached, and calls an administration microservice to obtain the resource when the resource is not cached. The system then provides the resource to the client.
US10735392B2

The disclosure relates to a method (20) for a serving device (3) of establishing a computational puzzle for use in communication between a client device (2) and the serving device (3). The method (20) comprises establishing (21), in the serving device (3), the computational puzzle (p) based on a key shared by the client device (2) and the serving device (3) and on a solution (s′, s″) to the computational puzzle (p). Further method (30) in a serving device is provided, methods (60, 70) for client devices (2), serving devices (3), client devices (2), computer programs and computer program products.
US10735391B2

This application discloses a method and device for sending and receiving instruction information. The method for sending instruction information includes: receiving first instruction information and/or operation description information of an operation corresponding to the first instruction information; if the first instruction information is received, temporarily storing the received first instruction information locally; and/or if the operation description information is received, transmitting the operation description information to a mobile terminal; acquiring a first differential signal that is output from a data transmission interface of the mobile terminal and carries the first instruction information and/or the second instruction information; and/or acquiring the first differential signal if a trigger signal sent by the receiving device is received; generating, according to the acquired first differential signal, a first transmission signal that carries the first instruction information, and sending the first transmission signal to the receiving device.
US10735388B2

For confining data to particular set of data servers based on a location restriction of the data, systems, apparatus, methods, and program products are disclosed. The apparatus may include a storage device for storing data, a processor, and a memory that stores code executable by the processor. In one embodiment, the processor identifies a location restriction of the data, encrypt. In another embodiment, the processor encrypts the data. In a further embodiment, the processor confines the data to particular set of data servers based on the location restriction.
US10735381B2

Making a determination of originality of content is disclosed. At least one originality factor related to the content is analyzed, wherein the originality factor is independent of a time when the content is detected. Based on the analysis of the at least one originality factor, automatically the determination is automatically made. The determination is outputted.
US10735380B2

Aspects of this disclosure relate to filtering network data transfers. In some variations, multiple packets may be received. A determination may be made that a portion of the packets have packet header field values corresponding to a packet filtering rule. Responsive to such a determination, an operator specified by the packet filtering rule may be applied to the portion of packets having the packet header field values corresponding to the packet filtering rule. A further determination may be made that one or more of the portion of the packets have one or more application header field values corresponding to one or more application header field criteria specified by the operator. Responsive to such a determination, at least one packet transformation function specified by the operator may be applied to the one or more of the portion of the packets.
US10735374B2

A method, an apparatus, and a system for detecting a terminal security status are provided. The method includes: receiving a file, and running the file, to generate a dynamic behavior result. The dynamic behavior result includes a behavior sequence that is generated according to a chronological order of occurrence of behaviors. When the file includes an APT, the security protection device obtains a stable behavior feature in the dynamic behavior result, generates a corresponding IOC according to the stable behavior feature, and sends the generated IOC to a terminal. The stable behavior feature is a behavior always existing in a behavior sequence that is generated each time after the file is run.
US10735371B2

A network management (NM) computing system generates a first work zone associated with a first remote network and a second work zone associated with a second remote network. Each work zone includes a respective virtual firewall and a respective virtual jump host. The NM computing system establishes a first and second communication path between the first virtual jump host and the first remote network via a multiprotocol layer switching network system, receives a data packet including a firewall identifier associated with the first virtual firewall and a local address associated with a destination device within the first remote network, routes the data packet through the first firewall to the first virtual jump host based on the firewall identifier, and transmits, by the first virtual jump host, the data packet to the first remote network using the first communication path and/or the second communication path.
US10735369B2

A service enables a command that refers to a file system object using a hierarchical namespace identifier to be executed against the file system object in a flat namespace. The service selectively distributes the command to one of a plurality of name resolution nodes based on a directory name included in the hierarchical namespace identifier. The identified node resolves the directory name to a flat namespace identifier that is used to execute the command against the flat namespace. After communicating with at least one storage node to resolve a directory name, each name resolution node stores a mapping of the directory name to the corresponding flat namespace identifier in a cache, so that subsequent resolutions of that directory name may be performed more efficiently. Cache entries may be invalidated when an operation occurs that impacts the relevant mapping and/or based on system considerations such as cache expiry.
US10735366B2

A method and an apparatus for providing a message notification service based on spatial information are disclosed. A method for providing a message notification service from a server may include: receiving current circumstance information from a user terminal; if there exists a notification condition matching the current circumstance information, then extracting the message corresponding to the notification condition that matches the current circumstance information; and transmitting the extracted message to the user terminal.
US10735361B2

A method of generating a digital media message includes receiving a script of the digital media message, receiving a digital video segment based on the script, determining text of the digital media message corresponding to at least a portion of the video segment, and providing the text via a display of an electronic device. The method also includes providing a plurality of images, each indicative of a respective digital content segment, and receiving first input indicating selection of a first digital content segment. The method further includes associating the first digital content segment with either a first portion or a second portion of the video segment, and associating the various portions and the first digital content segment with a play sequence of the digital media message such that the first digital content segment will be presented simultaneously with at least part of the first portion when the digital media message is played.
US10735358B1

A system and message for message selection and presentation, including: receiving a request for content, wherein the request is associated with a context account of a messaging platform; identifying a set of unviewed messages associated with the context account; identifying grouping criteria for grouping content based on messages; applying, by a computer processor, the grouping criteria to the unviewed messages to generate a content group, wherein the content group is associated with a subset of the unviewed messages; and providing at least a portion of the content group in response to the request.
US10735357B1

An apparatus includes a memory and a hardware processor. The hardware processor receives a first message from a first chat application and parses the first message to determine a plurality of words in the first message. The processor determines an intent of the first user and communicates a second message to the first chat application indicating the intent. The processor receives a third message confirming the intent and determines an action and an object. The processor determines a processing application and communicates a fourth message that includes the action and the object to the processing application. The processor receives a fifth message that indicates the results of performing the action on the object and communicates the fifth message to the first chat application. The processor receives a sixth message from a second, different chat application and communicates the sixth message to the first chat application.
US10735353B2

An improved handheld electronic device and an associated method are provided in which time data regarding certain aspects of a messaging conversation on a handheld electronic device are made available to a user. Such time data is provided, for instance, in situations where an interruption has occurred during a messaging conversation. Time data can also be provided to a user on demand in certain circumstances.
US10735345B2

An approach is provided for orchestrating computing resources between different computing environments. Data from first and second computing environments is monitored. The data specifies utilization of infrastructure, middleware, software testing tools, integrated development environments (IDEs), relationships among nodes, utilization of the nodes, and user behavior in the first and second computing environments. Based on the utilization of the infrastructure, middleware, tools, IDEs, node relationships and utilization, and user behavior, a pattern decision tree is updated, and unbalanced workloads are identified. Based on a comparison of the unbalanced workloads to patterns in the updated pattern decision tree, an orchestration topology is generated that specifies a new placement of the computing resources in the first and second computing environments. Based on the orchestration topology, computing resource(s) are automatically deployed in the first computing environment and other computing resource(s) are automatically deployed in the second computing environment.
US10735342B2

A method, computer program product, and system includes a processor(s) obtaining historical data related to buffer space usage of a common shared storage resource by a group of journals. The processor(s) monitors each journal over repeating temporal periods and determined a predictability for each journal (i.e., predictable or unpredictable. The processor(s) generates usage statistics for each journal during each monitored period dependent on whether the journal was predictable or unpredictable during the monitored period. For each monitored period, the processor(s) ranks predictable journals by a buffer space requirement for each journal of the predictable journals. Based on the rankings, the processor(s) determined a buffer space requirement for each journal for a current period, where the current period shares temporal qualities with the given monitored period. The processor(s) allocates, for use during the current period, based on the buffer space requirement, buffer space to each journal.
US10735336B2

Systems and methods for real-time message processing and control loop feedback are described. A stream processing system includes (i) a publish/subscribe and message queueing subsystem and (ii) an execution subsystem. A real-time stream of transactions is received at the publish/subscribe and message queueing subsystem. A job is created to aggregate data from the real-time stream of transactions with data from one or more other streams received at the publish/subscribe and messaging queueing subsystem. The job is executed at the execution subsystem, and the aggregated data resulting from the execution of the job is received at the publish/subscribe and message queueing subsystem. At least a portion of the aggregated data is provided as input to a control loop feedback process, which is executed to generate a result.
US10735335B2

Example implementations described herein are directed to a configurable Network on Chip (NoC) element that can be configured with a bypass that permits messages to pass through the NoC without entering the queue or arbitration. The configurable NoC element can also be configured to provide a protocol alongside the valid-ready protocol to facilitate valid-ready functionality across virtual channels.
US10735334B2

A data sending method is provided. The method includes: receiving, by a MAC entity of a sending device, a MAC SDU sent by a PDCP entity of the sending device by using a logical channel; multiplexing, by the MAC entity of the sending device, the MAC SDU to generate a first MAC data packet; segmenting or concatenating, by the MAC entity of the sending device, the first MAC data packet to generate a second MAC data packet; adding, by the MAC entity of the sending device, a MAC header to the second MAC data packet to generate a MAC PDU; and sending, by the MAC entity of the sending device, the MAC PDU to a MAC entity of a receiving device by using a physical entity of the sending device and a physical entity of the receiving device.
US10735324B2

A method for controlling congestion of traffic, by one of one or more User Terminals (UTs), traversing an intermediate node, the method comprising: associating one or more traffic flows of a priority to one of the one or more UTs; detecting a traffic congestion for the priority; performing Random Early Detection (RED) congestion control for the priority to relieve the traffic congestion; selecting, for the priority, a User Terminal (UT) with a perceived delay greater than a high threshold; and controlling, by priority, the traffic flows associated with the selected UT.
US10735318B2

A method and an apparatus for managing a data transmission channel includes obtaining a delay of data transmitted on a first channel and a continuity parameter of the first channel, and a delay of data transmitted on a second channel and a continuity parameter of the second channel; detecting whether a fault event occurs on the first channel; and switching a working channel of a source provider edge (PE) and a sink PE to the second channel when the fault event occurs on the first channel.
US10735299B2

Managing connections for execution of a client software application. A client software application is analyzed before execution of the application using code analysis and, optionally non-functional metadata analysis, of the application to determine one or more classifications of operations of the application. A mapping of application operation classifications to server characteristics suited to the application operation classifications is maintained. Multiple servers currently available to process at least a portion of the client software application may be monitored, and each of the multiple servers may be characterized according to their performance and resources. The classifications of operations of the analyzed application may be compared to the characteristics of the multiple servers currently available using the mapping, and a server may be selected based on the comparison.
US10735298B2

Methods, apparatus and systems for detecting and monitoring vital signs and other periodic motions of an object are disclosed. In one example, a system for monitoring object motion in a venue is disclosed. The system comprises a transmitter, a receiver, and a vital sign estimator. The transmitter is located at a first position in the venue and configured for transmitting a wireless signal through a wireless multipath channel impacted by a pseudo-periodic motion of an object in the venue. The receiver is located at a second position in the venue and configured for: receiving the wireless signal through the wireless multipath channel impacted by the pseudo-periodic motion of the object in the venue, and obtaining at least one time series of channel information (TSCI) of the wireless multipath channel based on the wireless signal. The vital sign estimator is configured for: determining that at least one portion of the at least one TSCI in a current sliding time window is associated with the pseudo-periodic motion of the object in the venue, and computing a current characteristics related to the pseudo-periodic motion of the object in the current sliding time window based on at least one of: the at least one portion of the at least one TSCI in the current sliding time window, at least one portion of the at least one TSCI in a past sliding time window, and a past characteristics related to the pseudo-periodic motion of the object in the past sliding time window.
US10735297B2

According to one general aspect, a method of using a first probing device may include monitoring one or more encrypted communications sessions between a first computing device and a second computing device. In some implementations of the method, each encrypted communications session includes transmitting a plurality of encrypted data objects between the first and second computing devices. The method may include deriving, by the first probing device, timing information regarding an encrypted communications session. The method may also include transmitting, from the first probing device to a second probing device, the derived timing information.
US10735290B2

A network device for processing various types of requests is proposed. The network device may store segment information of the various types of requests by using different registers, thereby the reliability of the subsequently generated response can be improved while increasing the efficiency of implementing the ARP/NDP offloading.
US10735286B2

Methods, systems, and computer program products are included for processing one or more buffers in a networking queue. An example method includes receiving one or more transmit requests or receive requests from a guest running on a virtual machine. The method also includes detecting that a networking backend has stopped processing buffers from a networking queue, each queued buffer corresponding to a transmit request or receive request. The method further includes in response to detecting that the networking backend has stopped processing buffers from the networking queue, flushing one or more buffers stored in the networking queue. A buffer corresponding to a receive request may be flushed by storing a set of dummy packets into the buffer. In contrast, a buffer corresponding to a transmit request may be flushed by discarding the buffer.
US10735284B2

A system, method and program product for managing a moving peer-to-peer network. A system is provided that a node tracking system that collects tracking information of nodes in a moving P2P network including position, connection status and computation capability; a network representation system that stores the tracking information in a dynamic graph that specifies nodes and connections between the nodes; a task manager for receiving a task submitted by a requesting node for a service implemented by a provider node; and a network allocation system that determines and allocates an optimal path back and forth between the requesting node and the provider node, wherein the optimal path is selected to minimize an overall wall-time, and wherein the network allocation system estimates future positions of moving nodes for determining the optimal path.
US10735244B2

A remote management agent apparatus for a remote management system is provided. The remote management system includes a remote device management apparatus and a management target device managed by the remote device management apparatus remotely. The remote management agent apparatus includes a request data receiver configured to receive request data issued from the remote device management apparatus to the management target device, a device agent apparatus identifying unit configured to identify a device agent apparatus capable of communicating in compliance with a communication mode supported by the management target device, and a request data forwarder configured to forward the request data, received by the request data receiver, to the device agent apparatus identified by the device agent apparatus identifying unit.
US10735233B2

The present application provides a method for determining a CP. A STA performs channel estimation, determines a CP value according to the result of channel estimation, and sends indication information to an AP, wherein the indication information is used for indicating the CP value, so that the AP may choose a suitable CP according to the indication information. Therefore, overhead may be reduced and system throughput may be optimized.
US10735223B2

Methods and systems are described for jointly processing multiple sectors in a wireless communication network. In one aspect, a first antenna serving a first sector is associated with a second antenna serving a second sector for joint processing. First and second antenna data is received. A plurality of wireless users associated with at least one of the first or second antenna data to model for channel estimation is determined, including an interfering wireless user connected via a third antenna serving a third sector not currently being jointly processed with the first or second antenna data. Channel estimates are determined for the plurality of wireless users. The first and second antenna data is jointly processed. Interference from the wireless user connected via a third antenna is suppressed based on a determined corresponding channel estimate for the wireless user and other received information for the wireless user.
US10735219B2

A communications network comprises a plurality of participants. A first participant transmits a message repeating sequence of N≥2 successive messages to a second participant. An action which can be performed by the second participant is assigned to each message in the sequence. The first participant begins to transmit one of the N messages at N successive transmission times T_I (I=O, . . . , N−1). Each of the N messages contains a field defining a waiting time.The second participant selects one message from among the messages in the sequence which are successfully received by the second participant as a useful message, measures a time elapsed since reception of the useful message, and performs the action assigned to the useful message when the elapsed time has reached the assigned waiting time.
US10735210B2

Some embodiments provide a non-transitory machine-readable medium that stores a program. The program transmits via a multicast communication protocol a message specifying a set of services offered by the device to a plurality of computing devices. The program further establishes a connection with a computing device in the plurality of computing devices. The program also receives, through the connection, a set of data for the set of services. The program further applies the set of services to the set of data.
US10735207B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing digital certificates. One of the methods includes: generating a digital certificate; generating a digital abstract of the digital certificate; transmitting the digital abstract of the digital certificate to one or more nodes of a blockchain for storage in the blockchain; obtaining a transaction identification associated with storing the digital abstract of the digital certificate in the blockchain; and associating a digital mark with the transaction identification.
US10735205B1

A system for implementing an anonymized attestation chain. The system includes a first device having a first hardware-generated secret and a first verification datum linked to the first hardware-generated secret. The first device is designed and configured to receive an originating signature from an originating device and an originating verification datum. The originating signature includes a secure proof of an originating device secret. The originating signature signs a message referencing the first verification datum, and the originating signature is verified by the originating verification datum. First device generates a first anonymized signature set. The first anonymized signature set includes a modified first verification datum, a modified originating signature, and a modified originating verification datum. First devices delegates the at least a credential to a second verification datum.
US10735201B1

System and methods for key printing may include a control panel operable to receive a mobile device identifier from a mobile device. A property management system in communication with the control panel may assign or allocate a room in a hotel to a guest. A lock server may be in communication with the property management system, the lock server may create a digital key. A virtual encoder may be in communication with the property management system and the lock server, the virtual encoder may transmit a room number, lock information, authorized zones, a start time, an expiration, and the digital key to the mobile device. A key printer may receive the digital key from the mobile device, authenticate the mobile device, and print a physical key based on the received digital key.
US10735198B1

Example embodiments of systems and methods for data delegation and control through the use of tokenized data are provided. In an exemplary method of data delegation and control, a data device may store private information associated with a user and generate an access token, comprising tokenized data identifying the data device. The data device may transmit the access token to a user device through a front channel and receive an information request from a merchant device comprising the access token through a secure back channel. Upon authenticating the access token, the data device may transmit a portion of the private information to the merchant device through the secure back channel.
US10735195B2

Example implementations may relate to a host and a storage system that communicate by a block storage protocol. For example, the host may embed host credentials in a data packet of the block storage protocol, and the data packet of host credentials may be cryptographically signed by a certificate authority trusted by a user of the host to generate a signed credential packet. The signed credential packet may be transmitted in a data path between the host and the storage system. The storage system may validate the signed credential packet using enrollment credentials and a certificate authority certificate and may authenticate the host to a logical unit.
US10735192B2

A method of managing a token and a server for performing the same are provided. According to the embodiments of the present disclosure, it is possible to easily authenticate a counterpart device using a one-time key HN(T) for a D2D communication between a first device and a second device, without using a separate secure channel (e.g., secure sockets layer (SSL), transport layer security (TLS), or the like) in an environment where it is difficult to synchronize the first device with the second device without intervention of a server.
US10735183B1

Features for providing a secure method of symmetric encryption for private smart contacts among multiple parties in a private peer-to-peer network. The features include a master key representing a unique blockchain ledger. The master key may be shared among multiple participants in a private peer-to-peer network. Sharing of the master key may include communicating the master key in an encrypted message (e.g., email) using public key infrastructure (PKI). In some implementations, more complex distribution features may be includes such as quantum entanglement. The features support instantiation of a smart contract using a specific master key. The request may be submitted as an entry to the ledger with appropriate metadata and/or payload information for identifying and processing the request.
US10735181B2

In a fully homomorphic encryption scheme, a method is provided for performing a homomorphic operation on a data set by applying an encrypted operand supplied as a ciphertext. A data set containing ‘i’ library vectors, each with ‘j’ coefficients is subjected to a pivot operation such that each set of common ‘j’ coefficients is stored in respective library ciphertexts. A query ciphertext containing a query vector is then subjected to a homomorphic pivot operation to separate out its ‘j’ coefficients into respective pivoted query ciphertexts. A more efficient homomorphic computation can then be carried out between the ciphertexts of the pivoted forms of the query and library vectors so as to compute an encrypted set of vector differences between the query vector and each of the library vectors.
US10735165B2

Devices and methods for transmitting information in resource blocks between a base station and one or more communication devices are disclosed. In each resource block (RB) used for a data or control channel transmission, a plurality of non-overlapping regions of resource elements (REs) are defined. Each region is associated with one or multiple unique reference symbols (RSs), and may be further associated with one or more antenna ports. When user equipment (UE) demodulates the information it receives in a particular region of an RB, it uses the RS and/or antenna port associated with that region. The RS and/or antenna port information may be used, for example, to estimate a channel of the communication network or to demodulate and decode the data contained within the associated regions.
US10735159B2

Embodiments of the present invention provide an uplink reference signal transmission method, a user terminal, and a base station. The uplink reference signal transmission method according to the present invention includes: determining an uplink reference signal position including at least one uplink reference signal symbol group, where each group includes at least one time unit; determining an uplink reference signal symbol group corresponding to a user terminal; and sending an uplink reference signal in a time unit of the uplink reference signal symbol group corresponding to the user terminal. The embodiments of the present invention can ensure an uplink capacity of a system.
US10735156B2

Methods, systems, and devices for wireless communication are described. A user equipment (UE) may indicate to a base station the number of uplink (UL) component carriers (CCs) that the UE is capable of supporting. A base station may configure the UE for carrier aggregation (CA) and for one or more auxiliary UL CCs. The CA configuration may include CCs for UL data transmissions and the auxiliary UL configuration may include CCs for UL reference signals or random access channel transmissions. The auxiliary UL CCs may thus be used for sounding reference signal (SRS) transmissions even if the UE is otherwise not configured for UL data transmissions on those CCs. UL data transmissions on the CA carriers may be sent at the same time as SRS transmissions or during different transmission time intervals (TTIs), depending on UE capability.
US10735154B2

Coding sub-channel selection involves, in an embodiment, determining, from sub-channels that are defined by a code and that have associated reliabilities for input bits at input bit positions, a first number of the sub-channels to carry bits that are to be encoded. A second number of the sub-channels, greater than the first number, are selected. The second number of sub-channels are selected to provide exactly the first number sub-channels to be available to carry the bits that are to be encoded.
US10735151B2

According to an embodiment of the present specification, a method for transmitting an uplink frame in a wireless local area network (WLAN) system and performed by a user station (STA) includes: receiving from an access point (AP) a trigger frame comprising association identifier information for orthogonal frequency division multiple access (OFDMA)-based random access and allocation information indicating a resource unit, wherein the association identifier information indicates any one of a first value irrelevant to whether being associated with the AP, a second value for a first STA group associated with the AP, and a third value for a second STA group un-associated with the AP; and performing a countdown operation according to the association identifier information based on a backoff value which is set in a backoff counter of the user STA in order to transmit the uplink frame.
US10735146B2

The present disclosure provides a method for feeding back hybrid automatic repeat request-acknowledgement (HARQ-ACK) information. In the method provided by the present disclosure, an evolved Node B (eNB) transmits Downlink Assignment (DL-GRANT) within a time-frequency bundling window, which corresponds to an uplink subframe feeding back HARQ-ACK. A UE receives DL-GRANT scheduling downlink HARQ transmission in the time-frequency bundling window corresponding to respective uplink subframe for feeding back HARQ-ACK in turn, obtains a DL DAI in the DL-GRANT, and determines a mapping value of each DL DAI; then, maps HARQ-ACK bits of the time-frequency bundling window corresponding to respective uplink subframe for feeding back the HARQ-ACK to corresponding bits of a feedback bit sequence according to the mapping value of the DL DAI; and transmits the HARQ-ACK on an available uplink carrier. The present disclosure also provides a method for feeding back HARQ-ACK information. The UE transmits HARQ-ACK on an indicated carrier according to indication information of a base station. According to the method and apparatus provided by the present disclosure, efficiency for feeding back the HARQ-ACK can be increased and downlink peak rate of the UE can be ensured.
US10735145B2

A method of supporting reception of standalone SERVICE ACCEPT message is proposed. In one embodiment, a new timer is started when the UE determines successful completion of the service request procedure and has not received SERVICE ACCEPT during the procedure. In an alternative embodiment, an existing timer T3417 or T3417ext can be used to define the allowed time window for the reception of SERVICE ACCEPT. While the timer is running, the UE can treat the SERVICE ACCEPT message as successfully received and the message does not cause protocol error.
US10735144B2

A method and system for use in an advanced wireless communication network is provided. The method comprises: providing, to a group of UEs, a resource multiplexing configuration defining resource multiplexing for cellular and non-cellular communication; and allocating resources to the group of UEs for cellular communication, according to the resource multiplexing configuration. Advantageously, the method enables collisions and interference between D2D and cellular transmissions to be reduced or avoided.
US10735143B2

Methods of transmitting and receiving a set of bits are provided. In the transmitting method, some of the bits are mapped to modulated symbol, and some of the bits map to a subset of transmission resources out of a first set of transmission resources. The modulated symbol is transmitted using the subset of transmission resources. At the receiver, a modulated symbol is received using a subset of transmission resources. Some bits are recovered by demodulating the demodulated symbol, and some of the bits are recovered based on the subset of transmission resources over which the modulated symbol was received.
US10735135B2

A transmitter of a communications system includes a first encoder configured to apply a shaping operation to a data signal to generate a shaped data signal, a second encoder configured to encode the shaped data signal according to a forward error correction (FEC) scheme to generate an encoded signal, and a constellation mapper configured to modulate the encoded signal to symbol values according to a modulation scheme to generate a corresponding symbol stream for transmission through the communications system. The shaping operation reduces average constellation energy for constellations of the modulation scheme.
US10735134B2

Methods, systems, and devices for wireless communication are described. In some examples, a wireless device (e.g., a user equipment (UE) or a base station) may encode a codeword from a set of information bits using an LDPC code. The wireless device may then transmit multiple versions of the codeword to improve the chances of the codeword being received. In some aspects, the wireless device may use the techniques herein to generate self-decodable redundancy versions of the codeword to be transmitted to the receiving device. Accordingly, a receiving device may be able to identify information bits from one or more redundancy versions of the codeword even if the receiving device failed to receive an original transmission of the codeword.
US10735133B2

A method in a transmitter station includes: generating payload data for transmission to a receiver station via a plurality of antennae of the transmitter station; selecting a number of transmit streams for transmission of the payload data; selecting respective modulation schemes for each of the transmit streams; according to the modulation schemes and to an active one of (i) a single-encoder mode and (ii) a per-stream encoder mode, generating the number of coded, modulated transmit streams; wherein each coded, modulated transmit stream contains a portion of the payload data; and providing the coded, modulated transmit streams to respective ones of the antennae for transmission to the receiver station.
US10735131B2

The present disclosure provides details of a system and method for detecting and monitoring a contraband device including communication devices and drones/UAVs by utilizing a combination of mobile devices, fixed monitoring devices, and a contraband monitoring center. The mobile devices include smart phones or tablets that are borrowed, rented, or purchased by an inmate from a correctional facility. These mobile devices are configured to detect, monitor, and intervene in the communications of target devices. Further, the mobile devices are configured to communicate with fixed monitoring devices located throughout the correctional facility in performing intervention operations. The contraband monitoring center may also be utilized in the coordination, monitoring, and intervention of target devices.
US10735126B1

A reconfigurable optical add/drop multiplexer (ROADM) complex in an optical network may include one or more core ROADM devices, each including multiple input/output port pairs configured for respective wavelengths or wavelength bands to be coupled to a fiber distribution panel (FDP) over fiber. The FDP may include multiple FDP connectors to receive optical signals from the core ROADM device(s) and may extract and route optical signals having a single wavelength to respective transponder connectors of the FDP for coupling to a transponder. Multiple expansion options may be enabled at the FDP. For example, according to one option, a single expansion connector may be enabled for coupling to an expansion device to provide additional drop port capacity. In another example, multiple expansion connectors may be enabled for coupling to respective expansion devices.
US10735124B2

Examples of a polarization independent optical device are described. One example polarization independent optical device includes an input/output preprocessing optical path and M add/drop optical paths. Any add/drop optical path can be configured to drop a first QTE and a first PTE that meet a resonance condition of a microring included in the add/drop optical path such that each add/drop optical path can be configured to drop a desired optical signal. Any add/drop optical path can also be configured to transmit an input optical signal to the input/output preprocessing optical path. Therefore, when any of the M add/drop optical paths is configured to drop a desired optical signal, another add/drop optical path can be configured to add a desired optical signal.
US10735121B2

Unified spatial operations for dynamic medium sharing is disclosed in which a non-priority transmitter detects a priority reservation reference signal (RRS) over a shared spectrum from a high-priority transmitter The shared spectrum is shared by the non-priority transmitter with at least one high-priority communication pair. The high-priority communication pair includes a high-priority transmitter and the high-priority receiver. After detecting the RRS, the non-priority transmitter generates a non-priority channel estimate for a first channel between the non-priority transmitter and a non-priority receiver and a priority channel estimate for a second channel between the non-priority transmitter and the priority receiver. The non-priority transmitter transmits data on the shared spectrum using a transmission precoder determined using the non-priority channel estimate and the priority channel estimate, wherein the transmission precoder aligns transmission of the data to minimize interference with the high-priority receiver.
US10735118B2

Systems and methods are provided for accessing broadcast media items and segments from non-broadcast sources. In response to detecting that a user has not finished listening to a broadcast segment (e.g., a radio segment), an electronic device can automatically identify and access an alternate, non-broadcast source for the same broadcast segment (e.g., a corresponding podcast episode). Using the electronic device, a user can play back the segment from the non-broadcast source, starting playback at the last position of the broadcast segment when the user stopped listening to the broadcast. In some embodiments, the electronic device can update library counts (e.g., play counts and new/not new tags) based on media items and segments played back as part of a media broadcast.
US10735106B2

Mobile devices with ultrasound ranging are disclosed. A mobile device with ultrasound ranging can include a multifunctional component capable of performing multiple functions in the device, where the component can function as an ultrasound transmitter capable of transmitting an ultrasound signal to a proximate device. In some examples, the component can also function as a power button capable of powering the device up and down. In some examples, the component can also function as a home button capable of causing a home page to display on the device. The mobile device can further include an ultrasound receiver capable of receiving an ultrasound signal from the proximate device, where the device can calculate a range of the proximate device based on a time lapse associated with the received ultrasound signal.
US10735105B2

In one embodiment, a method includes receiving power at an optical transceiver module at a remote network device on a cable delivering power and data from a central network device, operating the remote network device in a low voltage startup mode during fault sensing at the remote network device, transmitting on the cable, a data signal to the central network device, the data signal indicating an operating status based on the fault sensing, and receiving high voltage power from the central network device on the cable at the remote network device upon transmitting an indication of a safe operating status at the remote network device, wherein the remote network device is powered by the high voltage power. An apparatus is also disclosed herein.
US10735095B1

An integrated antenna distributed system incorporates various types of communication signals, such as mobile communication signals, public safety signals, WiFi signals, and other types of communication signals. Such a system uses a single reference signal to support MIMO and Massive MIMO functions using a single optical cable or a single fiber optic cable, and a signal from a remote location. The reference signal is used for frequency stability of remote units (RUs) connected to the head end (HE). For example, a reference signal is selected and sent from the HE to RUs, a bandwidth and frequency conversion of signals to be transmitted is specified and/or performed, a RU receives the converted signals and the reference signal from the HE, where the converted signals may be frequency or band-constrained, and the converted signals are converted at the RUs back to their original frequencies or bands.
US10735091B2

A multiplexer inserts a dummy signal light into a main signal. A light intensity monitor acquires the intensity of the light of each wavelength of a light output from a wavelength selective switch. A light source controller controls the insertion of the dummy signal light into the main signal, and release of the insertion. A difference calculator calculates the difference between a first light intensity that has been acquired in a state in which the dummy signal light is inserted into the main signal and a second light intensity that has been acquired in a state in which the dummy signal light is not inserted into the main signal. An insertion loss calculator calculates an insertion loss in the wavelength selective switch based on the calculated difference. An insertion loss controller controls the insertion loss in the wavelength selective switch based on the calculated insertion loss.
US10735072B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure describes methods for supporting uplink sub-band precoding for effective data transmission and reception, reporting a failure of channel state measurement of a terminal, and reporting a channel state according to multiple channel state information reference signal (CSI-RS) transmission.
US10735066B2

A method of a user equipment (UE) in a wireless communication system is provided. The method comprises identifying E-field data of each antenna of the UE to be used for transmitting and receiving data, generating, based on the E-field data, a set of codewords including a first and second upper bounds, the set of codewords corresponding to candidate beams of each antenna, selecting at least one codeword from the set of codewords based on a performance criteria, configuring a codebook to be used for each antenna by adding the at least one codeword into the codebook, determining whether the codebook including the at least one codeword satisfies a condition to stop adding another codeword to the codebook, and applying the configured codebook for use in transmitting or receiving the data at each antenna based on whether the condition is satisfied.
US10735059B2

Various aspects of the present disclosure generally relate to wireless communication. A first wireless communication device determines a co-phasing factor between at least two transmit beams transmitted by a second wireless communication device. The co-phasing factor is determined for generation of at least one co-phased beam by the second wireless communication device. The first wireless communication device transmits information to the second wireless communication device identifying the co-phasing factor. Numerous other aspects are provided.
US10735058B2

An objective problem of the invention is to provide a mechanism for improving the performance of a radio access network. According to a first aspect of the present invention, the object is achieved by a method in a first node for adapting a multi-antenna transmission to a second node over an effective channel. The first node and the second node are comprised in a wireless communication system. The method comprises the steps of obtaining at least one symbol stream and determining a precoding matrix having a block diagonal structure. The method comprises the further steps of precoding the at least one symbol stream with the determined precoding matrix, and transmitting the at least one precoded symbol stream over the effective channel to the second node.
US10735057B1

Aspects of the disclosure relate to a selection scheme implemented by a scheduler in a multiple-input multiple-output (MIMO) network to identify which users to schedule simultaneously during the same time slot. For uplink communications and a particular frequency wholeband or sub-band, the scheduler can obtain uplink channel information for channels between base stations and UEs. The scheduler can then determine a strength of the channels using the uplink channel information, order the UEs using a fairness metric based on the channel strengths, and compute one or more QR decompositions to identify whether a spatial dimension of a UE is roughly or approximately orthogonal to spatial dimension(s) of other UEs selected to be served during a time slot being scheduled. If the spatial dimensions are roughly or approximately orthogonal, the scheduler selects the UE to be served at the same time as other UEs already selected.
US10735053B2

A boosted near field communication device includes an electronic circuit, a transceiver circuit, an interface coupling the electronic circuit with a host controller, and a memory containing a first information about an activation characteristic of the electronic circuit. The transceiver circuit is configured to determine a timing requirement of a reading device based on one or more request signals, activate the electronic circuit with energy obtained at least one of from an electromagnetic field generated by the reading device or from a battery on receiving a request signal from the reading device, and ensure that after activating the electronic circuit, the electronic circuit can receive and process a request signal from the reading device corresponding to the determined timing requirement by using the determined timing requirement and the first information about an activation characteristic.
US10735050B2

A communication system performs wireless communication using electromagnetic field coupling between a transmission coupler and a reception coupler and moves at least one of the transmission coupler and the reception coupler so as to change the position in a predetermined direction of the reception coupler relative to the transmission coupler. In the communication system, the greater the distance between an overlap portion where the transmission coupler and the reception coupler overlap as viewed from a vertical direction to the predetermined direction and an input end of the transmission coupler is, the higher the degree of coupling between the transmission coupler and the reception coupler becomes.
US10735045B2

A diplexer circuit is provided. The diplexer circuit, which includes a pair of hybrid couplers and a filter circuit, can be configured to support dual-connect (DC) communications on a pair of signal bands separated by a narrower transition band (e.g., ≤200 MHz). In examples discussed herein, one of the signal bands is associated with a narrower fractional bandwidth (e.g., <13%) than the other signal band. In this regard, the filter circuit can be opportunistically configured to operate based on the narrower fractional bandwidth. By configuring the filter circuit to operate based on the narrower fractional bandwidth, it is possible to eliminate the need for supporting the wider fractional bandwidth in the diplexer circuit. As a result, it may be possible to implement the diplexer circuit using conventional filters to support DC communications on signal bands associated with a wider fractional bandwidth(s) and separated by a narrower transition band.
US10735044B2

An integrated front-end module (FEM) includes at least one power amplifier (PA) coupled to an antenna without inclusion of a switching element in a transmit signal path in the FEM between an output of the PA and the antenna. The FEM further includes at least one low-noise amplifier (LNA) and a switching circuit coupled in a receive signal path of the FEM between the antenna and an input of the LNA. The switching circuit is configured in a first mode to disable the PA and to connect the input of the LNA to the antenna for receiving signals from the antenna. The switching circuit is configured in a second mode to disconnect the input of the LNA from the antenna and to enable the PA for transmitting signals to the antenna.
US10735034B1

A wideband polar modulation transmitter includes a power amplifier (PA), a PA driver, a dynamic power supply (DPS), a PA driver VH controller, and a phase modulator. The phase modulator modulates a radio frequency (RF) carrier by an input phase modulating signal PM(t) to produce a phase modulated RF carrier. Meanwhile, the DPS produces a DPS voltage for the PA that follows an input amplitude modulating signal AM(t). Using the phase modulated RF carrier, the PA driver generates a PA drive signal VDRV for driving the PA. The PA drive signal VDRV has a high drive level VH and a low drive level VL. The PA driver VH controller is configured to control the magnitude of the high drive level VH so that it remains sufficiently high to force the PA to operate in a compressed mode (C-mode) most of the time but lowers the high drive level VH to force the PA to operate in a product mode (P-mode) during times low-magnitude events occur in the DPS voltage.
US10735031B2

A method and apparatus for obtaining data from a memory, estimating a probability of data values of the obtained data based on at least one of a source log-likelihood ratio and a channel log-likelihood ratio, wherein each bit in the obtained data has an associated log-likelihood ratio, determining at least one data pattern parameter for the data and performing a decoding process using the at least one data pattern parameters to determine a decoded data set.
US10735030B2

A technique includes determining that a given memory device of a plurality of memory devices has failed and in response to the determination that the given memory device has failed, re-encoding a data unit associated with the given memory device. The data unit is associated with a payload and a symbol-based error correction code. The re-encoding includes determining a bit-based error correction code for the payload and replacing the data unit in the memory with the payload and the bit-based error correction code.
US10735023B2

A matrix compression/decompression accelerator (MCA) system/method that coordinates lossless data compression (LDC) and lossless data decompression (LDD) transfers between an external data memory (EDM) and a local data memory (LDM) is disclosed. The system implements LDC using a 2D-to-1D transformation of 2D uncompressed data blocks (2DU) within LDM to generate 1D uncompressed data blocks (1DU). The 1DU is then compressed to generate a 1D compressed superblock (CSB) in LDM. This LDM CSB may then be written to EDM with a reduced number of EDM bus cycles. The system implements LDD using decompression of CSB data retrieved from EDM to generate a 1D decompressed data block (1DD) in LDM. A 1D-to-2D transformation is then applied to the LDM 1DD to generate a 2D decompressed data block (2DD) in LDM. This 2DD may then be operated on by a matrix compute engine (MCE) using a variety of function operators.
US10735021B2

A method for calibrating a multi-bit Delta-Sigma modulator is disclosed herein. The method includes at least one main multi-bit digital-analogue converter in a return loop for generating a return signal subtracted from an input of the modulator. The main converter includes a plurality of elementary source cells at least some of which, referred to as active cells, are associated with the various input bits of the converter for generating the return signal. The output level of these active source cells is adjustable under the action of a matching signal that comes from a calibration circuit receiving an output signal from the modulator at its input. The calibration circuit includes a generator of a calibration sequence.
US10735017B2

A successive approximation register (SAR) analog to digital converter (ADC) is disclosed. The SAR ADC includes: a DAC, configured to receive an analog input voltage and a digital input word, and to generate a first voltage. The SAR ADC also includes a comparator, configured to generate a second voltage based on the first voltage and a reference voltage. The second voltage has a value corresponding with a sign of the difference between the first voltage and the reference voltage. The SAR ADC also includes an SAR logic circuit configured to receive the second voltage from the comparator, and to generate the digital input word for the DAC. The SAR logic is further configured to generate a digital output word representing the value of the analog input voltage, where the digital output word of the SAR logic has a greater number of bits than the digital input word of the DAC.
US10735016B2

A D/A conversion circuit includes: an output terminal connected to an operational amplifier connected to a quantization circuit; a DAC capacitor; a selection switch switching among reference, first and second voltages to apply to the DAC capacitor as an analog potential; a ground switch connecting the DAC capacitor to a ground; and an output switch connecting the DAC capacitor to the output terminal. In a first period, the selection switch selects one of the reference, first and second voltages according to a quantization result value from the quantization circuit, and connects the one to the DAC capacitor, and the ground switch turns on to charge the DAC capacitor. In a second period, the selection switch selects another one of the first and second voltages, and connects the another one to the DAC capacitor, and the output switch turns on to output the analog potential to the output terminal.
US10735014B2

An error compensation correction device for a pipeline analog-to-digital converter includes a correction pipeline stage and a conventional pipeline stage. For each correction pipeline stage, a corresponding error estimation circuit, a level edge detection circuit, a random level generation circuit, and MUX circuit being provided. The present disclosure can track and correct non-ideal properties and mismatching errors in real time over time along with the change of the surroundings without interrupting the ADC normal work of the pipeline. Thus the correction value is closer to the real situation.
US10735012B2

A digitally controlled oscillator comprising a filtering digital to analogue converter, DAC, component and a voltage controlled oscillator, VCO, component comprising at least one control terminal arranged to receive a control voltage output by the DAC component; wherein the DAC component comprises a voltage generation component arranged to generate the control voltage and at least one configurable capacitive load component to which the control voltage is applied such that a filtering bandwidth of the DAC component is configurable by way of the at least one configurable capacitive load component.
US10735002B2

A programmable semiconductor device capable of being selectively programmed to perform one or more logic functions includes a first region, second region, first regional power control (“RPC”), and second-to-first power control connection. The first region, in one embodiment, contains first configurable logic blocks (“CLBs”) able to be selectively programmed to perform a first logic function. The second region includes a group of second CLBs configured to be selectively programmed to perform a second logic function. The first RPC port or inter-chip port which is coupled between the first and second regions facilitates dynamic power supply to the first region in response to the data in the second region. The second-to-first power control connection is used to allow the second region to facilitate and/or control power to the first region.
US10735000B1

A disclosed pre-driver includes multiple signal generation stages and a switching bias circuit with a first switch and a second switch. The first switch and primary inverters in each of the stages all receive the same input signal. When the input signal transitions, the first switch turns on the bias circuit to supply a bias voltage to each of the stages. However, the primary inverters do not concurrently turn on. Instead, due to the bias voltage and some additional circuitry within each stage, the primary inverters turn on in sequence and slowly, thereby ensuring that pre-driver signals generated and output by the different stages, respectively, transition in sequence and at a relatively slow rate. Once the last pre-driver signal transitions, the second switch turns off the switching bias circuit. Optionally, a selected one of multiple bias voltages could be used in order to tune delay and transition times.
US10734991B1

A voltage switching device, an integrated circuit device, and a voltage switching method are provided. The voltage switching device includes a reference voltage generator generating a first reference voltage and a second reference voltage, a fuse system coupled to a circuit device, and a switch circuit coupled to the reference voltage generator, the fuse system, and the circuit device. The fuse system generates a first enable signal and a second enable signal according to an input signal from a circuit device. The switch circuit transmits the first reference voltage or the second reference voltage to the circuit device according to the first enable signal and the second enable signal from the fuse system.
US10734990B2

A current detection circuit (4) detects a device current flowing in the semiconductor device (1). A voltage detection circuit (5) detects a device voltage applied to the semiconductor device (1). A temperature calculation device (6) has a table collecting device temperatures of the semiconductor device (1) respectively corresponding to plural collector currents and plural collector voltages, and reads out a device temperature corresponding to the device current detected by the current detection circuit (4) and the device voltage detected by the voltage detection circuit (5) from the table.
US10734983B1

A method and apparatus for performing duty cycle correction with read/write calibrations is disclosed. A first calibration is performed in a memory subsystem having a memory and a memory controller. The first calibration includes conveying a first clock signal from the memory controller to the memory, and determining the duty cycle of the first clock signal. If the duty cycle is not within a specified range, the duty cycle is adjusted and the process repeated. After the duty cycle of the first clock signal is within the specified range, a second calibration is performed, the second calibration including conveying a second clock signal from the memory to the memory controller. The duty cycle of the first clock signal may be further adjusted based on the second calibration.
US10734977B1

In one form, an analog-to-digital converter (ADC) includes first and second ring-oscillator ADCs, a modulus subtractor, and a decimation filter. The first and second ring-oscillator ADCs are responsive to true and complement input voltages, respectively, have outputs for providing first and second digital phase signals, respectively, each having a first predetermined number of bits sampled at a first frequency. The modulus subtractor subtracts the second digital phase signal from the first digital phase signal to provide a phase difference signal. The decimation filter differentiates the phase difference signal at a second frequency lower than said the frequency to provide a frequency signal proportional to a differential voltage between the true input voltage and the complementary input voltage, and decimates the frequency signal to provide a digital code having a second predetermined number of bits greater than the first predetermined number of bits.
US10734976B2

A driving circuit for driving a power switch. The driving circuit and the power switch are collaboratively defined as an equivalent circuit. The equivalent circuit includes a first equivalent capacitor corresponding to an input capacitor of the power switch, an equivalent inductor, and a second equivalent capacitor corresponding to a parasitic parameter of at least one driving switch. In the charging procedure or the discharging of the first equivalent capacitor, a change amount of charges in the first equivalent capacitor while a voltage of the input capacitor is changed from a voltage corresponding to no inductor current to a set voltage is larger than or equal to a change amount of charges in the second equivalent capacitor while the voltage of the input capacitor is changed from the voltage corresponding to no inductor current to a steady voltage.
US10734975B1

A current-controlled oscillator receives an input current. Ramp voltage generating circuitry generates first and second ramp voltages in response to the input current. Selecting circuitry selects one of the first and second ramp voltages depending on their relative values. Switching circuitry receives a selected ramp voltage, generates a signal based on the selected ramp voltage relative to a reference voltage, and outputs a clock signal. In one embodiment, a comparator receives the reference voltage, one of the first and second ramp voltages, and outputs a comparison signal. Logic circuitry controls the ramp voltage generating circuitry to output one of the ramp voltages during one half of a clock cycle and to output the other ramp voltage during another half cycle of the clock signal based on the comparison signal and logic states of the logic circuitry.
US10734962B2

Provided are, among other things, systems, methods and techniques for loudness-based audio-signal compensation. According to one such system, an input line accepts an input audio signal; a loudness estimator, coupled to the input line, processes the input audio signal to obtain an audio playback loudness level and also provides a production loudness level for the input audio signal; and a filter generator/selector coupled to an output of the loudness estimator provides an audio compensation filter based on the production loudness level and the audio playback loudness level. The input signal is processed by the audio compensation filter to provide an output signal.
US10734950B2

Embodiments of this disclosure provide a phase noise compensation apparatus and method and a receiver, in which modified signals are determined according to estimated values of an imperfection parameter of a transmitter and training sequence signals in transmission signals, and phase noises of the received signals are determined according to the modified signals, hence, an effect of the imperfection parameter of the transmitter on the phase noise is taken into account, and the phase noise may be accurately estimated, thereby performing compensation on the phase noise, and ensuring a transmission efficiency and performance of the system.
US10734936B2

A motor control device includes: a noise reduction unit that sets a PWM count in units of PWM cycles for each PWM cycle in a current control cycle such that a current that flows through a frame ground because of a phase voltage for any one of three phases is canceled out with a current that flows through the frame ground because of a phase voltage for one of the two other phases in each PWM cycle in the current control cycle; and a noise canceling circuit configured to generate a current that is opposite in phase to a current that flows through the frame ground because of a phase voltage for the other of the two other phases in each PWM cycle in the current control cycle.
US10734930B2

An electric power generation system and a method in an electric power generation system. The system comprising one or more generators for producing electrical energy, each generator being arranged to be driven with a corresponding prime mover, wherein the generators are multiphase AC generators adapted to generate a multiphase voltage having a frequency and an amplitude, the phase outputs of the generators are connectable to a common multiphase bus for distributing the electrical energy generated by the AC generators, the system comprises further means for providing independent reference values for a rotational speed of the prime movers and for amplitude of the multiphase voltage, the rotational speed of the prime movers defining the frequency of the multiphase voltage, and the system is adapted to operate in at least three operation points on the basis of the provided independent reference values, an operation point being defined by a ratio of the amplitude of the multiphase voltage to the frequency of the multiphase voltage, wherein the at least three operation points are different.
US10734927B2

A sort buffer includes a phase sector determination circuit, a phase sector update circuit, and a phase sector completion circuit. The phase sector determination circuit is configured to determine a phase sector corresponding to a phase of a first sine and cosine sample pair received from an encoder or resolver. The phase sector update circuit is configured to determine whether a second sine and cosine sample pair corresponding to the phase sector is stored in a lookup table (LUT) and, in response to a determination that a second sine and cosine sample pair corresponding to the phase sector is not stored in the LUT, store the first sine and cosine sample pair in the LUT. The phase sector completion circuit is configured to determine whether the LUT has stored, for each of a plurality of phase sectors, a corresponding sine and cosine sample pair.
US10734925B2

A regenerative drive (30) and method for providing power from such to at least one auxiliary power supply (41, 43) is disclosed. The drive may include a converter (32) and an inverter (34) connected by a DC bus (33), and a controller (54) configured to apply at least one of unipolar modulation and bipolar modulation to the converter (32) and the inverter (34), and to provide about half of the output voltage across the upper portion (130) of the DC bus (33) and about half of the output voltage across the lower portion (136) of the DC bus (33), when the upper and lower portions (130, 136) of the DC bus (33) are unevenly loaded. A first auxiliary power supply (41) may be connected to one of the upper and lower portions (130, 136) of the DC bus (33) and may receive power from the multilevel regenerative drive (30).
US10734911B2

Power module includes: first transistors Q1, Q4 forming at least one half bridge, and disposed at upper and lower arms thereof; second transistors QM1, QM4 of which drains are respectively connected to gates G1 and G4 sides of the first transistors, and sources are respectively connected to the sources S1, S4 sides thereof; source signal wiring patterns SSP1, SSP4 respectively connected to the sources S1, S4 of the first transistors; first connected conductors MSW1, MSW4 for respectively connecting between the source signal wiring patterns and the sources of the second transistors; second gate signal wiring patterns MGP1, MGP4 respectively connected to gates MG1, MG4 of the second transistors; and second connected conductors MGW1, MGW4 for respectively connecting between the gate signal wiring patterns and the gates of the second transistors. Lengths of the first connection conductors are respectively equal to or shorter than lengths of the second connection conductors.
US10734906B2

A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
US10734904B2

A multiphase DC-DC converter includes a coupled inductor, N phases of the multiphase DC-DC converter, and a controller, where N is an integer greater than 2. The coupled inductor includes a plurality of inductors. Each inductor is coupled to two neighboring inductors or to rest of the inductors. The N phases of the multiphase DC-DC converter are respectively connected to the plurality of inductors. The controller operates the multiphase DC-DC converter in continuous conduction mode and in discontinuous conduction mode. Body diodes of switches in the N phases do not conduct when the multiphase DC-DC converter operates in discontinuous conduction mode.
US10734898B1

A multi-level switching power converter includes a string of N upper transistors and a string of N lower transistors, where N is an integer greater than one. The N upper transistors are electrically coupled in series between a first power node and a switching node, and the N lower transistors are electrically coupled in series between the switching node and a reference node. The multi-level switching power converter further includes N−1 flying capacitors, an inductor, a bypass transistor, and a controller. The bypass transistor is electrically coupled between the switching node and the reference node. The controller is configured to (a) control switching of the N upper transistors and the N lower transistors and (b) cause the bypass transistor to operate in its on state in response to all of the N lower transistors operating in their respective on states.
US10734888B1

A power factor corrector circuit and a method of operating the power factor corrector circuit can include a power factor corrector, wherein two or more input variables can be defined for the power factor corrector including a peak current and an input current. A processor can select corresponding variables in the power factor corrector with respect to the two or more input variables defined for the power factor corrector, and the corresponding variables can include a peak current and an input current. The corresponding variables in the power factor corrector can adapt to the two or more input variables to allow the power factor corrector to operate in a conduction mode.
US10734885B2

A method may include controlling switching behavior of switches of a switch-mode power supply based on a desired physical quantity associated with the switch-mode power supply, wherein the desired physical quantity is based at least in part on a slope compensation signal, generating the slope compensation signal to have a compensation value of approximately zero as seen by a compensation control loop of the switch-mode power supply, and modifying the slope compensation signal on successive switching cycles of the switch-mode power supply to account for differences in an output of the compensation control loop and an average current of an inductor of the switch-mode power supply in at least one phase of a switching period of a switching cycle of the switch-mode power supply.
US10734883B2

A momentary-voltage-drop compensation apparatus interconnecting a power system and a DC power supply to a load. The apparatus includes a system interconnection switch connected between the power system and the load, a first power converter that performs DC-AC conversion to DC power of the DC power supply, a second power converter that includes a first terminal connected to the first power converter and the DC power supply, and a second terminal connected between the system interconnection switch and the power system, for performing AC-DC conversion to the AC power supplied from the power system, and a control unit that is connected to the first power converter, and is configured to control, in response to a voltage drop in the power system, the first power converter to output a zero-phase current, a current value of which is no larger than that of a current flowing through the system interconnection switch.
US10734870B2

The heat pipes 9a provided here in the grooves 9 of the motor side conduct heat to the end of the output shaft 2 and the heat pipes 10a in the grooves 10 of the housing of the power supply to the opposite end. A flow of heat to axially opposing ends is thus produced that always travels away from the power electronics that are arranged approximately in the center of the system.
US10734866B2

A rotating electric machine includes a rotor including a rotor core fixed to a shaft, respectively, an end plate provided between the rotor core and a front-side end plate for preventing scattering of a magnet, and an end plate formed in a bowl shape. A passage including a hole penetrating the rotor core and a hole connecting the shaft to the end plate and the bowl-shaped end plate is provided, liquid refrigerant is supplied through the passage, and the liquid refrigerant discharged from the passage is scattered by rotation along an inner peripheral surface of the bowl-shaped end plate so as to reach a space between a coil end surface of a stator and an end surface of an insulator supporting a coil of the stator.
US10734855B2

Disclosed herein are a rotor and a method of manufacturing the rotor. The rotor includes a rotor assembly including magnets and rotor cores, and a molding unit including a first molding unit disposed by being firstly injection molded to support the rotor assembly before the magnets are magnetized and a second molding unit disposed by being secondly injection molded to support the rotor assembly after the magnets are magnetized.
US10734852B2

A motor includes a stator, a rotor and a case. The rotor includes a first rotor core, a second rotor core, and a field magnet. Each of the first rotor core and the second rotor core includes a core base and a plurality of claw poles. The field magnet is located between the core bases. The case includes a cylindrical yoke housing and a lid. To balance magnetic flux from the first rotor core with magnetic flux from the second rotor core, the distance between the rotor and the stator is varied from the distance between the rotor and the yoke housing or the teeth of the stator are shaped to enable magnetic saturation.
US10734848B2

Magnetic cores and method and fixtures for forming the same are disclosed. The magnetic core may comprise a magnetic body including magnetic grains and a magnetic flux path, the magnetic grains aligned in a plurality of distinct directional alignments to conform to the magnetic flux path. The grain orientation of the cores may be provided by fixtures including electrical circuits and/or permanent magnets. The fixtures may be configured to produce magnetic fields that approximate, mimic, or correspond to a magnetic flux path in the magnetic core, once it is consolidated and in use. The magnetic fields may orient the grains of the magnetic core when they are in an unconsolidated state, such that the grains are aligned in a plurality of directional alignments that approximate, mimic, or correspond to a magnetic flux path in the magnetic core.
US10734847B2

A wireless power system may have a wireless power transmitting device and a wireless power receiving device. The wireless power receiving device may have a receive coil that receives wireless power signals from the wireless power transmitting device and may have a rectifier that produces direct-current power from the received wireless power signals. The wireless power transmitting device may have an array of transmit coils. Each transmit coil has a respective magnetic coupling coefficient characterizing its magnetic coupling with the receive coil. The wireless power transmitting device may have control circuitry that uses the magnetic coupling coefficient values in selecting transmit coils to use in transmitting wireless power to the wireless power receiving device.
US10734837B2

A power distribution grid for a facility, such as a data center, is located within the facility. The power distribution grid includes a plurality of power transport elements arranged in a grid pattern and nodes located at intersections of the grid pattern. Electrical loads are supplied power via respective nodes of the power distribution grid. Also, each node is supplied power from more than two transport elements, such that one or more transport elements can fail and electrical loads connected to a particular node associated with the failed transport elements continue to receive electrical power supplied to the particular node from at least two different transport elements.
US10734836B2

A system may include a light source. A converter may be configured to convert an AC voltage to a DC operating voltage during normal operation. A power backup device may be coupled to the converter. A current source may have a first terminal configured to receive the DC operating voltage during regular operation and a second terminal configured to provide a pulse-width modulated (PWM) signal to an anode end of the light source. A switching device may have a first connecting terminal coupled to the anode end of the light source, a second connecting terminal coupled to the power backup device, and a control terminal coupled to the converter. The switching device may be configured to open a switch between the first connecting terminal and the second connecting terminal during normal operation and close the switch upon detecting an interruption of the DC operating voltage at the control terminal.
US10734829B2

There is provided an electronic apparatus including: a heating section; a heat storage section; a detection section configured to detect a heat storage amount of the heat storage section; and a control section configured to control operation of the heating section, based on the heat storage amount detected by the detection section.
US10734817B2

A system and method of wireless power transfer using a power converter with a bypass mode includes a power converter. The power converter includes a pulsed switch, a capacitor configured to supply a drive voltage to the pulsed switch, a first circuit configured to charge the capacitor when the power converter operates in a switched mode of operation, and, a second circuit configured to charge the capacitor when the power converter operates in a bypass mode of operation.
US10734813B2

The present invention discloses a triple input smart power supply module capable to work with solar power, utility power or battery to empower the desktop PC and any other gadgets where final power source is DC, to stand brown outs and black outs reliably and saving 58 to 65% of power and much more when connected with solar panel. For PC application it comprises of 10-16V DC-DC ATX PC power supplies, 15V DC power supply from 230V AC using PFC techniques, switching rectifier circuits, a solar panel within the range 50-80 Wp, 12V SMF battery, a current limited charger circuit and a monitor working on 12V DC. The invention will be a revolutionary and path breaking venture in the production and use of “Green PCs”. Scope of TRISP is not limited to PCs and it can be extended to any gadget requiring steady and clean input power with a backup facility, where final input power source is DC.
US10734798B2

A circuit includes a first regulation module, second regulation module, first monitoring module, and second monitoring module. The first regulation module is configured to generate, from a supply voltage, a first voltage. The second regulation module is configured to generate, from a first voltage, a second voltage that is less than the first voltage. The first monitoring module is configured to generate a first warning signal when the first voltage exceeds a first threshold and to generate the first warning signal when a first testing voltage exceeds the first threshold. The second monitoring module is configured to generate a second warning signal when the second voltage exceeds a second threshold and to generate the second warning signal when a second testing voltage exceeds the second threshold.
US10734793B2

The invention relates to a system for laying underground cables or underground lines in the ground near the surface, in a borehole (102) along a laying route (101) between a start point (100) and a target point (110), comprising a boring device (10) comprising an advancing head (12) for creating the borehole (102), a drilling rod (11) and/or a casing (14), wherein the diameter of the advancing head (12) is greater than the diameter of the casing (14) or of the drilling rod (11), so that an annular space (121) is formed between the borehole wall (102) and the casing (14) or the drilling rod (11) and the annular space (121) is provided with lubrication and wherein the advancing head (12) relates to a displacement drilling head (15, 16, 41) or a drilling head system (18) comprising a drilling tool (19) and a drilling tool drive (22) for loosening the ground.
US10734792B2

The present invention relates to a bus conductor connection structure for electric field relaxation. The bus conductor connection structure for electric field relaxation includes: an enclosure filled with an inert gas; spacers coupled to two side end portions of the enclosure in a facing contact manner and having connection conductors; conductors provided with predetermined intervals being maintained inside the enclosure; and coupling portions formed in end portions of the conductors, wherein the coupling portion is coupled to the connection conductor in a close contact manner with bolts. Accordingly, the bus conductor connection structure for electric field relaxation is allowed to simply fixing conductors and assembling bolts of a gas insulated bus and to reduce a size of the bus by shortening an insulation distance between the bus and the ground by using a shape and arrangement for electric field relaxation.
US10734787B2

Embodiments of the disclosure are directed to a lateral current injection electro-optical device. The device comprises an active region with a stack of III-V semiconductor gain materials stacked along a stacking direction z. The active region may be formed as a slab having several lateral surface portions, each extending parallel to the stacking direction z. The device further comprises two paired elements, which include: a pair of doped layers of III-V semiconductor materials (an n-doped layer and a p-doped layer); and a pair of lateral waveguide cores. The two paired elements may be laterally arranged, two-by-two, on opposite sides of the slab. The elements distinctly adjoin respective ones of the lateral surface portions of the slab, so as for these elements to be separated from each other by the slab. The disclosure may be further directed to related silicon photonics devices and fabrication methods.
US10734785B2

An apparatus, comprising: a silicon substrate; and a quantum dot laser comprising: a base layer of a III-V semiconductor material, bonded with the silicon substrate; and at least one layer grown epitaxially from the base layer, wherein the at least one layer comprises a quantum dot layer. The apparatus further comprises a photonic element, fabricated on the silicon substrate and including a waveguide optically aligned with the quantum dot layer.
US10734784B2

A semiconductor laser device includes: a housing including: a recess, and a plurality of wiring parts disposed inside the recess; a submount including: a first main surface fixed to a lower upward-facing surface of the recess, and a second main surface opposite to a first main surface, wherein, in a plan view of the semiconductor laser device, the submount is disposed between the first upper upward-facing surface and a second upper upward-facing surface of the recess; a semiconductor laser element; a light reflecting member; a first wire; and a second wire.
US10734782B2

A higher-order-mode (HOM) fiber of a fiber laser has step index and guidance diameter (GD) defining wavelength-dependent dispersion characteristics and effective areas for corresponding HOMS of optical signal propagation. One HOM has anomalous dispersion and effective area defining a first wavelength and first power of a pulse optical signal for conversion to a second wavelength and second power by soliton self-frequency shifting (SSFS). By controlling step index and GD, the dispersion and effective area of a HOM are adjusted to bring the second wavelength into a desired range, enabling applications requiring non-conventional fiber laser wavelengths. HOMS may share a predetermined group index and group velocity at wavelengths established by a Raman gain peak to effect wavelength conversion by interpulse and intermodal Raman scattering, which may occur in a cascaded fashion to yield multicolor lasers with desired wavelengths, pulse energies and pulse widths.
US10734778B2

Apparatus and method establish quantum oscillations at room temperature. A cavity has therein a resonator structure that includes a resonant element and a gain medium. A species of the gain medium has an electronic spin multiplicity capable of supporting a two-level spin system. An optical pump pumps the resonator structure and thereby generates microwave output power through stimulated emission of thermal photons. The species of the gain medium is of a sufficiently high concentration such as to have an ensemble spin-photon coupling rate which exceeds both the cavity mode decay rate and the spin-spin decoherence rate. The optical pump pumps the resonator structure using a short pulse of nanosecond duration, or a burst of approximately a millisecond in duration at relatively low instantaneous optical power, to excite said species of the gain medium into a spin-polarized two-level system that exhibits quantum oscillations in the microwave output power.
US10734774B2

The present application provides a wiring harness device a display device. A wiring harness device applied to a wire connected between two interfaces comprises: a wiring harness structure having a first wire inlet and a first wire outlet, the wire entering the wiring harness structure through the first wire inlet and exiting the wiring harness structure through the first outlet, the wiring harness structure configured to store and provide the wire, the wire being controlled to be in a relaxed state upon provision through stretching the wire.
US10734772B2

A multifunctional socket comprises a main socket module (5) and at least two functional device modules. The functional device modules and the main socket module (5) can be assembled in any manner. At least one of the functional device modules is detachably connected to the main socket module (5). Adjacent functional device modules are detachably connected. At least one of the functional device modules and the main socket module (5) are electrically connected. The adjacent functional device modules are electrically connected. The multifunctional socket enables at least two functional device modules to be integrated into a single device, such that a user can use the components separately or combine the same in any fashion, thereby meeting the needs of the user.
US10734769B2

A safety electrical power connector can include a first connector body having a first electrical contact and an outer surface, and a second connector body that engages the first connector body in an axial direction. The second connector body can have a second electrical contact and an inner surface configured to slide relative to the outer surface of the first connector body in the axial direction during engagement of the first and second connector bodies. The outer surface and the inner surface can define a gap therebetween sufficient to establish an isolation enclosure that isolates a volume containing the first and second electrical contacts therein. The gap can be formed prior to electrical communication of the first and second electrical contacts thereby preventing an explosion due to arcing between the first and second electrical contacts.
US10734768B2

A data communication cable assembly including a cable with wire and/or optical fiber communication mediums for transmitting data signals and/or power signals, and connectors for connecting to a pair of devices, respectively. Each of the connector includes a connector plug or receptacle configured to mate with a corresponding receptacle or plug of a device, wherein the connector plug or receptacle includes a set of electrical contacts configured to send and/or receive the data signals and/or power signals to and/or from the device; a metallic shell defining an enclosure and including first and second openings, wherein the connector plug or receptacle mate is configured to mate with the corresponding receptacle or plug of the device via the first opening, and wherein the cable extends from inside to outside of the enclosure via the second opening; and electrically-conductive filler material configured to reduce electromagnetic leakage via the first and second openings.
US10734753B1

Technologies are described for devices and methods to splice two contacts of a cable. The assemblies may comprise a first and second sealing boot each configured to slide onto and form a seal to the cable. The assemblies may comprise a pin contact and a socket contact. A first side of the pin contact may be configured to receive wires from the cable. A second side of the pin contact may be configured to mate with the socket contact. A first side of the socket contact may be configured to receive wires from the cable. A second side of the socket contact may be configured to mate with the pin contact. The assemblies may comprise a housing with a tube shaped body and a grommet at a first and second end. Each grommet may be configured to form a seal to the first sealing boot or the second sealing boot.
US10734752B2

A grommet 2 for sealing a cable 4 in a cable bushing 3. The grommet comprises a sleeve body 6, wherein the sleeve body 6 has an inner sealing lip 14 for sealing the cable 4 in the sleeve body 6 and an outer sealing lip 12 for sealing the sleeve body 6 in the cable bushing 3, wherein the sleeve body 6 comprises at least two body parts 7, 7a, 7b, wherein the sleeve body 6 has a detached state and an aligned state, whereby in the detached state the at least two body parts 7, 7a, 7b are detached to insert the cable 4, whereby in the aligned state the at least two body parts 7, 7a, 7b are aligned to form the inner sealing lip 14 and the outer sealing lip 12.
US10734749B2

A plurality of module housings extending in a lateral direction and arranged in a longitudinal direction orthogonal to the lateral direction, and terminals attached to the module housings are included. The terminals each include a pair of contact parts respectively projecting upward above an upper surface and downward below a lower surface of each of the module housings, and a first direction conversion mechanism configured to convert at least some of displacement and a force received by the pair of contact parts in an upper-lower direction orthogonal to the lateral direction and the longitudinal direction into displacement and a force in the longitudinal direction. The module housings each include a second direction conversion mechanism configured to convert at least some of displacement and a force received from each of the terminals in the longitudinal direction into displacement and a force in the upper-lower direction.
US10734747B2

A power interface, a mobile terminal, and an electronic device are disclosed. The power interface includes a housing and a connection body. The housing includes a perimeter wall defining an opening. The connection body is disposed in the housing, one end of the connection body extends out of the housing from the opening, and located outside the housing. The perimeter wall comprises a pair of arc sections located at two ends of the perimeter wall and spaced apart from each other in a length direction.
US10734746B2

A terminal structure in which a groove extending in a predetermined direction is provided in a contact target section with which a tip portion of a contact pin comes in contact, and the tip portion slides on an edge of the groove along the groove by a pressing force occurred when the tip portion is butted against the contact target section so as to come in contact with the contact target section.
US10734742B2

This disclosure provides for an apparatus for connecting a first printed circuit board to a second printed circuit board. More specifically, an apparatus that includes a first receptacle assembly, a second receptacle assembly, and a contact bridge is disclosed. In an embodiment, the contact bridge conductively connects with the first receptacle assembly and the second receptacle assembly. In an embodiment, the contact bridge is disposed between sets of contact beams of the first and second receptacle assemblies.
US10734739B2

There is disclosed a coupling device for operations on live elements to attain equipotential conditions. The device comprises two conductive jaws connected to a preferably nonconductive handle. The jaws are adapted to be switched between a closed configuration, in which they are in mutual contact and surround an area adapted to receive a live element, and an open configuration in which the contact portions of the two jaws are spaced apart from each other. The two jaws have respective entry tapering portions adjacent to the contact portions and mutually converging to cause the contact portions to move apart from each other when the live element is pressed against the entry tapering portions, thereby causing the jaws to switch from the closed configuration to the open configuration against the action of an elastic member. The two jaws have respective exit tapering portions adjacent to the contact portions and mutually converging to cause the contact portions to move apart from each other when the live element is pressed against the exit tapering portions, thereby causing the jaws to switch from the closed configuration to the open configuration against the action of an elastic member.
US10734733B2

An antenna array system provides simultaneous 360° coverage and includes Butler matrix beam forming networks connected to an antenna array, which includes narrow and/or broadband elements, and multiple transmitters, receivers, or transceivers to allow for 360° transmission and/or reception. The antenna array system can provide multiple beams, such as without limitation 8 or 16 beams, which can vary in beam crossing and/or overlap to provide simultaneous 360° coverage. An antenna array system includes a plurality of antenna elements configured in an array, a first Butler matrix operatively coupled to the plurality of antenna elements, and a second Butler matrix operatively coupled to the first Butler matrix. A method of providing simultaneous 360° coverage includes configuring a plurality of antenna elements in an array, coupling a first Butler matrix operatively to the plurality of antenna elements, and coupling a second Butler matrix operatively to the first Butler matrix.
US10734721B2

Systems, methods, and computer-readable media for receiver channel calibration are provided. The method includes generating a plurality of calibration signals corresponding to a plurality of receiver channels, respectively. The plurality of calibration signals are combined with a plurality of data signals, respectively, thereby generating a plurality of combined signals. The plurality of combined signals are propagated through at least portions of the plurality of receiver channels, respectively. The plurality of calibration signals are extracted from the propagated plurality of combined signals, respectively. At least two signal characteristics of at least two of the extracted plurality of calibration signals are compared. At least one adjustment in gain, phase, or timing for at least one of the receiver channels is identified based on a result of the comparing. Based on the identified adjustment, a data signal received via the at least one of the plurality of receiver channels is adjusted.
US10734710B1

Electronic devices may be provided with antenna arrays and wireless circuitry for handling wireless communications in satellite communications bands and other frequency bands of interest. A portable electronic device may have a housing with a peripheral edge. An array of antennas in the portable device may extend along the peripheral edge and may be coupled (directly or indirectly) to wireless circuitry that transmits and receives satellite communications signals and/or other wireless communications signals. The antennas may include dipole antennas. The dipole antennas may include edge dipole antennas with straight arms that extend parallel to one or more peripheral housing edges. Additionally or alternatively, the dipole antennas may include corner dipole antennas at the corners of the housing. The corner dipole antennas may have arms with bent tips. A ground plane in the center of the electronic device may serve as a reflector for the peripheral dipole antennas.
US10734701B2

A system for radio frequency transmission through a window is provided. The system may include a first wireless coupler, a second wireless coupler, and one or more antennas. The first wireless coupler may be attached to a first side of the window and configured to transmit or receive radio frequency signals. The second wireless coupler attached to a second side of the window and aligned with the first wireless coupler. The first wireless coupler may be configured to transmit or receive the radio frequency signals from the first wireless coupler to the second wireless coupler through the window. The one or more antennas may be electrically connected to the second wireless coupler. One or more radios may transmit or receive the radio frequency signals to or from the one or more antennas.
US10734682B2

An electrolytic solution containing a specific organic solvent at a mole ratio of 1-8 relative to a metal salt, the specific organic solvent being selected from a linear carbonate represented by general formula (1-1) below, an ester represented by general formula (1-2) below, and a phosphoric ester represented by general formula (1-3) below, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure including two or three types of elements selected from boron, carbon, oxygen, a halogen, phosphorus, and arsenic, wherein R10OCOOR11  general formula (1-1) R12COOR13  general formula (1-2) OP(OR14)(OR15)(OR16)  general formula (1-3).
US10734674B2

Thin film all-solid-state power sources, including pseudocapacitors having solid inorganic Li+-ion conductive electrolyte, for IoT, microsensors, MEMS, RFID TAGs, medical devices, elements of microfluidic chips Micro Electro Harvesting and ultra-light energy storage. An electrochemical power source includes a substrate; a first current collector layer on the substrate; a first buffer/cache layer on the first current collector layer; a solid-state electrolyte layer on the first buffer/cache layer; a second buffer/cache layer on the solid-state electrolyte layer; a second current collector layer on the second buffer/cache layer. Each buffer/cache layer is formed of LiXMYO3, where M is Nb, Ta, Ti, V, X is 0.8-1.4, and Y is 1.2-0.6. The buffer/cache layer is 15-1000 nm. At least one Faradaic layer is between the first collector layer and the first buffer layer and/or between the second collector layer and the second buffer layer.
US10734668B2

Designs, strategies and methods for forming tube shaped batteries are described. In some examples, hermetic seals may be used to seal battery chemistry within the tube-shaped batteries. This may improve biocompatibility of energization elements. In some examples, the tube form biocompatible energization elements may be used in a biomedical device. In some further examples, the tube form biocompatible energization elements may be used in a contact lens.
US10734658B2

Provided is an electrode catalyst for a fuel cell including: a carbon support; and catalytic metal supported on the carbon support, the catalytic metal being selected from platinum or a platinum alloy, in which the carbon support has a crystallite size of (002) plane of carbon within a range of 5.0 nm or more and has a specific surface area within a range of 95 m2/g to 170 m2/g, and the catalytic metal has a crystallite size of (220) plane of platinum within a range of 4.5 nm or less.
US10734651B2

Disclosed herein is a lithium secondary battery capable of improving an output characteristic, a life characteristic, and stability of electrode adhesion by using a binder containing dopamine-polymerized heparin in an anode containing silicon. In accordance with an aspect of the present disclosure, a lithium secondary battery includes: a cathode; an anode; a separation film disposed between the cathode and the anode; and an electrolyte, wherein the anode comprises a binder containing carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), and polysaccharide including a sulfonate functional group and an amine group.
US10734648B2

Provided is a lithium ion battery that exhibits a significantly improved specific capacity and much longer charge-discharge cycle life. In one preferred embodiment, the battery comprises a cathode, an anode, an electrolyte in ionic contact with both the cathode and the anode, and an optional separator disposed between the cathode and the anode, wherein, prior to the battery being assembled, the anode comprises (a) an anode active material layer composed of fine particles of a first anode active material having an average size from 1 nm to 10 μm, an optional conductive additive, and an optional binder that bonds the fine particles and the conductive additive together to form the anode active material layer having structural integrity and (b) a layer of lithium metal or lithium metal alloy having greater than 80% by weight of lithium therein, wherein the layer of lithium metal or lithium metal alloy is in physical contact with the anode active material layer.
US10734643B2

Provided is a lithium secondary battery containing a cathode active material capable of preventing decreases in power and cycle life occurring at the time of adding a sulfur based additive used in order to improve high-temperature storage characteristics to an electrolyte.
US10734641B2

High energy density cathode materials, such as LiNixMnyCozO2 (NMC) cathode materials, with improved discharge capacity (hence energy density) and enhanced cycle life are described. A solid electrolyte, such as lithium phosphate infused inside of secondary particles of the cathode material demonstrates significantly enhanced structural integrity without significant or without any observable particle cracking occurring during charge/discharge processes, showing high capacity retention of more than 90% after 200 cycles at room temperature. In certain embodiments the disclosed cathode materials (and cathodes made therefrom) are formed using nickel-rich NMC and/or are used in a battery system with a non-aqueous dual-Li salt electrolytes.
US10734635B2

Provided is graphene-embraced particulate for use as a lithium-ion battery anode active material, wherein the particulate comprises primary particle(s) of an anode active material and multiple sheets of a first graphene material overlapped together to embrace or encapsulate the primary particle(s) and wherein a single or a plurality of graphene-encapsulated primary particles, along with an optional conductive additive, are further embraced or encapsulated by multiple sheets of a second graphene material, wherein the first graphene and the second graphene material is each in an amount from 0.01% to 20% by weight and the optional conductive additive is in an amount from 0% to 50% by weight, all based on the total weight of the particulate. Also provided are an anode and a battery comprising multiple graphene-embraced particulates.
US10734628B2

A bus bar terminal includes an electrode connection portion that connects electrode terminals of power storage elements to each other, and a wire connection portion that is to be connected to an electrical wire. Restriction portions are provided between the electrode connection portion and the wire connection portion, and restrict the movement of a liquid adhered to the electrode connection portion toward the wire connection portion.
US10734627B2

The present disclosure relates to a separator for an electrochemical device and an electrode assembly comprising the same. More particularly, the present disclosure relates to a separator with improved interfacial adhesion with electrode and an electrode assembly comprising the same. The adhesion layer according to the present disclosure includes a first layer contacting a surface of the separator and a second layer formed on a surface of the first layer and contacting with an electrode, the first layer includes a polymer resin with a fluorine-containing monomer, and the second layer includes a polymer resin having a lower dissolution rate in an electrolyte solution for an electrochemical device than the polymer resin included in the first layer.
US10734625B2

A battery (10) comprises a safety vent assembly (100). The safety vent assembly (100) comprises a sealing member (104) and an urging member (106) to urge the sealing member (104) against a venting aperture (105) on a battery reaction chamber to seal the battery reaction chamber when pressure inside the battery reaction chamber is below a venting threshold pressure under normal operation conditions, wherein the sealing member (104) is operable to provide a venting path to vent gas from the battery chamber when pressure inside the battery chamber reaches the venting threshold pressure which is sufficient to overcome the urging force of the sealing member (104), and wherein the urging member (106) is to permanently deform on reaching a venting threshold temperature such that gas venting from the battery chamber will occur at a pressure below the venting threshold pressure.
US10734620B2

A battery cell of a battery pack to power an electric vehicle can include a housing to at least partially enclose an electrode assembly is provided. The battery cell can include a vent plate coupled with the housing via a glass weld at a lateral end of the battery cell. The vent plate can include a scoring pattern to cause the vent plate to rupture in response to a threshold pressure. A first end of a polymer tab can be electrically coupled with the vent plate at an area within a scored region defined by the scoring pattern. A second end of the polymer tab can be electrically coupled with an electrode assembly. The polymer tab can melt in response to either a threshold temperature or a threshold current within the battery cell.
US10734615B2

The disclosed technology relates to a battery pack assembly that includes multiple battery cells. In some aspects, each cell is bonded to a first surface of a first liner (e.g., a cosmetic liner) via a first adhesive. The first adhesive is configured to provide a first adhesive force between each of the battery cells and the first surface before exposure to ultraviolet (UV) light and a second adhesive force after exposure to UV light, and wherein the second adhesive force is less than the first adhesive force. A battery pallet and method of manufacturing are also provided.
US10734614B2

A rechargeable battery includes: an electrode assembly; a case accommodating the electrode assembly and an electrolyte solution and defining recess portions at edges of the case; a cap plate at an opening of the case; and electrode terminals in the cap plate and coupled to the electrode assembly.
US10734611B2

The present disclosure relates to an organic light emitting diode display device including: a substrate having an emitting area and a non-emitting area; an insulating layer on the substrate, the insulating layer including a plurality of convex portions, a plurality of connecting portions and at least one wall in the emitting area, a height of the at least one wall is greater than a height of the plurality of convex portions; a first electrode on the substrate; an emitting layer on the first electrode; and a second electrode on the emitting layer, the first electrode, the emitting layer and the second electrode constituting a light emitting diode.
US10734607B2

An organic light emitting diode (OLED) display panel and a encapsulation method of the organic light emitting diode display panel are provided. The encapsulation method includes steps of providing an OLED display panel having an OLED light emitting element layer in a display area thereof and an organic peeling layer in a non-display area thereof; laminating an inorganic film layer prepared in a full-surface coating method and an organic film layer only covering the display area sequentially; and peeling off the organic peeling layer together with the inorganic film layer on the surface of the organic peeling layer, so as to form a thin film encapsulation layer.
US10734604B2

A display device is provided. The display device includes a display panel including first and second display substrates that face each other, having an overlap area in which the first and second display substrates overlap with each other, and having a protruding area on one side of the overlap area, a sealing member between the first and second display substrates along edges of the overlap area, and at least one chamfered portion including a first chamfered portion, which is formed on at least one side of the protruding area, and a second chamfered portion, which is formed on the overlap area and adjacent to the first chamfered portion, wherein in the second chamfered portion, an end of the first display substrate is positioned beyond an end of the second display substrate.
US10734602B2

A first damming wall and a second damming wall are provided in a frame region. The first damming wall surrounds a display region formed from a first organic material and overlaps with a circumferential end part of an organic layer. The second damming wall includes a top part formed from a second organic material in the periphery of the first damming wall, and overlaps with an edge of the circumferential end part of the organic layer. The second damming wall includes a bottom part located closer to a base substrate, the bottom part being formed from a material constituting parts of switching elements.
US10734581B2

The present disclosure includes memory cell structures and method of forming the same. One such method includes forming a memory cell includes forming, in a first direction, a select device stack including a select device formed between a first electrode and a second electrode; forming, in a second direction, a plurality of sacrificial material lines over the select device stack to form a via; forming a programmable material stack within the via; and removing the plurality of sacrificial material lines and etching through a portion of the select device stack to isolate the select device.
US10734573B2

A Magnetic Tunnel Junction (MTJ) can include an annular structure and a planar reference magnetic layer disposed about the annular structure. The annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. The planar reference magnetic layer can be separated from the free magnetic layer by the annular tunnel barrier layer.
US10734557B2

A light-emitting device includes a package structure and a light-emitting chip. The package structure has a light exiting surface, a rear surface facing away from the light exiting surface, a groove inward recessed on the rear surface, and an outer surrounding side wall surrounding the groove. The light-emitting chip is disposed in the groove. The width of the package structure gradually decreases from the light exiting surface to the rear surface. The width of the groove gradually increases from inside to outside of the groove.
US10734550B2

Disclosed herein is a semiconductor device including: a semiconductor structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first insulating layer disposed on the semiconductor structure; a first electrode disposed on the first conductive semiconductor layer through a first hole of the first insulating layer; a second electrode disposed on the second conductive semiconductor layer through a second hole of the first insulating layer; a first cover electrode disposed on the first electrode; and a second cover electrode disposed on the second electrode, wherein the second cover electrode includes a plurality of pads, and a connecting portion configured to connect the plurality of pads, a width of the connecting portion is smallest at a central position between the adjacent pads, and an area ratio between the second cover electrode and the first cover electrode is in the range of 1:1.1 to 1:1.5.
US10734544B2

A light emitting diode (LED) apparatus is provided. The LED apparatus includes a light emitting diode, a light conversion layer stacked on the light emitting diode and configured to convert a wavelength of light incident from the light emitting diode, a reflection coating layer stacked on the light conversion layer and configured to pass the light of which the wavelength is converted in light incident from the light conversion layer therethrough and reflecting the other light, and a color filter stacked on the reflection coating layer and configured to correspond to the light conversion layer.
US10734541B2

A method of manufacturing the semiconductor device includes: (a) providing a substrate having a semiconductor layer; (b) forming a first insulating film over an insulating layer so as to cover the semiconductor layer; (c) forming an opening extending through the first insulating film and reaching the semiconductor layer; (d) forming, over the semiconductor layer exposed at a bottom surface of the opening, a semiconductor portion having a thickness smaller than that of the first insulating film over the semiconductor layer by a selective epitaxial growth method; (e) forming a second insulating film over the first insulating film and the semiconductor portion; (f) removing the second insulating film from over the first insulating film, while leaving the second insulating film in the opening; (g) removing a semiconductor particle formed over the first insulating film in the (d); and (h) forming a third insulating film over the first insulating film.
US10734540B1

An optical device includes a substrate, a light receiving component, an encapsulant, a coupling layer and a light shielding layer. The light receiving component is disposed on the substrate. The encapsulant covers the light receiving component. The coupling layer is disposed on at least a portion of the encapsulant. The light shielding layer is disposed on the coupling layer.
US10734536B2

A composition for forming an electrode for a solar cell includes a conductive powder, a glass fit, and an organic binder that includes a cellulose compound that includes a structural unit represented by Chemical Formula 1, Also disclosed are a solar cell electrode manufactured using the composition for forming an electrode for a solar cell, and a solar cell including the electrode.
US10734535B2

A composition for forming an electrode includes a conductive powder, a glass frit, an organic binder, and a solvent, wherein the organic binder includes a polymer including a first structural unit selected from a structural unit represented by Chemical Formula 1A, a structural unit represented by Chemical Formula 1B, and a combination thereof, and the a second structural unit represented by Chemical Formula 2. Each substituent of Chemical Formula 1A, Chemical Formula 1B and Chemical Formula 2 is the same as in the detailed description.
US10734531B2

A device and method for manufacturing a two-dimensional electrostrictive field effect transistor having a substrate, a source, a drain, and a channel disposed between the source and the drain. The channel is a two-dimensional layered material and a gate proximate the channel. The gate has a column of an electrostrictive or piezoelectric or ferroelectric material, wherein an electrical input to the gate produces an elongation of the column that applies a force or mechanical stress on the channel and reduces a bandgap of two-dimensional material such that the two-dimensional electrostrictive field effect transistor operates with a subthreshold slope that is less than 60 mV/decade.
US10734530B2

An object is to provide favorable interface characteristics of a thin film transistor including an oxide semiconductor layer without mixing of an impurity such as moisture. Another object is to provide a semiconductor device including a thin film transistor having excellent electric characteristics and high reliability, and a method by which a semiconductor device can be manufactured with high productivity. A main point is to perform oxygen radical treatment on a surface of a gate insulating layer. Accordingly, there is a peak of the oxygen concentration at an interface between the gate insulating layer and a semiconductor layer, and the oxygen concentration of the gate insulating layer has a concentration gradient. The oxygen concentration is increased toward the interface between the gate insulating layer and the semiconductor layer.
US10734516B2

Embodiments of field effect transistor (FET) circuits, RF switches, and devices include source and drain terminals coupled to an active surface of a semiconductor substrate, a channel in the substrate between the source and drain terminals, and a plurality of gate structures coupled to the active surface over the channel. A channel contact is coupled to the active surface over the channel between a first pair of the gate structures, and a first capacitor is electrically coupled between the channel contact and a gate structure of the plurality of gate structures.
US10734513B2

Heterojunction tunnel field effect transistors (hTFETs) incorporating one or more oxide semiconductor and a band offset between at least one of a channel material, a source material of a first conductivity type, and drain of a second conductivity type, complementary to the first. In some embodiments, at least one of p-type material, channel material and n-type material comprises an oxide semiconductor. In some embodiments, two or more of p-type material, channel material, and n-type material comprises an oxide semiconductor. In some n-type hTFET embodiments, all of p-type, channel, and n-type materials are oxide semiconductors with a type-II or type-III band offset between the p-type and channel material.
US10734511B2

An embodiment includes a field effect transistor, comprising: a source region comprising a first III-V material doped to a first conductivity type; a drain region comprising a second III-V material doped to a second conductivity type that is opposite the first conductivity type; a gate electrode disposed over a channel region comprising a third III-V material; and a first spacer, between the channel and drain regions, comprising a fourth III-V material having a charge carrier-blocking band offset from the third III-V material. Other embodiments are described herein.
US10734499B2

Methods for forming a semiconductor device include forming a first spacer on a plurality of fins. A second spacer is formed on the first spacer, the second spacer being formed from a different material from the first spacer. Gaps between the fins are filled with a support material. The first spacer and second spacer are polished to expose a top surface of the plurality of fins. All of the support material is etched away after polishing the first spacer and second spacer. The plurality of fins is etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched plurality of fins to fill the fin cavity.
US10734493B2

A semiconductor memory device may include a substrate, gate electrode structures stacked on the substrate, insulation patterns between the gate electrode structures, vertical channels penetrating through the gate electrode structures and the insulation patterns, and a data storage pattern. The vertical channels may be electrically connected to the substrate. The data storage pattern may be arranged between the gate electrode structures and the vertical channels. Each of the gate electrode structures may include a barrier film, a metal gate, and a crystal grain boundary plugging layer. The crystal grain boundary plugging layer may be between the barrier film and the metal gate.
US10734483B2

A semiconductor device according to an embodiment includes a silicon carbide layer having first and second planes; a first silicon carbide region; second and third silicon carbide regions between the first silicon carbide region and the first plane; a fourth silicon carbide region between the second silicon carbide region and the first plane; a first and second gate electrodes; a suicide layer on the fourth silicon carbide region; a first electrode on the first plane having a first portion and a second portion, the first portion being in contact with the first silicon carbide region, the second portion being in contact with the suicide layer; a second electrode on the second plane; and an insulating layer between the first portion and the second portion having a first side surface and a second side surface, an angle of the first side surface being smaller than that of the second side surface.
US10734476B2

An integrated electronic device forming a power device and including: a semiconductor body; a first conductive region and a second conductive region, which extend over the semiconductor body, the second conductive region surrounding the first conductive region at a distance; and an edge termination structure, which is arranged between the first and second conductive regions and includes a dielectric region, which delimits an active area of the power device, and a semiconductive structure, which extends over the dielectric region and includes a plurality of diode chains, each diode chain including a plurality of first semiconductive regions of a first conductivity type and a plurality of second semiconductive regions of a second conductivity type, the first and second semiconductive regions being arranged in alternating fashion so as to form a series circuit including a plurality of first and second diodes, which are spaced apart from one another and have opposite orientations.
US10734469B2

A display device including a display panel; a panel support disposed on a lower surface of the display panel; a first circuit board connected to the display panel and disposed such that it overlaps with a lower surface of the panel support; and an adhesive member disposed between the panel support and the first circuit board and including a concave-convex profile on a first surface facing the panel support. The first circuit board and the panel support are at least partially coupled with each other by the adhesive member.
US10734465B2

A display device includes: a substrate; a plurality of pixels provided in a pixel region of the substrate; a scan line and a data line, connected to each of the plurality of pixels; a first transistor connected to the scan line and the data line and a second transistor connected to the first transistor; a light emitting element connected to the transistor; a first blocking layer disposed between the substrate and the first transistor, the first blocking layer being electrically connected to the first transistor; and a second blocking layer disposed between the substrate and the second transistor, the second blocking layer being electrically connected to the second transistor, wherein the first blocking layer is connected to a gate electrode of the first transistor, and the second blocking layer is connected to any one of source and drain electrodes of the second transistor.
US10734460B2

The disclosure provides a display device, including a substrate, a pixel define layer, a conductive line and a spacer. The pixel define layer is disposed on the substrate, wherein the pixel define layer includes a first opening region and a second opening region, wherein the second opening region is adjacent to the first opening region. The conductive line is disposed on the substrate, wherein in a top view of the display device, the conductive line is located between the first opening region and the second opening region. The spacer is disposed on the substrate, wherein the spacer at least partially overlaps the conductive line.
US10734457B2

An organic light-emitting display device and a method of manufacturing the same are provided. An organic light-emitting display device includes: a substrate; a pixel array layer on the substrate, the pixel array layer including a plurality of pixels, each of the plurality of pixels including an organic light-emitting device, an encapsulation layer covering the pixel array layer, and a touch sensing layer on the encapsulation layer, the touch sensing layer including: a plurality of first touch electrodes, and a plurality of second touch electrodes, wherein the plurality of first and second touch electrodes each include: a transparent conductive layer on an upper surface of the encapsulation layer, and a mesh metal layer on the transparent conductive layer, the mesh metal layer including at least three metal layers.
US10734448B2

A semiconductor integrated circuit includes a cell array, an input unit and an output unit. Cell array includes word lines, bit lines and resistance change cells respectively formed at cross points between word lines and bit lines. Input unit includes an access controller and a driver. Access controller controls access of data to a cell in time series, the data being expressed by a matrix. Driver applies voltage to a word line coupled to the cell which is an access destination of the data, the voltage being adjusted depending on a value of the data to be accessed to the cell. The output unit includes holding circuits each holding a representative value of an output level of a corresponding one of the bit lines in time series.
US10734443B2

A material stack includes a first magnetoresistance element with a first direction of response to an external magnetic field and a second magnetoresistance element with second direction of response to the external magnetic field, opposite to the first direction of response. The first magnetoresistance element can be disposed under or over the second magnetoresistance element. An insulating layer separates the first and second magnetoresistance elements.
US10734440B2

A display panel is provided. The display panel includes a display region and a non-display region. The display region includes a first substrate, containing an N-type semiconductor layer including a plurality of protrusions and a plurality of light-emitting diodes. Each light-emitting diode includes an island-shaped structure. The island-shaped structure includes a protrusion, a light-emitting layer, and a P-type semiconductor layer. The display region also includes an N electrode and a plurality of P electrodes. The N electrode has a mesh structure, and the island-shaped structure is disposed in a mesh opening of the mesh structure. The N electrode is electrically connected to the N-type semiconductor layer. The plurality of P electrodes are disposed, in a one-to-one correspondence with the plurality of light-emitting diodes, on a side opposite to the N-type semiconductor layer. Each P electrode is electrically connected to the P-type semiconductor layer.
US10734421B2

An imaging device including: a photoelectric converter including first and second electrodes and a photoelectric conversion layer therebetween; a voltage supplier; an output circuit for outputting a signal corresponding to the potential of the second electrode; and a detector for detecting the signal level. The change rate of the conversion efficiency of the photoelectric converter with respect to a bias voltage applied between the electrodes when the bias voltage is in a first range is greater than that when the bias voltage is in a second range higher than the first range. The voltage supplier, when the detected level is a first threshold or higher, causes the potential difference between the electrodes to be a first difference, and, when the detected level is lower than a second threshold that is the first threshold or lower, causes the potential difference to be a second difference greater than the first difference.
US10734415B1

Display panel and display device are provided. The display panel includes a display region; a non-display region; and a notch. Data lines are disposed in the display region. An edge of the display panel recesses toward the display region to form the notch. The display region includes a first display region and second display regions. The notch and the first display regions are disposed between two second display regions in the first direction and are adjacent in the second direction. The data lines include first data lines in each of the second display regions separated by the notch. Connection lines are disposed surrounding the at least one notch, and each connection line connects two of the first data lines in a same column and on two sides of the notch At least a portion of the connection lines includes first segments disposed in the first display region.
US10734404B2

A semiconductor device includes a cell structure; n first pad structures formed on one side of the cell structure and each configured to have a step form in which 2n layers form one stage; and n second pad structures formed on the other side of the cell structure each configured to have a step form in which 2n layers form one stage, wherein n is a natural number of 1 or higher, and the first pad structures and the second pad structures have asymmetrical step forms having different heights.
US10734398B2

In some embodiments, the present disclosure relates to a flash memory structure. The flash memory structure has a source region and a drain region disposed within a substrate. A select gate is disposed over the substrate between the source region and the drain region, and a floating gate is disposed over the substrate between the select gate and the source region. A control gate is disposed over the floating gate. The floating gate has sidewalls that define protrusions extending downward from a lower surface of the floating gate to define a recess within a bottom of the floating gate.
US10734394B2

Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
US10734393B2

Methods of forming microelectronic package structures, and structures formed thereby, are described. Those methods/structures may include attaching a die on a board, attaching a substrate on the die, wherein the substrate comprises a first region and a peripheral region, attaching a first memory device on the central region of the substrate, and attaching at least one additional memory device on the peripheral region of the substrate, wherein the at least one additional memory device is not disposed over the die.
US10734373B2

A circuit block including standard cells (1) arranged therein is provided with switch cells (20) capable of switching between electrical connection and disconnection between power supply lines (3) extending in an X-direction and power supply straps (11) extending in a Y-direction. Each of the power supply straps (11) is provided with a single switch cell (20) arranged every M sets of power supply lines (3) (M is an integer of 3 or more). In the Y-direction, the switch cells (20) are arranged at different positions in the power supply straps (11) adjacent to each other, and are arranged at the same position every M power supply straps (11) in the X-direction.
US10734371B2

A semiconductor device includes a first substrate structure having a first substrate, circuit elements disposed on the first substrate, and first bonding pads disposed on the circuit elements. A second substrate structure is connected to the first substrate structure. The second substrate structure includes a second substrate having first and second surfaces, first and second conductive layers spaced apart from each other, a pad insulating layer having an opening exposing a portion of the second conductive layer and gate electrodes stacked to be spaced apart from each other in a first direction and electrically connected to the circuit elements. First contact plugs extend on the second surface in the first direction and connect to the gate electrodes. A second contact plug extends on the second surface in the first direction and electrically connects to the second conductive layer. Second bonding pads electrically connect to the first and second contact plugs.
US10734370B2

Methods of making semiconductor device packages may involve cutting kerfs in streets between regions of a semiconductor wafer and positioning stacks of semiconductor dice on portions of surfaces of at least some adjacent regions. A protective material may be dispensed only between the stacks of the semiconductor dice, over the exposed remainders of the regions, and in the kerfs. A back side of the semiconductor wafer may be ground to a final thickness, revealing the protective material in the kerfs at a side of the semiconductor wafer opposite the stacks of the semiconductor dice. The protective material between the stacks of the semiconductor dice and within the kerfs may be cut through, leaving the protective material on sides of the semiconductor dice of the stacks and on side surfaces of the regions within the kerfs.
US10734369B2

A receiver optical module that receives an optical signal and generating an electrical signal corresponding to the optical signal is disclosed. The module includes a photodiode (PD), a sub-mount, a pre-amplifier, and a stem. The sub-mount, which is made of insulating material, mounts the PD thereon. The pre-amplifier, which receives the photocurrent generated by the PD, mounts the PD through the sub-mount with an adhesive. The pre-amplifier generates an electrical signal corresponding to the photocurrent and has signal pads and other pads. The stem, which mounts the pre-amplifier, provides lead terminals wire-bonded with the signal pads of the pre-amplifier. The signal pads make distances against the sub-mount that are greater than distances from the other pads to the sub-mount.
US10734364B2

A lighting arrangement includes at least a first and a second LED lighting element arranged next to each other on a carrier surface. The spacer element has, at least in a portion thereof which is in contact with the second LED lighting element, a width which is less than 20% of a width of the first LED lighting element. The first LED lighting element comprises a spacer element projecting into a direction in parallel to the carrier surface. The second LED lighting element is arranged in contact with the spacer element such that it is arranged aligned relative to the first LED lighting element, and such that the first and second LED lighting elements are arranged at a distance forming a gap between the first and second LED lighting elements.
US10734356B2

The present disclosure relates to a microelectronics package with a self-aligned stacked-die assembly and a process for making the same. The disclosed microelectronics package includes a module substrate, a first die with a first coupling component, a second die with a second coupling component, and a first mold compound. The first die is attached to the module substrate. The first mold compound resides over the module substrate, surrounds the first die, and extends above an upper surface of the first die to define a first opening. Herein, the first mold compound provides vertical walls of the first opening, which are aligned with edges of the first die in X-direction and Y-direction. The second die is stacked with the first die and in the first opening, such that the second coupling component is mirrored to the first coupling component.
US10734350B2

There is disclosed a method for manufacturing a semiconductor device comprising a semiconductor chip having a connection portion and a wiring circuit board having a connection portion, the respective connection portions being electrically connected to each other, or a semiconductor device comprising a plurality of semiconductor chips having connection portions, the respective connection portions being electrically connected to each other. The connection portions consist of metal. The above described method comprises: (a) a first step of press-bonding the semiconductor chip and the wiring circuit board or the semiconductor chips to each other so that the respective connection portions are in contact with each other with a semiconductor adhesive interposed therebetween, at a temperature lower than a melting point of the metal of the connection portion, to obtain a temporarily connected body; (b) a second step of sealing at least a part of the temporarily connected body with a sealing resin to obtain a sealed temporarily connected body; and (c) a third step of heating the sealed temporarily connected body at a temperature equal to or higher than the melting point of the metal of the connection portion, to obtain a sealed connected body.
US10734344B2

A chip structure including a chip body and a plurality of conductive bumps. The chip body includes an active surface and a plurality of bump pads disposed on the active surface. The conductive bumps are disposed on the active surface of the chip body and connected to the bump pads respectively, and at least one of the conductive bumps has a trapezoid shape having one pair of parallel sides and one pair of non-parallel sides.
US10734332B2

In conventional packaging strategies for mm wave applications, the size of the package is dictated by the antenna size, which is often much larger than the RFIC (radio frequency integrated circuit). Also, the operations are often limited to a single frequency which limits their utility. In addition, multiple addition build-up layers are required to provide the necessary separation between the antennas and ground layers. To address these issues, it is proposed to provide a device that includes an antenna package, an RFIC package, and an interconnect assembly between the antenna and the RFIC packages. The interconnect assembly may comprise a plurality of interconnects with high aspect ratios and configured to connect one or more antennas of the antenna package with an RFIC of the RFIC package. An air gap may be formed in between the antenna package and the RFIC package for performance improvement.
US10734330B2

A semiconductor device includes a substrate and a metallization layer. The substrate has an active region that includes opposite first and second edges. The metallization layer is disposed above the substrate, and includes a pair of metal lines and a metal plate. The metal lines extend from an outer periphery of the active region into the active region and toward the second edge of the active region. The metal plate interconnects the metal lines and at least a portion of which is disposed at the outer periphery of the active region.
US10734328B2

A semiconductor package includes a first redistribution structure, a semiconductor die disposed on the first redistribution structure, a die attach material disposed between the first redistribution structure and the semiconductor die, and an insulating encapsulant disposed on the first redistribution structure. A first shortest distance from a midpoint of a bottom edge of the semiconductor die to a midpoint of an bottom edge of an extruded region of the die attach material in a width direction of the semiconductor die is greater than a second shortest distance between an endpoint of the bottom edge of the semiconductor die to an endpoint of the bottom edge of the extruded region of the die attach material. The insulating encapsulant encapsulates the semiconductor die and the die attach material. An inclined interface is between the insulating encapsulant and the extruded region of the die attach material.
US10734326B2

Disclosed is a semiconductor device and method of manufacturing a semiconductor device that includes planarizing surfaces of a semiconductor substrate and a carrier substrate and then placing the semiconductor substrate on the carrier substrate such that the planarized surfaces of each are adjoining and allowing the semiconductor substrate to bond to the carrier substrate using a Van der Waals force. The method also includes forming a metal filled trench around the semiconductor substrate and in contact with the carrier substrate, which can also be formed of metal. The metal filled trench and carrier substrate together form a metal cage-like structure around the semiconductor substrate that can serve as a heat sink, integrated heat spreader, and Electro-Magnetic Interference shield for the semiconductor substrate.
US10734307B2

Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
US10734301B2

The present disclosure relates to a semiconductor package, which includes a carrier, a flip-chip die, a mold compound, and a heat spreader. Herein, the flip-chip die includes a device layer over the carrier and a die substrate over the device layer. The mold compound resides over the carrier and surrounds the flip-chip die. The mold compound has a recess adjacent to the flip-chip die, and the recess extends vertically lower than a top surface of the die substrate. The heat spreader hangs over the flip-chip die, and includes a spreader body that is thermally coupled to the die substrate, and a spreader protrusion that extends from the spreader body into the recess. A thickness of the spreader protrusion is shorter than a depth of the recess, and a width of the spreader protrusion is narrower than a width of the recess, such that the spreader protrusion is floating in the recess.
US10734294B2

An SEM image is acquired. The SEM image shows a metal line and a via hole disposed above the metal line. The via hole exposes a portion of the metal line vertically aligned with the via hole. A first portion and a second portion of the via hole are each vertically not aligned with the metal line and are disposed on opposite sides of the metal line. The acquired SEM image is processed to enhance a contrast between the first and second portions and their surrounding areas. A first dimension of the first portion and a second dimension of the second portion of the via hole are measured in a first direction. The first direction is different from a second direction along which the metal line extends. An overlay between the via hole and the metal line is determined based on the first dimension and the second dimension.
US10734284B2

A method of self-aligned double patterning is disclosed in the present invention, which includes the step of forming multiple mandrels on a hard mask layer and spacers at two sides of each mandrel, forming a protection layer filling between the spacers, removing the mandrels to expose the hard mask layer, and performing an anisotropic etch process using the spacers and the protection layer as an etch mask to remove a portion of hard mask layer, so that a thickness of hard mask layer exposed between the spacers equals to a thickness of hard mask layer under the protection layer.
US10734278B2

A process is provided in which low-k layers are protected from etch damage by the use of a selectively formed protection layer which forms on the low-k layer. In one embodiment, the low-k layers may be low-k dielectric layers utilized in BEOL process steps. In one embodiment, the selectively formed protection layer may be formed by a selective deposition process which selectively forms layers on the low-k dielectric but not over the conductor layer. The selectively formed protection layer may then be utilized to protect the low-k layer from a plasma etch that is utilized to recess the conductor. In this manner, a conductor (for example metal) may be recessed in a low-k dielectric layer via a plasma etch process.
US10734272B2

Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
US10734268B1

Methods, systems and apparatuses for an improved wafer and substrate carrier or container with improved modularity. More specifically, to a carrier or container with improved abilities which may provide high or low density carriers or containers with improved interchanging and compatibility, including for Tec-Cells, FOUPs, and other third party containers, carriers, modules, rings or any other systems, structures, apparatuses, or methods associated. The invention may provided an ability to interchange or be cross-compatible such as wherein Tec-Cell carriers, containers, rings or modules may be provided to be housed in a FOUP or other third party carrier or wherein substrates or wafers held in the Tec-Cell Carriers, rings, containers, or modules, and then held within the FOUP.
US10734265B2

A system for processing a substrate is provided including a first planar motor, a substrate carrier, a first processing chamber, and a first lift. The first planar motor includes a first arrangement of coils disposed along a first horizontal direction, a top surface parallel to the first horizontal direction, a first side, a second side. The substrate carrier has a substrate supporting surface parallel to the first horizontal direction. The first processing chamber has an opening to receive a substrate disposed on the substrate carrier. The first lift includes a second planar motor having a second arrangement of coils disposed along the first horizontal direction. A top surface top surface of the second planar motor is parallel to the first horizontal direction. The first lift is configured to move the top surface of the second planar motor between a first vertical location and a second vertical location.
US10734256B2

A heater system is provided that includes a base functional layer having at least one functional zone. A substrate is secured to the functional member, and a tuning layer is secured to the substrate opposite the base functional layer. The tuning layer includes a plurality of zones that is greater in number than the zones of the base functional layer, and the tuning layer provides lower power than the base functional layer. A component is secured to the tuning layer opposite the substrate, and the substrate defines a thermal conductivity to absorb and dissipate a requisite amount of power from the base functional layer. A control system is also provided that has a plurality of addressable control elements in electrical communication with power lines and with the tuning layer, the control elements providing selective control of the tuning layer zones.
US10734255B2

A substrate cleaning method includes supplying, onto a substrate, a film-forming processing liquid including a volatile component and a polar organic material that forms a processing film on the substrate, volatilizing the volatile component such that the film-forming processing liquid solidifies or cures and forms the processing film on the substrate, supplying, to the processing film formed on the substrate, a peeling processing liquid that peels off the processing film from the substrate and includes a non-polar solvent, and supplying, to the processing film, a dissolution processing liquid that dissolves the processing film and includes a polar solvent after the supplying of the peeling processing liquid. The non-polar solvent does not contain water, and the polar solvent does not contain water.
US10734253B2

Disclosed is a wafer processing apparatus and method. The wafer processing apparatus comprises a chamber, which is a sealed structure having an openable baffle, and is internally provided with an immersion tank having a waste liquid discharge port; a vacuum system for adjusting and maintaining a pressure inside the chamber; a gas supply system comprising an inert gas supply unit and an organic solvent vapor supply unit respectively supplying an inert gas and an organic solvent vapor to the chamber; a temperature control system for adjusting the temperature inside the chamber. According to the present invention, the problems present in existing wafer drying modes can be solved, and in particular, the present invention is well adaptable to a trend of integrated circuit devices developed from a two-dimensional planar structure to a three-dimensional structure in morphology and having more and more increased density.
US10734252B2

A substrate processing apparatus includes a chamber, a substrate holding part, a substrate rotating mechanism, and a processing liquid supply part. The chamber includes a chamber body and a chamber cover, and the chamber cover is moved up and down by a chamber opening and closing mechanism. A top plate is attached to the chamber cover. While the chamber cover is in contact with the chamber body, a sealed space is formed and processing is performed. When the chamber cover is moved up, an annular opening is formed between the chamber cover and the chamber body. A cup part is positioned outside the annular opening. A processing liquid spattering from a substrate is received by the cup part.
US10734249B2

A package structure can include: (i) a substrate having opposite first and second surfaces; (ii) a die having opposite active and back surfaces, where the die is arranged above the first surface of the substrate, the back surface of the die is adjacent to the first surface of the substrate; (iii) pads arranged on the active surface of the die; (iv) a first encapsulator configured to encapsulate the die; (v) an interconnection structure configured to electrically connect to the pads through the first encapsulator; (vi) a second encapsulator configured to encapsulate the interconnection structure; and (vii) a redistribution structure configured to electrically connect to the interconnection structure and to provide external electrical connectivity.
US10734246B2

A chamber door, such as an etch chamber door may be heated during etch processing to, e.g., prevent etching by-products from adhering to the etch chamber door. Such heating of the etch chamber door, however, can impact the processing parameters and result in non-uniform processing, such as non-uniform etching characteristics across a semiconductor wafer, for instance. An insulator, such as an insulating film covering surfaces of the heated door, can reduce or eliminate transmission of heat from the door to a work piece such as a semiconductor wafer and this reduce or eliminate the non-uniformity of the process results.
US10734243B2

In an etching method for removing a processing target layer formed on a substrate for manufacturing electronic devices, a first break-through process of removing an oxide film formed on a surface of the processing target layer is performed, and a first main etching process of etching the processing target layer is performed after the first break-through process. Then, a second break-through process of removing the oxide film exposed after the first main etching process is performed, and a second main etching process of etching the processing target layer is performed after the second break-through process.
US10734232B2

Embodiments of the present disclosure generally relate to methods and apparatus for depositing metal silicide layers on substrates and chamber components. In one embodiment, a method of forming a hardmask includes positioning the substrate having a target layer within a processing chamber, forming a seed layer comprising metal silicide on the target layer and depositing a tungsten-based bulk layer on the seed layer, wherein the metal silicide layer and the tungsten-based bulk layer form the hardmask. In another embodiment, a method of conditioning the components of a plasma processing chamber includes flowing an inert gas comprising argon or helium from a gas applicator into the plasma processing chamber, exposing a substrate support to a plasma within the plasma processing chamber and forming a seasoning layer including metal silicide on an aluminum-based surface of the substrate support.
US10734231B2

A method includes receiving a semiconductor wafer into a chamber; generating a plasma within the chamber to accelerate particles toward the semiconductor wafer; generating a magnetic field above the semiconductor wafer by an electromagnetic structure contained within the chamber, wherein the electromagnetic structure comprises a plurality of electromagnetic elements; and adjusting the magnetic field, wherein the adjusting of the magnetic field includes moving positions of each of the plurality of electromagnetic elements independently.
US10734226B2

A method for manufacturing a semiconductor structure with reduced bowing for applications in the field of power electronics, photonics, optoelectronics, solar energy conversion and the like, which comprises: a step of providing at least a first layer of a first semiconductor material, said first layer comprising a substrate of said first semiconductor material, which extends along a first reference plane, and a plurality of first portions of said first semiconductor material, which are mutually spaced and extend in elevation from said substrate along axes perpendicular to said first reference plane, said first portions having ends in distal position with respect to said substrate; a step of providing at least a second layer of a second semiconductor material, said second layer comprising second portions of said second semiconductor material, each of which is joined to the ends of a plurality of said first portions, said second portions being mutually spaced and extending along a second reference plane parallel to said first reference plane; The first portions of the first layer are produced with an aspect ratio that depends on a dimension of said second portions, measured along said second reference plane. In a further aspect thereof, the invention relates to a semiconductor structure for applications in the field of power electronics, photonics, optoelectronics, solar energy conversion and the like.
US10734220B2

A method for manufacturing a silicon epitaxial wafer includes: preparing a test silicon wafer in advance, forming the multilayer film on a surface of the test silicon wafer, and measuring a warp direction and a warp amount (Warp) W of the silicon wafer having the multilayer film formed thereon; and selecting a silicon wafer as a device formation substrate and conditions for forming an epitaxial layer which is formed on the silicon wafer as the device formation substrate in such a manner that a warp which cancels out the measured warp amount W is formed in a direction opposite to the measured warp direction, and forming the epitaxial layer on a surface of the selected silicon wafer as the device formation substrate where the multilayer film is formed under the selected conditions for forming the epitaxial layer.
US10734216B2

A pneumatic method, and associated apparatus, for injecting a discrete sample plug into the separation channel of an electrophoresis microchip (100) is disclosed. In a first step, pressurized gas (90) is applied to the sample (30) and background electrolyte (20) reservoirs such that the pressure is higher there than at the sample waste reservoir (35) to create a focused sample stream at the junction between the sample and separation channels. In a second step, the pressure at the sample reservoir (30) is reduced in order to pneumatically inject the sample plug into the separation channel. The waste reservoir (35) may be connected to a pressure reducing device (91). The methods, systems and devices are particularly suitable for use with a mass spectrometer (200i).
US10734206B2

Some embodiments relate to a system. The system includes a radio frequency (RF) generator configured to output a RF signal. A transmission line is coupled to the RF generator. A plasma chamber is coupled to RF generator via the transmission line, wherein the plasma chamber is configured to generate a plasma based on the RF signal. A micro-arc detecting element is configured to determine whether a micro-arc has occurred in the plasma chamber based on the RF signal.
US10734201B2

A substrate processing apparatus, for generating a plasma from a gas by a high frequency energy and etching a substrate in a processing chamber by radicals in the plasma, includes a high frequency power supply configured to supply the high frequency energy into the processing chamber, a gas supply source configured to introduce the gas into the processing chamber, a mounting table configured to mount the substrate thereon, and a partition plate provided in the processing chamber and configured to divide an inner space of the processing chamber into a plasma generation space and a substrate processing space and suppress passage of ions therethrough. The partition plate and a portion of an inner wall surface of the processing chamber which is positioned at least above the mounting table are covered by a dielectric material having a recombination coefficient of 0.002 or less.
US10734198B2

A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber defining a resonant cavity for supporting a primary microwave resonance mode having a primary microwave resonance mode frequency f; a plurality of microwave sources coupled to the plasma chamber for generating and feeding microwaves having a total microwave power Pτ into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; and a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use, wherein the plurality of microwave sources are configured to couple at least 30% of the total microwave power Pτ into the plasma chamber in the primary microwave resonance mode frequency f, and wherein at least some of the plurality of microwave sources are solid state microwave sources.
US10734197B2

A plasma process apparatus that utilizes plasma so as to perform a predetermined process on a substrate, and includes a process chamber that houses a substrate subjected to the predetermined plasma process; a microwave generator; a dielectric window attached to the process chamber and provided with a concave portion provided at an outer surface of the dielectric window opposite to the process chamber and a through hole penetrating the dielectric window to the process chamber; a microwave transmission line; and a first process gas supplying portion including a gas conduit including a first portion provided at a front end and a second portion having a larger diameter than the first portion, the gas conduit being inserted from outside of the process chamber such that the first portion is inserted in the through hole and the second portion is inserted in the concave portion.
US10734191B2

This charged particle beam device is provided with: a plurality of detectors for detecting secondary particles, the detectors being disposed in a symmetrical manner around the optical axis of a primary charged particle beam closer to the charged particle source side than an objective lens; electrodes for forming an electric field oriented in directions corresponding to each of the plurality of detectors, the electrodes being provided on the travel routes of secondary particles from a sample to the detectors; and a control power supply for applying a voltage to the electrodes. Adjusting the voltage applied to each of the electrodes makes it possible to detect, upon deflecting, the secondary particles, and to control the range of azimuths of the secondary particles to be detected.
US10734187B2

A target assembly for generating radiation may comprise a target, a substrate and a window. The target may be capable of generating first radiation when impinged by a beam. The window may be at least partially permeable to the beam. The window and the substrate may form at least part of a hermetically sealed chamber and the target may be positioned in the chamber. The chamber may be filled with air having a normal or reduced content of oxygen.
US10734178B2

This electromagnetic contactor comprises a set of controlled switches (C1, C2, C3), at least one electromagnetic field generator (L; L1, L2), for example a coil, associated with an adjustable core (P) controlling the state of the controlled switches and a unit (UC) controlling the power supply of the electromagnetic field generator. It comprises means for detecting the position of the adjustable core to detect the state of the controlled switches.
US10734150B2

An inductor device (1) includes a magnetic body (2) and a conductor buried in the magnetic body (2), and the conductor includes first conductors (3) as metal pins. The magnetic body (2) is formed into a flat plate shape with a first main surface and a second main surface each having a predetermined shape, which oppose each other, and side surfaces connecting the first main surface and the second main surface. The conductor includes the first conductors (3) one end portions of which are exposed to the second main surface of the magnetic body (2) and a second conductor (4) which is connected to the other end portions of the first conductors (3).
US10734139B2

A feedthrough assembly and methods of making the feedthrough assembly are shown. A feedthrough assembly including a ferrule disposed about an insulator and having an outer surface and a first aperture defined by an inner surface, wherein the first aperture is sized and shaped to include a reservoir for a braze material, the reservoir including a base, the base having a width sized to accommodate a preform of the braze material, and at least two ledges formed by the inner surface, each ledge having a first surface facing inwardly toward the insulator and a second surface facing upwardly is shown. Methods of making the feedthrough assembly including such a ferrule are shown.
US10734135B2

A small-diameter insulated wire has a small diameter and high bending resistance. In a small-diameter insulated wire having a conductor and an insulating layer covering the conductor, a cross-sectional area of the conductor is 0.08 mm2 or more and 0.4 mm2 or less, the conductor is a copper alloy having a breaking strength of 815 MPa or more, a breaking strength of the insulating layer is 36.5 MPa or more, a thickness of the insulating layer is 0.1 mm or more and 0.2 mm or less, and a conductor pullout force for drawing the conductor from the small-diameter insulated wire is 9 N/30 mm or less.
US10734129B2

This disclosure is related to low-haze transparent conductors, ink compositions and method for making the same.
US10734128B2

The present invention relates to X-ray differential phase-contrast imaging, in particular to a deflection device for X-ray differential phase-contrast imaging. In order to provide differential phase-contrast imaging with improved dose efficiency, a deflection device (28) for X-ray differential phase-contrast imaging is provided, comprising a deflection structure (41) with a first plurality (44) of first areas (46), and a second plurality (48) of second areas (50). The first areas are provided to change the phase and/or amplitude of an X-ray radiation; and wherein the second areas are X-ray transparent. The first and second areas are arranged periodically such that, in the cross section, the deflection structure is provided with a profile arranged such that the second areas are provided in form of groove-like recesses (54) formed between first areas provided as projections (56). The adjacent projections form respective side surfaces (58) partly enclosing the respective recess arranged in between. The side surfaces of each recess have a varying distance (60) across the depth (62) of the recess.
US10734123B2

A system for evacuating the residual heat from a nuclear reactor comprises: a first heat exchanger, which transfers heat from a primary fluid of the reactor to a secondary fluid; a second heat exchanger, where the secondary fluid is cooled by an auxiliary fluid which crosses a cooling duct; and a control portion, subject to thermal expansion by effect of the heating, induced by an increase in the temperature of the primary fluid beyond a preset threshold, of the secondary fluid in the control portion; the control portion being connected to a mechanical actuator device moved by the thermal expansion of the control portion to open the cooling duct and allow the passage of auxiliary fluid into the cooling duct and through the second heat exchanger.
US10734117B2

Apparatuses (including devices and systems) and methods for determining if a patient will respond to a variety of cancer drugs.
US10734115B1

Methods are provided for validating theoretical improvements in the decision-support processes facilitating surveillance and monitoring of a patient's risk for developing a particular disease or condition and detecting the disease or condition. Patient information is received from a source and populated into an active risk assessment that monitors the patient's risk for developing Sepsis. At least a first and second set of actionable criteria for determining a patient's risk for developing sepsis are received. For each set of actionable criteria, it is determined that actionable criteria have been met. In some embodiments, software agents, operating in a multi-agent computing platform, perform each determination of whether actionable criteria are met. In some embodiments, in response to actionable criteria being met, a notification or alert is provided, and in some embodiments the results of the determinations of each set of actionable criteria are provided to facilitate validation of theoretical improvements.
US10734108B2

A system and method tracks touches in a healthcare environment in order to analyze paths of transmission and contamination for the purpose of eliminating and containing transmission of colonizing, drug-resistant pathogens. Touches are identified and tracked with the use of recording devices. Each touch is logged and a touch graph is generated to identify transmission paths.
US10734103B2

There is provided a stress management system that manages psychological stress of a user. The system includes: a first sensor that detects biological data of a user; a second sensor that detects life log data indicating an activity history of the user; a generator that generates stress data using the biological data, the stress data indicating a time series variation in a stress level of the user; an estimator that, when the stress level included in the stress data exceeds a threshold value, estimates whether or not stress experienced by the user is interpersonal stress that is caused by contact with other people, using the life log data; and a notifier that notifies the user of a result of the estimation by the estimator.
US10734093B1

Systems and methods for mounting a computing device. One system includes a wall mounting bracket having a front side and a back side. The system further includes a main chassis having a front side panel removably connected to the front side of the wall mounting bracket, a second side panel removably connected to the front side of the wall mounting bracket, and a computing device having a first side and a second side, the first side removably attached to the first side panel and the second side removably attached to the second side panel, and the main chassis connected to the front side of the wall mounting bracket.
US10734092B2

A vehicle, a satellite control system, and a method for controlling the same are provided. The satellite control system, for example, may include, but is not limited to, a control moment gyroscope having a gimbal, at least one gimbal angle sensor configured to determine an angle of the gimbal, each gimbal angle sensor having an output circuit configured to output the determined angle, a signal conditioner circuit having substantially identical circuit topology as the output circuit, and a common mode error compensation circuit electrically coupled to the signal conditioner, the common mode error compensation circuit configured to determine common mode error in the gimbal angle sensor based upon a voltage output from the signal conditioner circuit and to output a signal to compensate for the common mode error.
US10734083B2

A voltage driver includes a voltage divider, a first transistor and a second transistor. The voltage divider is connected with a first voltage source and a second voltage source, and generates a first bias voltage. A drain terminal of the first transistor is connected with a third voltage source. A gate terminal of the first transistor is connected with the voltage divider to receive the first bias voltage. A drain terminal of the second transistor is connected with a source terminal of the first transistor. A gate terminal of the second transistor receives a second bias voltage. A source terminal of the second transistor is connected with a fourth voltage source. The first transistor and the second transistor are of the same conductivity type and match each other. The source terminal of the first transistor generates an output voltage.
US10734082B2

A memory device includes multiple word lines. A method of operating the memory device includes: performing a first dummy read operation, with respect to first memory cells connected to a first word line among the word lines, by applying a dummy read voltage, having an offset level of a first level, to the first word line; determining, based on a result of the performing of the first dummy read operation, degradation of a threshold voltage distribution of the first memory cells; adjusting an offset level of the dummy read voltage as a second level, based on a result of the determining of the threshold voltage distribution; and performing a second dummy read operation with respect to second memory cells connected to a second word line among the word lines, by applying a dummy read voltage, having the offset level adjusted as the second level, to the second word line among the word lines.
US10734081B1

A method for implementing pulse-amplitude modulation on a memory device includes configuring a first resistor of a first memory die to a first resistance value. The method also includes configuring a second resistor of a second memory die to a second resistance value. The method also includes receiving, during performance of a read operation, in parallel: two voltage values from the first memory die; and two voltage values from the second memory die. The method also includes determining a first data bit value using the two voltage values from the first memory die. The method also includes determining a second data bit value using the two voltage values from the second memory die.
US10734080B2

A three-dimensional memory device includes memory stack structures in multiple memory arrays. Bit lines are split into multiple portions traversing different memory arrays. Each sense amplifier is connected to a first portion of a respective bit line via a respective first switching transistor device, and is connected to a second portion of the respective bit line via a respective second switching transistor device. The switching transistor devices connect each sense amplifier to one portion of the bit lines without connecting to another portion of the bit lines, thereby reducing the RC delay. The switching transistor devices may be provided as vertical field effect transistors located at a memory array level, or may be provided in another semiconductor chip.
US10734068B2

A quantum mechanical radio frequency (RF) signaling system includes a transmission line that receives and conducts an RF pulse signal operating at a radio frequency, a first qubit having a quantum mechanical state that is a linear combination of at least two quantum mechanical eigenstates, and a first network of reactive electrical components having an input that is coupled to the transmission line for receiving the RF pulse signal and an output that is coupled to the first qubit. The first network of reactive electrical components attenuates the amplitude of the RF pulse signal and produces a first attenuated RF pulse signal that is applied to the first qubit. The first attenuated RF pulse signal operates at the radio frequency and has a first attenuated amplitude that causes a predefined change in the linear combination of at least two quantum mechanical eigenstates within the first qubit.
US10734066B2

A write assist circuit can include a control circuit and a voltage generator. The control circuit can be configured to receive memory address information associated with a memory write operation for memory cells. The voltage generator can be configured to provide a reference voltage to one or more bitlines coupled to the memory cells. The voltage generator can include two capacitive elements, where during the memory write operation, (i) one of the capacitive elements can be configured to couple the reference voltage to a first negative voltage, and (ii) based on the memory address information, both capacitive elements can be configured to cumulatively couple the reference voltage to a second negative voltage that is lower than the first negative voltage.
US10734065B2

Various implementations described herein are directed to an integrated circuit. The integrated circuit may include read circuitry coupled to bitlines, and the read circuitry may be activated based on a read select signal to perform a read operation on the bitlines. The integrated circuit may include write circuitry coupled to the bitlines, and the write circuitry may be activated based on a write select signal to perform a write operation on the bitlines. The integrated circuit may include bitline discharge control circuitry coupled to the bitlines and the write circuitry, and the bitline discharge control circuitry may control the bitline discharge of the bitlines during the read operation so as to restrict a false read on the bitlines by providing a discharge boundary for the bitlines during the read operation.
US10734064B1

A memory control component has control circuitry and a data interface, the data interface to be coupled, via a plurality of data signaling paths, to a respective plurality of memory dies disposed on a memory module. The control circuitry transmits to the memory module a first configuration value that specifies a memory die quantity N that is permitted to range from a first value corresponding to the quantity of the data signaling paths to at least one value less than the first value. Thereafter, the control circuitry transmits a memory read command to the memory module to enable, in accordance with the first configuration value, a quantity N of the memory dies to output read data and enables the data interface to receive the read data via a respective quantity N of the data signaling paths.
US10734055B2

A memory device according to an embodiment includes: a plurality of memory cells including a storage element having a first and second terminals; a reference resistor having a third and fourth terminals; a first current source electrically connected to the first terminal of the storage element in the selected memory cell; a second current source electrically connected to the third terminal; and a determination circuit that determines the greater one among a resistance value of a storage element of selected one and a resistance value of the reference resistor, the resistance value of the reference resistor being smaller than a middle value between a mean value of first resistance values obtained from the storage elements in the high-resistance state and a mean value of second resistance values obtained from the storage elements in the low-resistance state, and greater than the mean value of the second resistance values.
US10734053B2

According to one embodiment, a magnetic memory device includes a conductive member, a first magnetic layer, a second magnetic layer, and a first nonmagnetic layer. The conductive member includes a first layer. The first layer includes at least one selected from the group consisting of HfN having a NaCl structure, HfN having a fcc structure, and HfC having a NaCl structure. The first magnetic layer is separated from the first layer in a first direction. The second magnetic layer is provided between the first layer and the first magnetic layer. The first nonmagnetic layer is provided between the first magnetic layer and the second magnetic layer.
US10734051B2

Embodiments provide a magnetic memory device and a method of writing a magnetic memory device. The magnetic memory device includes a magnetic tunnel junction including a reference layer, a free layer and a tunnel barrier layer between the reference and free layers, and a first conductive line adjacent to the free layer. A first spin-orbit current having a frequency decreasing with time flows through the first conductive line. The writing method includes applying the first spin-orbit current having the frequency decreasing with time to the first conductive line.
US10734050B2

Methods and apparatuses of providing word line voltages are disclosed. An example method includes: activating and deactivating a word line. Activating the word line includes: rendering the first, second and third transistors conductive, non-conductive and non-conductive, respectively, wherein the first transistor is rendered conductive by supplying a gate of the first transistor with a first voltage; and supplying the first node with an active voltage. Deactivating the word line includes: changing a voltage of the first node from the active voltage to an inactive voltage; changing a voltage of the gate of the first transistor from the first voltage to a second voltage, wherein the first transistor is kept conductive by the second voltage; rendering the third transistor conductive during the gate of the first transistor being at the second voltage; and rendering the first and second transistors non-conductive and conductive, respectively, after the third transistor has been rendered conductive.
US10734048B2

One or more control lines other than those used to activate a non-volatile memory cell may be used to sense a data value of the cell. For example, an apparatus may include a selection circuit that selects, based on an address corresponding to a non-volatile memory cell included an array of non-volatile memory cells, a word line coupled to the non-volatile memory cells to activate the non-volatile memory cell. An amplifier circuit may sense a data value stored in the non-volatile memory cell based on a sense signal having a voltage level based on voltage levels of one or more other word lines of the array of non-volatile memory cells. In another example, a data value of a non-volatile memory cell coupled to a word line may be sensed based on the voltage levels of one or more dummy sense lines within the array.
US10734046B2

Apparatuses and methods for providing voltages to conductive lines between which clock signal lines are disposed are disclosed. Voltages provided to the conductive lines may provide voltage conditions for clock signals on the clock signal lines that are relatively the same for at least some of the clock edges of the clock signals. Having the same voltage conditions may mitigate variations in timing/phase between the clock signals due to different voltage influences when a clock signal transitions from a low clock level to a high clock level.
US10734045B2

A memory system may include: a controller suitable for: generating a first clock and first pattern data having a first phase difference, in a write calibration mode, calibrating, the first phase difference depending on a second information, in a read calibration mode, detecting, a first and second value of the first and second pattern data according to the first and second clock, generating, a first information according to comparing of the first and second values, receiving by calibrating, a second phase difference generated by a memory device depending on the first information; and the memory device suitable for: generating the second clock and the second pattern data having the second phase difference, in the write calibration mode, detecting, a first and second value of the first and second pattern data according to the first and second clock, generating, the second information according to comparing of the first and second values.
US10734040B1

Techniques are disclosed relating to level-shifting circuitry and time borrowing across voltage domains. In some embodiments, sense amplifier circuitry generates, based on an input signal at a first voltage level, an output signal at a second, different voltage level. Pulse circuitry may generate a pulse signal in response to an active clock edge of a clock signal that is input to the sense amplifier circuitry. Initial resolution circuitry may drive the output signal of the sense amplifier circuitry to match the value of the input signal during the pulse signal. Secondary resolution circuitry may maintain a current value of the output signal after expiration of the pulse signal. This may allow the input signal to change during the pulse, e.g., to enable time borrowing by upstream circuitry.
US10734035B1

A hard disk drive comprises a sensor configured to detect a mixing ratio within the hard disk drive and a membrane electrode assembly. The membrane electrode assembly comprises a gas flow path that couples an inside of the hard disk drive to an outside of the hard disk drive, and the gas flow path includes a cathode and anode that electrolytically remove water vapor from the inside of the hard disk drive. The drive further includes an energy source coupled to the membrane electrode assembly and a controller coupled to the sensor and the energy source. The controller is configured to activate the energy source in response to the sensor detecting a mixing ratio greater than a threshold mixing ratio and to deactivate the energy source in response to the sensor detecting a mixing ratio less than the threshold mixing ratio.
US10734033B2

Methods and systems that reduce off-track write retry operations in shingled magnetic recording systems. In one implementation, the method includes writing data to an initial track, determining which side of the initial track is a shingled side, calculating a percentage of position error signal (PES) at a shingled side end of the initial track (PES1) when an off-track write operation occurs, determining whether the PES1 meets a first pre-determined threshold, continue writing data to a second track responsive to determining the PES1 is below a first pre-determined threshold, calculating a percentage of PES at a shingled side end of the second track (PES2), determining whether a combined value of PES1 and PES2 is above a second predetermined threshold to determine a probability value of the initial track being erased, and continue writing to a third track if the combined value is below the second predetermined threshold.
US10734011B2

A method for transmission path noise control using an audio headset and a sending device comprises generating microphone signals by a first and a second microphone of the headset based on detected sound including desired audio information and noise. An encoded signal is generated on a first line of a data cable by means of the headset by encoding input signals depending on the microphone signals. The method comprises transmitting the encoded signal from the headset to the sending device via the first, reconstructing the input signals by decoding the encoded signal by the sending device, generating by the sending device a clean signal by applying a first noise control algorithm to the reconstructed first and second input signal and sending a signal depending on the clean signal to a communication network.
US10734010B2

Embodiments relate to an audio processing unit that includes a buffer, bitstream payload deformatter, and a decoding subsystem. The buffer stores at least one block of an encoded audio bitstream. The block includes a fill element that begins with an identifier followed by fill data. The fill data includes at least one flag identifying whether enhanced spectral band replication (eSBR) processing is to be performed on audio content of the block. A corresponding method for decoding an encoded audio bitstream is also provided.
US10733998B2

Methods, apparatus and articles of manufacture to identify sources of network streaming services are disclosed. An example apparatus includes a coding format identifier to identify, from a received first audio signal representing a decompressed second audio signal, an audio compression configuration used to compress a third audio signal to form the second audio signal, and a source identifier to identify a source of the second audio signal based on the identified audio compression configuration.
US10733990B2

A method, a system, and a computer program product for preventing initiation of a voice recognition session. The method includes monitoring at least one audio output channel for at least one audio trigger phrase that initiates a voice recognition session. The method further includes in response to detecting the at least one audio trigger phrase on the at least one audio output channel, setting a logic state of at least one output trigger detector of the at least one audio output channel to a first state. The method further includes gating a logic state of at least one input trigger detector of at least one audio input channel to the first state for a time period and preventing initiation of a voice recognition session by the at least one audio trigger phrase on the at least one audio input channel while the logic state is the first state.
US10733985B2

Methods of processing video are presented to generate signatures for motion segmented regions over two or more frames. Two frames are differenced using an adaptive threshold to generate a two-frame difference image. The adaptive threshold is based on a motion histogram analysis which may vary according to motion history data. Also, a count of pixels is determined in image regions of the motion adapted two-frame difference image which identifies when the count is not within a threshold range to modify the motion adaptive threshold. A motion history image is created from the two-frame difference image. The motion history image is segmented to generate one or more motion segmented regions and a descriptor and a signature are generated for a selected motion segmented region.
US10733978B2

An electronic device is provided. The electronic device includes a memory configured to store at least a portion of a plurality of pieces of speech information used for voice recognition, and a processor operatively connected to the memory, wherein the processor selects speaker speech information from at least a portion of the plurality of pieces of speech information based on mutual similarity, and generates voice recognition information to be registered as personalized voice information based on the speaker speech information.
US10733975B2

An out-of-service (OOS) sentence generating method includes: training models based on a target utterance template of a target service and a target sentence generated from the target utterance template; generating a similar utterance template that is similar to the target utterance template based on a trained model, among the trained models, and a sentence generated from an utterance template of another service; and generating a similar sentence that is similar to the target sentence based on another trained model, among the trained models, and the similar utterance template.
US10733972B2

Various embodiments of the present invention relate to an electronic device and method for cancelling (or suppressing) a noise of an audio signal of an unmanned aerial vehicle, the electronic device comprising: a movement module comprising a motor; an audio module comprising a first noise suppression module; a memory module for storing control data corresponding to driving data (round per minute RPM) of the motor; and a processor functionally coupled to the audio module, the movement module and the memory module, wherein the processor sets control data according to the driving data of the motor, and applies the set control data to the audio module so that the first noise suppression module suppresses or cancels a noise in an audio signal inputted to the audio module based on the control data. Other embodiments are also applicable.
US10733970B2

A noise control method and device are provided that relate to the field of noise control. A noise control method includes: acquiring noise information of an ambient environment; generating a noise control message including the noise information, the noise control message being used to notify other devices to adjust a volume; and sending the noise control message to the other devices. Another noise control method includes: receiving, by a device, a noise control message from an external device; judging, according to the noise control message, whether the device is necessary to perform volume adjustment; and adjusting a volume according to a volume adjustment policy if the device is necessary to perform volume adjustment. The noise control method and device in the embodiments of the present application easily and quickly realize control over ambient noise, thereby improving user experience.
US10733965B1

A stringed instrument with sympathetic strings is provided that includes (in addition to the primary elements corresponding to standard instrument elements) sympathetic strings, one or more supplementary bridges, a supplementary string termination assembly, and a set of supplementary tuners. The sympathetic strings are stretched diagonally across the soundboard of the instrument, with one end of each string attached at a supplementary tuner and the other end attached at a supplementary string termination assembly. The sympathetic strings are spaced by the supplementary bridge(s) a sufficient distance from the soundboard to prevent interaction with it during vibration of the string during playing. The sympathetic strings are activated by sound vibrations created by the bowed primary strings, may additionally be activated by plucking or strumming, and may be manually muted.
US10733963B2

A luminance space conversion section of an information processing apparatus converts an image signal represented in a luminance space corresponding to an SDR into a signal represented in a luminance space corresponding to an HDR, and outputs the converted signal to a synthesis processing section that performs alpha blend processing on an HDR image. In an adjustment mode, a parameter adjustment section allows a display apparatus to display an adjustment image represented in the SDR and adjusts a parameter used for a conversion of the luminance space so that a change in a display image is made small before and after converting the luminance space. The parameter is stored in a conversion parameter storage section after the adjustment and is used when a luminance signal conversion section performs conversion processing.
US10733960B2

A sticker system includes at least a head-mounted device and a sticker. In an embodiment, the sticker system receives an image of the sticker captured by an imaging sensor. The sticker system determines registration information by processing a fiducial marker of the sticker shown in the image. The sticker system determines location information of the HMD. Additionally, the sticker system determines a position of the sticker relative to the HMD using the registration information and the location information. The sticker system provides a (e.g., augmented reality) graphic to the HMD for presentation to the user based on the position of the sticker.
US10733954B2

A display control device for outputting display data to frame buffers includes an input for receiving portions of the display data, different portions being in raw form and in compressed form. A data controller determines, for each received portion, whether it is in compressed form or raw form and controls the received portion to move along a first, bypass, path if it is determined that the received portion of display data is in raw form and to control the received portion of display data to move along a second path to a decompression engine if it is determined that the received portion of display data is in compressed form. The decompression engine decompresses the particular portion of compressed display data and forwards a corresponding portion of decompressed display data along a third path, the portions of data from the first and third paths then being output to the frame buffers.
US10733953B2

A method for adjusting output images and multi-pictures display system are provided. The method includes following steps. A monitor resolution, a multi-pictures display mode and a rotation status of a display device are obtained. A display setting in an operating system (OS) of an image source apparatus is obtained. Whether the display setting in the OS satisfies an optimal display condition is determined according to the monitor resolution, the multi-pictures display mode and the rotation status of the display device. If the display setting does not satisfy the optimal display condition, the display setting in the OS is adjusting according to the optimal display condition. If the display setting satisfies the optimal display condition, a plurality of pixels of a single frame output by the image source device is one-by-one corresponding to a plurality of pixel units of the display device configured for displaying the single frame.
US10733951B2

A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel rows, a data driver configured to transfer data voltages to the display panel, a gate driver configured to transfer gate signals to the display panel, and a signal controller configured to control the data driver and the gate driver. The pixel rows are divided into i (i is a natural number of 2 or more) pixel row groups including a plurality of pixel rows, respectively. The display panel displays one still image for one frame set including the i sequential frames, and each of the i pixel row groups is charged by receiving the data voltage for each frame of the frame set, and the frames in which the i pixel row groups are charged are different from each other.
US10733945B2

This application relates to a display panel. The display panel includes: a substrate, active switches are formed on the substrate; pixel units arranged in a matrix manner, where three of the pixel units form a pixel group, coupled to any data line and three scanning lines arranged in order, and the pixel group includes: a first pixel unit, coupled between a first scanning line and the data line; a second pixel unit, coupled between a second scanning line and the data line; and a third pixel unit, coupled between a third scanning line and the data line; and a charge sharing switch, where a control end of the charge sharing switch is connected to the first scanning line, a first end of the charge sharing switch is connected to the second pixel unit, and a second end of the charge sharing switch is connected to the third pixel unit.
US10733940B2

An organic light-emitting display device can include an organic light-emitting element; a driving transistor connected in series with the organic light-emitting element, the driving transistor and the organic light-emitting element being between a first driving power supply line for supplying a first driving voltage and a second driving power supply line for supplying a second driving voltage lower than first driving voltage; a first transistor configured to turn on based on an i-th scan signal and supply a data voltage to a first node, where i is a natural number greater than or equal to 2 and less than or equal to N, and N is a number of scan-lines; a capacitor between the first node and a gate electrode of the driving transistor, the capacitor is configured to supply a turn-on signal of the driving transistor to the gate electrode of the driving transistor based on the data voltage; and a second transistor configured to turn on based on a (i−1)-th scan signal and supply a first reference voltage to a second node, in which the second node is disposed between the driving transistor and the capacitor, and the capacitor is between the first and second nodes.
US10733937B2

An organic light-emitting diode (OLED) display can include a display panel including sub-pixels; a deterioration sensing unit configured to sense a deterioration state of the display panel; a power supply configured to output a high voltage for driving the sub-pixels; and a timing controller configured to: receive a deterioration sensing result including information on the deterioration state of the display panel from the deterioration sensing unit, continuously vary the high voltage based on the deterioration sensing result received from the deterioration sensing unit, and provide the varied high voltage to the sub-pixels.
US10733934B2

An organic light-emitting display device can include a display panel including a plurality of pixels and configured to express luminance based on a driving current corresponding to a data signal for providing a data voltage and a first power; a control circuit configured to output a first mode control signal corresponding to a normal mode and a second mode control signal corresponding to a standby mode for providing lower luminance than the normal mode; and a power source configured to supply the first power to the display panel at a first voltage level, in response to receiving the first mode control signal corresponding to the normal mode, and supply the first power to the display panel at a second voltage level that is lower than the first voltage level, in response to receiving the second mode control signal corresponding to the standby mode.
US10733929B2

An integrated circuit, a mobile phone and a display are provided with the integrated circuit. The integrated circuit includes a substrate, a data distributor and a data driver distributed on the substrate. A power line trace gap is provided within the data distributor; a first data line connected to the data driver and to the data distributor; and a first power line connected to the data driver and passing through the power line trace gap.
US10733923B2

The present application discloses a detection method for a display panel and a detection apparatus for a display panel. The detection method includes the following steps: storing a picture for detection in a source driver circuit board of a display panel; electrically connecting a power source board generating a power source signal directly to the source driver circuit board.
US10733918B2

A method of converting a static display to a dynamic display includes providing a static display and removing a portion of the display to form a cutout area. A dynamic display sheet is positioned at the cutout area. The dynamic display sheet includes a first layer comprising a plurality of three-dimensional static programmable electrochromic (SPEC) particles; a second layer comprising a positively charged conductive sheet; a third layer comprising a negatively charged conductive sheet; a laminate layer; and a control element comprising a processor for activating the SPEC particles to switch from a first to a second colored state; wherein the second and third layers are respectively positioned on either side of the first layer, and the laminate layer encompasses the first, the second, and the third layers. The dynamic display sheet is activated to cause the SPEC particles to selectively flash between the first and second colored states.
US10733911B2

A three-dimensional rib for a crash test dummy includes at least two layers of a band material and a layer of damping material sandwiched in between the at least two layers of the band material.
US10733903B2

In accordance with the present invention, there are provided health and wellness management methods which generate an action plan set of recommendations by taking into account a wide variety of inputs, including subject-specific information and globally applicable information. Also provided herewith are systems for the practice of the above-described methods.
US10733897B2

Techniques for conditional presentation of auxiliary information are provided. In one example, a computer-implemented method comprises determining, by a device operatively coupled to a processor, feedback information for a user in response to a media presentation, wherein the feedback information is indicative of a mental state of the user during presentation of the media presentation. The computer-implemented method can further comprise determining content of the media presentation associated with the mental state of the user, and determining auxiliary information about the content based on the mental state of the user. The computer-implemented method can further comprise providing, by the device, the content to a user device during the presentation of the media presentation and for rendering at the user device in association with presentation of the content.
US10733893B1

A system for warning vulnerable road users (i.e., pedestrians, cyclists, other, etc) that a vehicle or cyclist is approaching and there may be a potential danger of a collision. The system may also provides an alert to an oncoming vehicle or cyclist of the location of a vulnerable road user within a cross-walk. The system includes intelligent intersections which are enabled with dedicated short range communication (“DSRC”) for detecting vehicles and vulnerable road users. This information may be received by DSRC enabled vehicles and allow the vehicles to warn the drivers of various situations which may be potentially dangerous. A plurality of lights is embedded along the edges of a crosswalk which provides an alert or signal to a vulnerable road user that a vehicle or cyclist is approaching. Sections lights may be illuminated to provide an indication of the location of the vulnerable road user within the cross-walk.
US10733890B2

A method to be implemented by a computer system includes: transforming each of training images into a respective transformed training image; calculating a classification loss value based on detection results that are acquired from parking status prediction results obtained by performing feature extraction on the transformed training images; and adjusting candidate spatial transforming parameters, candidate feature extraction parameters and candidate logistic regression parameters when it is determined that a combination of the aforementioned parameters is not optimal based on the classification loss value, followed by repeating above-mentioned steps using the adjusted parameters.
US10733889B2

A parking assist method includes acquiring recognition information on parked vehicles existing in a parking lot; extracting two or more vehicles parked side by side from the recognition information and grouping the two or more vehicles into a set of vehicles; and when a space into which parking is possible exists between the parked vehicles included in the grouped set of vehicles, estimating the space as an available parking space. The disclosure further includes setting a pathway direction reference line extending along a pathway of the parking lot; calculating reference distances between the pathway direction reference line and the parked vehicles included in the above recognition information; and extracting the two or more vehicles from the above recognition information and grouping the two or more vehicles into the set of vehicles on the basis of the calculated reference distances.
US10733888B2

Methods, computer program products, and systems are presented. The methods include, for instance: obtaining passenger information of one or more passenger traveling within a transportation network; and providing one or more output based on a processing of the passenger information.
US10733887B2

A method for interaction between a first road user and a second road user wherein the first road user sends a driving maneuver request into the surroundings of the first road user; the second road user receives a request signal indicative of the driving maneuver request; the second road user accepts the driving maneuver request; acceptance of the driving maneuver request is signaled to the first road user; and driving maneuver recommendations determined based on the driving maneuver request are signaled to the first road user and/or to the second road user.
US10733886B1

Systems and methods for real-time detection and mitigation anomalous behavior of a remote vehicle are provided, e.g., vehicle behavior that is consistent with distracted or unexpectedly disabled driving. On-board and off-board sensors associated with a subject vehicle may monitor the subject vehicle's environment, and behavior characteristics of a remote vehicle operating within the subject vehicle's environment may be determined based upon collected sensor data. The remote vehicle's behavior characteristics may be utilized to detect or determine the presence of anomalous behavior, which may be anomalous for the current contextual conditions of the vehicles' environment. Mitigating actions for detected remote vehicle anomalous behaviors may be suggested and/or automatically implemented at the subject vehicle and/or at proximate vehicles to avoid or reduce the risk of accidents, injury, or death resulting from the anomalous behavior. In some situations, authorities may be notified.
US10733885B2

A method of operating an incident avoidance system for use in a vehicle comprises a gateway receiving a plurality of vehicular data samples from a plurality of data sources in a vicinity of a target vehicle. A stream processor coupled to the gateway, categorizes a first plurality of low latency data samples from the plurality of vehicular data samples based on an allowable latency of each of the plurality of vehicular data samples. A rules engine coupled to the stream processor, receives the plurality of low latency data samples. The rules engine produces a predictive model based on the plurality of low latency data samples. A notification service accesses the predictive model and situational data of the target vehicle to predict an incident. The notification service transmits a notification of the incident to the target vehicle.
US10733883B1

Computer-implemented predictions of upcoming traffic control signal states or state changes can be used to improve convenience, safety, and fuel economy. Such information can be used advantageously by a human operator, or by an autonomous or semi-autonomous vehicle control system. User (for example, driver) requests for a signal change may be implemented in traffic control systems, with all due care. User requests are validated and compared to traffic signal state change predictions. Only when appropriate conditions are met, the user request is used to generate a “synthetic call” to the applicable traffic signal controller (TSC). The new synthetic call substitutes for the usual call signal which arises from a fixed physical hardware detection system such as an inductive loop in the pavement.
US10733878B2

A system and method for providing increased traffic carrying capacity of a road, such as a highway, by modifying an existing roadway from, for example, four lanes to five lanes, to create an additional travel lane. The system and method dynamically changes the width of travel lanes using, for example, embedded pavement lights, or other lighting arrangements, in lieu of traditional painted lane lines. As traffic volumes increase and speeds decrease along the road, an intelligent transport system (ITS) sends a congestion signal to the overhead lane controls and dynamic message signs (DMS) along the entire road segment of interest. The posted speed limits are changed, and the lane markings are controlled to dynamically increase the number of lanes in the road segment to five, for example, of narrower widths until traffic volumes reduce and the number of lanes can be returned to four, for example, with normal speed limits.
US10733875B2

Provided is a detection device for detecting inaudible sound waves generated by a user's bodily motion to identify the user's motion. The detection device includes: a detector detecting inaudible sound waves generated by a bodily motion; an acquiring unit acquiring burst information on at least one of the duration and frequency of a burst during which a cluster of pulses appears in a waveform of the inaudible sound waves detected by the detector; a memory storing reference information on reference values compared with the burst information, the reference values differing from each other depending on the types of bodily motions generating inaudible sound waves; and a determining unit comparing the burst information with the reference information to determine which of bodily motions has caused the inaudible sound waves detected by the detector.
US10733873B2

Technology for an enhanced personal emergency response system (e-PERS) unit is disclosed. The e-PERS unit can transmit a general message related to a personal emergency to a personal emergency response system (PERS) computing service environment (CSE), wherein the general message includes an identification (ID) of the e-PERS unit to enable the e-PERS CSE to send the ID of the e-PERS unit to a monitoring station. The e-PERS unit can receive a unit profile message from the e-PERS CSE. The e-PERS unit can: open a voice channel to the monitoring station in response to receiving the general message from the e-PERS CSE, or receive a voice call from the monitoring station in response to receiving the ID of the e-PERS unit at the monitoring station. The e-PERS unit can include a display screen and a base unit help button.
US10733869B2

A carbon monoxide gas detection and warning system for a portable phone device is disclosed which includes a phone case dimensioned and configured to receive a portable phone device, the phone case having a raised outer shell portion that includes at least one sensing port communicating with a corresponding sensing chamber formed within a wall of the shell, and a sensing circuit embedded in the shell of the phone case, the sensing circuit including a carbon monoxide sensor operatively associated with the sensing chamber of the at least one sensing port for generating a gas detection signal upon detecting the presence of carbon monoxide gas in the sensing chamber, and a controller for receiving the gas detection signal from the carbon monoxide sensor and for periodically sending an output signal to the portable phone device by way of a wireless transmitter.
US10733853B2

Provided is a technology for enhancing movement efficiency and safety overall without depending on a person's experience or intuition, when a guidance instruction is given to a crowd. A crowd index calculating unit calculates an index regarding safety of a crowd and an index regarding movement efficiency of the crowd on the basis of crowd information on the crowd in target areas. Further, a crowd allocation determining unit determines allocation of the crowd in guidance spots to the target areas on the basis of the indexes calculated for the respective target areas. Further, a guidance instruction determining unit is provided with the guidance instruction determining unit that determines, for each guidance spot, details of a guidance instruction based on the determined allocation.
US10733852B2

There is provided a signal control device including a signal output unit that outputs a signal for a vibratory device, and a signal control unit that controls the signal. Between a case where a change from a reference level to a first level is exerted on the signal and a case where a change from the first level to the reference level is exerted on the signal, magnitudes of variation amounts of acceleration per unit time generated in the vibratory device are different from each other. The signal control unit exerts the change from the reference level to the first level and the change from the first level to the reference level on the signal.
US10733851B2

A sales registration apparatus includes a commodity reader and a main body housing the reader. First attachment sections are distributed along a side surface of the main body at a fixed interval in the height direction. Each first attachment section is configured to permit the attachment of an additional component to the side surface. Each first attachment section is within a sub-portion of the side surface having a height that is a fixed unit height or an integer multiple of the fixed unit height. Cover sections are provided with each having a width equal to a width of the side surface and a height that is equal to the fixed unit height or an integer multiple of the fixed unit height. The cover section are attached to the side surface and cover any first attachment section not occupied by an additional component.
US10733846B2

Gaming systems and methods which retain one or more persistent elements upon an occurrence of a persistent element elimination event.
US10733830B2

A display for an electronic gaming machine (EGM) may have a display including a main display portion and one or more curved display side portions. In some examples, the EGM may include a sensor system residing at least in part on the one or more curved display side portions. A control system may be configured to cause the main display portion to display one or more images corresponding to a touch, gesture or force detected by the sensor system. One or more of the curved display side portions may be used to display images corresponding to virtual control devices and/or an attract sequence for a game. In some instances, one or more of the curved display side portions may be used to display images corresponding to an attract sequence, player identification information and/or advertising while the main display portion is being used to present an instance of the wagering game.
US10733827B2

A card storing case includes a left plate and a right plate arranged opposite to one another. An inner side of the left plate and an inner side of the right plate are respectively provided with a plurality of guide grooves. The card storing case further includes a card bracket slidably arranged in the guide groove. When a card is transferred into the card bracket, the card bracket slides along the guide groove, such that the card is moved and stored in the guide groove. A card bracket and a guide groove are arranged in the card storing case, such that a card is moved and stored in the guide groove via the card bracket, which not only shortens a transfer path of the card in a process of storing or withdrawing the card, but also reduces operation time in storing or withdrawing the card.
US10733824B2

A sound password unlocking method, comprises unlocking procedures: collecting a sound password signal that the user plays and performing the analog to digital conversion (11); Inputting the converted sound password signal to a reference signal input end of an adaptive noise cancellation module; inputting an original signal to an original signal input end of the adaptive noise cancellation module; producing a first output signal in adaptive noise cancellation (12); Calculating the difference between the first output signal and the original signal (13); Comparing the difference between the first output signal and the original signal with a standard difference; determining the sound password is correct if the two difference values are identical and enabling the motor to drive a lock cylinder to open otherwise no unlock operation executed (14). The sound password unlocking method provided by the present invention, based on adaptive noise cancellation is hard to be cracked, which is reliable and safe. The lock could be locked by sound password recognition.
US10733823B2

Methods for replacing a first garage door controller with a second garage door controller can include electrically decoupling the first garage door controller from a first wire that is electrically coupled to the garage door opener. Methods can include electrically decoupling the first garage door controller from a second wire that is electrically coupled to the garage door opener. Methods can also include electrically coupling the second garage door controller to the first wire and electrically coupling the second garage door controller to the second wire. Methods can even include communicatively coupling the second garage door controller to an Internet router to thereby communicatively couple the second garage door controller to a wireless network.
US10733816B2

A locking system for a cabinet may include a plurality of hubs to pass signals from activation devices and for power distribution to locks controlling access to drawers and/or openings of the cabinet. The hubs may also pass signals between pairs of locks, for example for drawer slides used for drawers of the cabinets. In some embodiments the hubs passively pass the signals, and in some embodiments each of the hubs are identical.
US10733809B2

Provided are an information processing device and an information processing method. The information processing device (100) comprises a processing circuit (110) configured to eliminate partial details of at least one part of a three-dimensional model on a condition that a shape semantics of the at least one part is maintained unchanged, so as to generate a modified version of the three-dimensional model. The processing circuit (110) is further configured to control to send the modified version and recovery information to a recipient, wherein the recovery information is used to restore the modified version to the original version of the three-dimensional model.
US10733794B2

One embodiment of the present invention includes a parallel processing unit (PPU) that performs pixel shading at variable granularities. For effects that vary at a low frequency across a pixel block, a coarse shading unit performs the associated shading operations on a subset of the pixels in the pixel block. By contrast, for effects that vary at a high frequency across the pixel block, fine shading units perform the associated shading operations on each pixel in the pixel block. Because the PPU implements coarse shading units and fine shading units, the PPU may tune the shading rate per-effect based on the frequency of variation across each pixel group. By contrast, conventional PPUs typically compute all effects per-pixel, performing redundant shading operations for low frequency effects. Consequently, to produce similar image quality, the PPU consumes less power and increases the rendering frame rate compared to a conventional PPU.
US10733791B2

The invention discloses a real-time rendering method based on energy consumption-error precomputation, comprising: determining the spatial level structure of the scene to be rendered through adaptive subdivision of the space positions and look space of the camera browsable to the user in the 3D scene to be rendered; during the process of adaptive subdivision of the space, for each position subspace obtained at the completion of each subdivision, obtaining the error and energy consumption of the camera for rendering the 3D scene using a plurality of sets of preset rendering parameters in each look subspace at each vertex of the bounding volume that bounds the position subspace, and Pareto curve of the corresponding vertex and look subspace is built based on the error and energy consumption; based on the current camera viewpoint information, searching and obtaining the target Pareto curve in the spatial level structure to determine a set of rendering parameters satisfying the precomputation condition as optimum rendering parameters to perform rendering. The present invention not only saves a great deal of energy, but also ensures the quality of rendering result and extends the battery life.
US10733782B2

To perform a graphics processing operation for the entirety of an area of a render output being generated by a graphics processor, a command to draw a primitive occupying the entire area of the render output is issued to the graphics processor. The graphics processor draws the primitive by determining the vertices to use for the primitive from the area of the render output. In a tile-based graphics processor at least, the graphics processor in an embodiment also determines whether it is unnecessary to process the graphics processing command for a rendering tile and when it is determined that processing the graphics processing command for the rendering tile is unnecessary, the graphics processor omits processing the graphics processing command for the rendering tile.
US10733774B2

An apparatus for displaying a heat map on a perspective drawing includes an object detector configured to detect an object via at least one camera, a horizontal distance calculator configured to calculate a horizontal distance between the detected object and the at least one camera, an object display configured to display the detected object on the perspective drawing based on the calculated horizontal distance, and a heat-map display configured to display the heat map according to a trace density of the object displayed on the perspective drawing.
US10733769B2

The disclosed computer-implemented method may include generating color schemes. In some embodiments, the systems described herein may generate a color scheme by plotting non-linear curves through various planes that each represent an attribute of a color, selecting points on the curves, and generating colors from the values of the points. By generating colors schemes based on non-linear curves, the systems described herein may easily and efficiently generate aesthetically pleasing color schemes with colors predictably clustered in light and dark luminosities, facilitating the creation of user interfaces that are accessible to visually impaired users. Various other methods, systems, and computer-readable media are also disclosed.
US10733765B2

The systems and methods described herein can pre-process a blendshape matrix via a global clusterization process and a local clusterization process. The pre-processing can cause the blendshape matrix to be divided into multiple blocks. The techniques can further apply a matrix compression technique to each block of the blendshape matrix to generate a compression result. The matrix compression technique can comprise a matrix approximation step, an accuracy verification step, and a recursive compression step. The compression result for each block may be combined to generate a compressed blendshape matrix for rendering a virtual entity.
US10733763B2

A mura detection device includes an XYZ coordinate system conversion unit which receives a photographed image of a display device and converts the photographed image into XYZ image data according to XYZ chromatic coordinates, a background image generation unit which generates background image data obtained by removing a part of the XYZ image data, a color difference calculation unit which generates color difference image data by comparing the photographed image and the background image data, and a mura data generation unit which calculates a color mura index value using the color difference image data.
US10733761B2

This disclosure is directed to calibrating sensors mounted on an autonomous vehicle. First image data and second image data representing an environment can be captured by first and second cameras, respectively (and or a single camera at different points in time). Point pairs comprising a first point in the first image data and a second point in the second image data can be determined and projection errors associated with the points can be determined. A subset of point pairs can be determined, e.g., by excluding point pairs with the highest projection error. Calibration data associated with the subset of points can be determined and used to calibrate the cameras without the need for calibration infrastructure.
US10733758B2

Operations of the present disclosure may include receiving a group of images taken by a camera over time in an environment. The operations may also include identifying a first position of an object in a target region of the environment in a first image of the group of images and identifying a second position of the object in a second image of the group of images. Additionally, the operations may include determining an estimated trajectory of the object based on the first position of the object and the second position of the object. The operations may further include, based on the estimated trajectory, estimating a ground position in the environment associated with a starting point of the estimated trajectory of the object. Additionally, the operations may include providing the ground position associated with the starting point of the estimated trajectory of the object for display in a graphical user interface.
US10733749B2

An apparatus for supervising a vicinity of a vehicle includes: an image capturing unit that captures a plurality of images in which an object is simultaneously captured from different locations; a parallax calculation unit that performs a sub pixel estimation based on the plurality of images to calculate a parallax value; a parallax offset calculation unit that calculates a parallax offset value based on the parallax value under a condition where a decimal part S of the parallax value is within a predetermined range; and a parallax correction unit that corrects the parallax value using the parallax offset value.
US10733748B2

An optical dimensioning system includes light emitting assemblies configured to project a predetermined pattern on an object. The optical dimensioning system further includes an imaging assembly configured to sense light scattered and/or reflected of the object, and to capture an image of the object while the pattern is projected. A processing assembly, in the optical dimensioning system, is configured to analyze the image of the object to determine one or more dimension parameters of the object.
US10733746B2

The present disclosure relates to a method and system for registering multi-modality images. The method may include: acquiring a first image relating to a registration model, wherein the registration model includes a plurality of reference objects; acquiring a second image relating to the registration model; determining a set of reference points based on the plurality of reference objects; determining a set of mapping data corresponding to the set of reference points in the first image and the second image; and determining one or more registration parameters based on the set of mapping data.
US10733745B2

Methods, systems, and computer readable media for deriving a three-dimensional (3D) textured surface from endoscopic video are disclosed. According to one method for deriving a 3D textured surface from endoscopic video, the method comprises: performing video frame preprocessing to identify a plurality of video frames of an endoscopic video, wherein the video frame preprocessing includes informative frame selection, specularity removal, and key-frame selection; generating, using a neural network or a shape-from-motion-and-shading (SfMS) approach, a 3D textured surface from the plurality of video frames; and optionally registering the 3D textured surface to at least one CT image.
US10733742B2

A method enables object label persistence between subsequent images captured by a camera. One or more processors receive a first image, which is captured by an image sensor on a camera, and which includes a depiction of an object. The processor(s) generate a label for the object, and display the first image on a display. The processor(s) subsequently receive movement data that describes a movement of the camera after the image sensor on the camera captures the first image and before the image sensor on the camera captures a second image. The processor(s) receive the second image. The processor(s) display the second image on the display, and then detect a pixel shift between the first image and the second image as displayed on the display. The processor(s) then label the object with the label on the second image as displayed on the display.
US10733740B2

A method of recognizing changes in a detection zone is provided in which three-dimensional image data of the detection zone are detected and evaluated to recognize changes with reference to three-dimensional reference image data. The detection zone is divided into cells in this process. Reference limit values at which heights objects are recognized are determined in a teaching phase. In an operating phase, a maximum value and/or a minimal value of the heights of currently recognized objects is/are determined from the respective detected image data and a change is recognized on a deviation with respect to the reference limit values.
US10733739B2

The present disclosure provides a method and system for displaying a target image based on a robot. The method includes successively acquiring video frame images; when a following target in an acquired kth-frame picture is detected, detecting information of a position of the following target in the kth-frame picture; displaying the kth-frame picture at a position of a k+N+1th frame in a time axis, and marking the position of the following target in the kth-frame picture, N being a number of pictures acquired within a detection cycle; sequentially predicting positions of the following target in acquired k+N+1th to k+2N−1th-frame pictures according to the position information of the following target in the kth-frame picture; and sequentially displaying the k+N+1th to k+2N−1th-frame pictures and the predicted positions of the following target at positions of the k+N+2th to k+2Nth frames in the time axis.
US10733725B2

Embodiments of the present invention provide a method, system and computer program product for fundus drawing analysis in ophthalmological diagnostics. A fundus drawing analysis for ophthalmological diagnostics method includes first specifying a set of ophthalmological pathological features of an eye and then generating a database query with the specified set. Thereafter, the database query may be submitted to a database of ophthalmological meta-data regarding different fundus images generated for different eyes so as to retrieve a sub-set of the ophthalmological meta-data. Then, those of the different fundus images that correspond to the sub-set are identified and the identified different fundus images are retrieved. Finally, the retrieved fundus images are displayed in a user interface of a medical image processing host computing system along with a statistical indication of a number of each of the ophthalmological pathological features present in the retrieved fundus images.
US10733723B2

A method of performing automated object inspection includes obtaining a plurality of test images. For each of the plurality of test images, the method includes quantitatively determining a respective transformation from a predefined contour of the reference marker in the predefined common layout to a respective anchor contour corresponding to the reference marker as captured in the test image; and applying an inverse of the respective transformation to at least a portion of the test image to obtain a respective regularized version of the test image, such that the reference markers captured in the respective regularized versions of the plurality of test images share an image-independent location and orientation. The method further includes performing independent automated inspection on each of two or more sub-portions of the respective regularized versions of the test images.
US10733721B2

A material characterization system includes an imaging unit, a material characterization controller, and an imaging unit controller. The electronic imaging unit generates a test image of a specimen composed of a material. The electronic material characterization controller determines values of a plurality of parameters and maps the parameters to corresponding ground truth labeled outputs. The mapped parameters are applied to at least one test image to predict a presence of at least one target attribute of the specimen in response to applying the learned parameters. The test image is convert to a selected output image format so as to generate a synthetic image including the predicted at least one attribute. The electronic imaging unit controller performs a material characterization analysis that characterizes the material of the specimen based on the predicted at least one attribute included in the synthetic image.
US10733716B2

An image providing method includes displaying a first image, the first image including an object and a background; receiving a user input selecting the object or the background as a region of interest; acquiring first identification information associated with the region of interest based on first attribute information of the first image; acquiring a second image from a target image, the second image including second identification information, the second identification information being the same as the first identification information; and generating an effect image based on at least one of the first image and the second image.
US10733701B2

Systems and methods for dynamic visualization of genomic data are provided in which a genomic visualization system adapts presentation of information content according to scale-relevant annotations within a sequence object.
US10733692B2

Apparatus and method for resilient interface for updating a graphics processor. For example, one embodiment of an apparatus comprises a graphics processor; and a configuration memory of the graphics processor to be subdivided into a plurality of configuration regions associated with a corresponding plurality of graphics pipeline stages and/or functional units, wherein a host processor executing a graphics driver is to submit a graphics processor configuration update to a command buffer, the graphics processor configuration update including at least one logical memory address associated with a logical view of the configuration memory and configuration data to be used to modify at least one configuration region associated with the at least one logical memory address, and wherein the logical memory address is to be used to identify a corresponding physical memory address for at least one configuration region corresponding to at least one of the graphics pipeline stages and/or functional units, the at least one configuration region to be responsively updated.
US10733681B2

A method, system, and computer program product for managing hotel operations. The method comprises using a hotel computer system to track the locations of a guest in a hotel over time through a mobile device for the guest. The hotel computer system identifies a pattern of movement in the hotel using the locations tracked over time. The hotel computer system preforms an action in the hotel enabling managing the hotel operations for the hotel.
US10733677B2

Disclosed methods and systems provide domain-specific type ahead suggestions for search query terms with a customer self-service system for a tax return preparation system, according to one embodiment. Type ahead suggestions include suggestions for completing a single search query term and/or suggestions for completing a search query having multiple search query terms. The customer self-service system receives one or more search query terms in a search text box, searches for potential search queries that are likely to complete the one or more search query terms, and provides a selected one of the potential search queries in the search text box as a type ahead suggestion, adjacent to the received one or more search query terms, according to one embodiment. The customer self-service system selects one of the potential search queries based on the received search query terms, the user's profile, and/or the user's tax data, according to one embodiment.
US10733676B2

Techniques for using a graphical user interface to automatically generate expense lines from images are described herein. According to an embodiment, a server computer causes storing in a data repository, data identifying a plurality of users, the data comprising feature data extracted from one or more images of the users. The server computer receives a digital photographic image captured using a camera in a mobile computing device. The server computer identifies one or more faces in the digital photographic image and determines that the one or more faces in the digital photographic image match a particular user. The server computer generates and stores an expense line in an expense data table in the data repository, the expense line comprising an identification of the particular user.
US10733672B1

A system is engineered to facilitate calculation of predicted perils connected with a ridesharing vehicle. The system facilitates premium endorsement that provides higher coverage than is provided under conventional products and allows drivers to work directly with their personal lines insurer in reviewing their coverage and filing a claim in the event of an accident. The subject matter facilitates higher limits while including a post-policy period audit that allows a reconciliation of high-use or high-risk driving with appropriate retroactive rate adjustments. The system also facilitates retroactive rate adjustments that would compare a policyholder's time/distance driven or collected telematics data (including time or distance driven in each driving period) to the group average or other historical underwriting data.
US10733670B2

System and method for dynamically managing message flow. According to the example embodiments, an intermediary network device or a client device dynamically manages the flow of messages received from an electronic exchange by analyzing the client device's capabilities, such as CPU utilization. Based on a percentage of total CPU utilization, the level of throttling is dynamically adjusted, such that if the percentage of CPU utilization, or load, increases, then throttling is increased from a lower level to a higher level. Similarly, if the percentage of CPU utilization decreases significantly enough, then throttling is decreased to a lower level.
US10733659B2

Embodiments of the present invention are directed to systems and methods for generating, receiving and processing product-specific network addresses that may be used to generate product-specific checkout pages. In some embodiments, an intermediary server is provided that generates product-specific network addresses for merchants to be used on media websites. The product-specific network address is stored by the intermediary server in association with particular product information. The intermediary server acts as an interface between a user that visits the product-specific network address and a host checkout server. Specifically, the intermediary server receives the product-specific network address, retrieves the associated product information, and forwards the product information to the host checkout server. The host checkout server may then generate a checkout page for the user using the product information.
US10733657B2

Devices, systems, and methods include a three-dimensional (3D) scanning element, an electronic data storage configured to store a database including fields for 3D scan data and demographic information, a processor, and a user interface. In an example, the processor obtains 3D scan data of a body part of a subject from the 3D scanning element, analyzes the 3D scan data for incomplete regions, generate a composite 3D image of 3D scan data from the database based on similarities of demographic information, and overlays composite 3D image regions corresponding to incomplete regions on the 3D scan data.