US10342169B2
According to a tape feeder of the present disclosure, a tape pressing member pressing a part which engages with an outer peripheral tooth of a sprocket in a carrier tape from above is connected to a main body by a connection mechanism. The connection mechanism is configured to move the entirety of the tape pressing member in a manner parallel to the main body in a case where a portion of the tape pressing member moves in a vertical direction with respect to the main body.
US10342168B2
A feeder includes a discharge guide member which is provided on a feeder main body to communicate with a tape discharging section and guides such that a carrier tape which is discharged from the tape discharging section heads downward, a peeling member which is provided on the feeder main body and peels a cover tape from the carrier tape before the carrier tape which is conveyed by a front side sprocket reaches the tape discharging section, and a contacting and positioning member which is provided on the feeder main body, causes the cover tape which covers the carrier tape which is conveyed by the front side sprocket to contact the peeling member, and positions the carrier tape from which the cover tape is peeled and which is discharged from the tape discharging section at a regular position inside the discharge guide member.
US10342164B2
A rack mount-type information processing apparatus includes: a plurality of slots, into each of which an electronic device is inserted, a liquid-cooled element provided in a cooling target included in the electronic device, a liquid to cool the cooling target being circulated in the liquid-cooled element; a manifold pipe extending in a direction where the slots are arranged; and a plurality of connection pipes configured to interconnect the liquid-cooled element and the manifold pipe, and coupled in parallel to the manifold pipe at a portion of the manifold pipe which corresponds to at least one slot among the plurality of slots.
US10342155B2
One aspect of the present disclosure relates to a finger clip for providing controlled cable access to a cable routing aperture through a gap defined between adjacent first and second cable management members. The finger clip can be constructed and arranged for slidable engagement with at least one of a first extension of the first cable management member and a second extension of the second cable management member such that the finger clip can slide between an open position in which the gap is unobscured by the main body and a closed position in which the gap is closed by the main body.
US10342149B2
An opening and closing structure arranged on a casing of an electronic device includes a cover plate and at least one connecting assembly. The cover plate is arranged inside a groove defined in an outer surface of the casing. The connecting assembly includes a connecting rod. A first end of the connecting rod is coupled to the cover plate. A second end of the connecting rod passes through the groove. The connecting rod is slidable within the casing to allow the cover plate to open and close relative to the casing.
US10342148B2
An electronic device includes a first body, a second body, an electrical connection element, and a hinge structure. The electrical connection element is configured to electrically connect the first body with the second body. The hinge structure is configured to pivot the first body with the second body. The hinge structure includes two mounting bases, two first linking assemblies, and a second linking assembly. Each of the mounting bases is connected to the first body and the second body. The two first linking assemblies are respectively pivoted to the two mounting bases. The second linking assembly is disposed between the two mounting bases, and two opposite terminals of the second linking assembly are movably connected to the two mounting bases respectively. The second linking assembly has a receding space configured to accommodate a portion of the electrical connection element.
US10342144B1
A power supply with a staggered configuration includes a housing having an accommodation space, a first power supply module, a second power supply module, and an electric fan which are disposed inside the accommodation space. The first power supply module includes a first frontend power conversion unit and a first backend power conversion unit which are disposed at separate airflow passages. When the power supply is in operation, the electric fan turns and drives the air to flow into the housing in such a way that one airflow passage is through the first frontend power conversion unit and another airflow passage is through the first backend power conversion unit. In this way, the heat dissipation efficiency is increased with two separated air flow passages respectively flowing through and cooling down the first frontend power conversion unit and the first backend power conversion unit.
US10342143B2
A production method includes: preparing a metal clad laminate including a dielectric layer≤30 μm thick, a first metal foil on a first surface of the dielectric layer, a second metal foil on a second surface of the dielectric layer, first and second carriers on the metal foil via a releasable layer; arranging the pair of metal clad laminates on a resin substrate so the first carrier of each metal clad laminate faces the resin substrate on each surface of the resin substrate; releasing the second carrier from a laminated member to expose the second metal foil; forming a pattern on the second metal foil; arranging an insulating layer on the pattern and arranging a metal layer on the insulating layer; and separating the first carrier and the first metal foil from each other. The dielectric layer has a strain energy at break of 1.8 MJ or less.
US10342136B2
A monitoring device includes a substrate having a circuit trace disposed thereon and a circuit carrier having a recessed portion. The substrate includes a flexible flange portion having a component disposed thereon. The substrate is disposed on the circuit carrier such that the flange portion and the component are disposed in the recessed portion.
US10342132B2
Embodiments of the present disclosure are directed towards a memory device insertable into a PCB, e.g., a motherboard of a computing device. In some embodiments, the memory device may include a first PCB having a first thickness, to house one or more memory modules disposed on at least one side of the first PCB. The memory device may further include a layer having a second thickness, which may be attached to the side of the first PCB in an area that is proximate to an edge of the first PCB, to form a memory device portion that may be insertable into a connector slot disposed on a second PCB. The insertable portion may have a thickness that comprises the first and second thicknesses, to fit into the connector slot of the second PCB. Other embodiments may be described and/or claimed.
US10342129B2
A substrate includes an insulation layer including a glass cloth impregnated with a resin, and a through hole having a hole included in the insulation layer and plating formed in an inner surface of the hole, where a location, intersecting with the glass cloth, of an outer circumferential portion of the through hole has a recessed portion recessed toward an outside of the hole.
US10342128B2
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
US10342123B2
The printed board includes a slit portion and a first conductive member that is provided straddling the slit portion. In a state in which the printed board is attached to an apparatus to which one end of a second conductive member having an elastic force is connected, another end of the second conductive member contacts the first conductive member, and the another end of the second conductive member passes through the slit portion.
US10342121B2
A flexible display unit is disclosed including a flexible display, and a flexible frame coupled to the flexible display, the flexible frame including a first rigid portion, a second rigid portion, and a flexible portion located between the first and second rigid portions and configured to permit the frame to be bent, the flexible portion including a first region including a first plurality of holes having a first size, and a second region including a second plurality of holes having a second size, wherein the first size is greater than the second size, the first region is positioned closer to a center axis of the flexible frame than the second region, and an area of the first plurality of holes within a portion of the first region is greater than an area of the second plurality of holes within a portion of the second region having the same area.
US10342119B1
A compliant electronics assembly mount frame and package are provided. The compliant frame may include a number of spring features configured to flexibly maintain and/or orient an attached PCBA inside a thermal conduction package. These spring features disposed in the compliant frame may be shaped, sized, and even tuned, to bias heat generating components attached to the PCBA evenly against a thermally controlled surface of the thermal package. The frame may be made or stamped from metal, such as sheet metal, and may be formed to include one or more integral spring features.
US10342105B2
The present disclosure relates to a device including relay circuitry and light sensor circuitry. The relay circuitry is configured to selectively deliver alternating current (AC) power to a load. The light sensor circuitry is configured to detect one or more modulated light signals, wherein the device is configured to join a group including a plurality of devices based at least in part on the one or more modulated light signals.
US10342103B2
A load control system may include control devices for controlling electrical loads. The control devices may include load control devices, such as a lighting device for controlling an amount of power provided to a lighting load, and controller devices, such as a remote control device configured to transmit digital messages for controlling the lighting load via the load control device. The remote control device may communicate with the lighting devices via a hub device. The remote control device may detect a user interface event, such as a button press or a rotation of the remote control device. The remote control device or the hub device may determine whether to transmit digital messages as unicast messages or multicast messages based on the type of user interface event detected. The remote control device, or other master device, may synchronize and/or toggle an on/off state of lighting devices in the load control system.
US10342101B2
Novel tools and techniques are provided for implementing wireless radio functionality in a home or building. In some embodiments, a device may comprise a light socket attachment configured to be inserted into a corresponding light socket, a communications system comprising a non-wired communications device (e.g., a wireless radio, a LiFi device, etc.), a light bulb receptacle configured to receive a light bulb, and/or circuitry configured to receive electric power through the light socket attachment, to direct a specified current to the communications system, and to direct remaining current to the light bulb receptacle. In an additional aspect, the device might be configured to implement a two-terminal or a three-terminal power connection light socket to power the communications system. In some cases, Power-Line Communications (“PLC”) may be used to transmit data over the three-terminal power connection to and from the communications system.
US10342095B2
An input voltage stabilization circuit for a rear combination lamp includes: an optical output unit including a plurality of Organic Light Emitting Diodes (OLEDs); a voltage converter; and a feedback unit. The voltage converter is configured to supply an output voltage for driving the plurality of OLEDs by converting a first voltage supplied by a vehicle battery to the output voltage, the output voltage being different from the first voltage. The feedback unit is configured to provide, as feedback to the voltage converter, information regarding a maximum voltage value for the plurality of OLEDs. The voltage converter is further configured to adjust the output voltage based on the information provided as feedback by the feedback unit regarding the maximum.
US10342089B1
A constant current device and a heat dispersion module thereof used for stabilizing a current of a light emitting unit are disclosed. The heat dispersion module includes an impedance element, a detection control unit, a switch unit, and a feedback unit. The detection control unit is used to detect a node voltage value between the light emitting unit and a current regulating unit. The switch unit switches between an on-state and an open state; when the switch unit is in the on-state, a current of the current regulating unit is conducted to a ground via the switch unit; when the switch unit is in the open state, the current of the current regulating unit is conducted to the ground via the impedance element. The feedback unit causes the switching unit to exhibit hysteresis when changing between the on-state and the open state.
US10342088B2
System and method for providing at least an output current to one or more light emitting diodes. The system includes a control component configured to receive at least a demagnetization signal, a sensed signal and a reference signal and to generate a control signal based on at least information associated with the demagnetization signal, the sensed signal and the reference signal, and a logic and driving component configured to receive at least the control signal and output a drive signal to a switch based on at least information associated with the control signal. The switch is connected to a first diode terminal of a diode and a first inductor terminal of an inductor. The diode further includes a second diode terminal, and the inductor further includes a second inductor terminal.
US10342087B2
Systems and methods for dimming control using TRIAC dimmers are provided. An example apparatus for a power conversion system includes: a process-and-drive component configured to receive an input signal and output a drive signal to a switch to affect a current that flows through a primary winding of a power conversion system. The input signal includes a first pulse associated with a first input period and a second pulse associated with a second input period. The drive signal is associated with a first modulation period for the first input period and a second modulation period for the second input period. The process-and-drive component is further configured to: determine the first modulation period for the first input period; change the drive signal between a first logic level and a second logic level at a modulation frequency during the first modulation period; determine the second modulation period for the second input period.
US10342079B1
An LED lamp suitable for use in a luminaire, the LED lamp adapted for receiving electrical power from the luminaire and comprising: one or more LEDs; a ballast protection circuit including an impedance; a filter circuit; a switched-mode power supply for driving the LEDs; one or more sensing circuits for generating at least one output, in dependence on whether the electrical power received from the luminaire indicates that the electrical power is generated via a magnetic ballast, an electronic ballast which operates as a constant current ballast, an electronic ballast which operates as a constant power ballast, or not via a ballast; and a plurality of switches for defining a plurality of operation modes of the LED lamp, and for switching among the plurality of operation modes in dependence on the at least one output of the sensing circuits.
US10342077B1
Provided are an LED driving circuit and a tube lamp. A grounding terminal of a rectifying unit of the LED driving circuit is electrically connected to a first ground wire, and an input terminal of an impedance detection and protection unit is electrically connected to a second input terminal of a first filtering unit. The grounding terminal is electrically connected to the first ground wire. The impedance detection and protection unit is configured to detect an impedance between the second input terminal of the first filtering unit and the first ground wire, so as to control the second input terminal of the first filtering unit to connect to or disconnect from the first ground wire according to a magnitude of the detected impedance.
US10342062B2
Technologies for local network power management include multiple computing devices in communication over a network. Each computing device may advertise an active-to-network-power-down state in response to determining to trigger a network power down (NPD) state and then determine whether any peer device of the local network rejected or aborted the request. If not, the computing device advertises the NPD state and then determines whether any peer device rejected the request. If not, the computing device enters the NPD state. In the NPD state, the computing device may receive a network power management packet from a peer device. If the network power management packet is a state advertisement, the computing device may update a data table based on the advertised state of the peer device. If the network power management packet is a command, the computing device may wake and return to the active state. Other embodiments are described and claimed.
US10342060B2
In a communication system where a primary cell is controlled by a first base station and a secondary cell is controlled by a second, different base station, flow control is performed between the primary cell and the secondary cell for data for a radio link control layer. According to the flow control, the data for the radio link control layer is communicated between the first and second base stations using a link between the first and second base stations. Flow control may be performed between the primary cell and the secondary cell by dynamically controlling a depth of queued radio link control data in the secondary cell for one or more UEs based on one or more factors, e.g., current/future loading of secondary cell, peak theoretical throughput for a UE in the secondary cell, and/or a UE's current channel quality information. Apparatus, methods, and computer program products are disclosed.
US10342059B2
A method, system, and apparatus, including a program encoded on computer-readable medium, for transmitting data to a server. A wireless communication connection is established between a first computing device and a second computing device. Data transmitted from the first computing device to the second computing device is received over the wireless communication connection and stored on the second computing device for uploading to a server on an IP based network. The wireless communication connection is disconnected. An IP communication connection is established between the second computing device and the server on the IP based network, and at least a portion of the stored data is transmitted from the second computing device to the server on the IP based network over the IP communication connection after the wireless communication connection between the first computing device and the second computing device is disconnected.
US10342057B2
A communication apparatus has a communication function for performing wireless communication using one of a first mode of performing first communication with a partner apparatus via another apparatus, a second mode of performing second communication with the partner apparatus not via another apparatus, and a third mode of concurrently performing the first communication and the second communication. When the third mode is the operation mode of the communication function, the communication apparatus controls the communication function so as to activate a function of the second communication after executing processing to establish a connection for the first communication. When the connection has not been established even after a predetermined time has elapsed since the start of connection processing for the first communication, the function for the second communication is activated even if the connection for the first communication has not been established.
US10342056B2
One embodiment of the present invention relates to a method whereby a device-to-device (D2D) terminal transmits a discovery signal in a wireless communication system, the discovery signal transmission method comprising the steps of: determining the size of a subperiod in a discovery period on the basis of a buffer size; and repeatedly transmitting the discovery signal in the subperiod corresponding to the determined size by using a hopping pattern applicable to the discovery period.
US10342054B2
A method performed in a user equipment, UE, (1) and a gateway (2) for data communication in a 3GPP network via an access point name, APN, capable of providing support for packet data network, PDN, connectivity using a first internet protocol version and PDN connectivity using a second internet protocol version. The method comprises the steps of the UE requesting (S1) dual stack PDN connectivity from a gateway (2) and receiving (S2) a single IP address on either the first or the second internet protocol version from the gateway (2) and further receiving (S3) from the gateway (2) a cause code indicating that only the assigned PDN and internet protocol version is allowed.
US10342051B2
A communication device of enabling long term evolution (LTE)-Wireless Local Area Network (WLAN) aggregation comprises instructions of transmitting a first message indicating support of LTE-WLAN aggregation, to the BS via LTE communication, when a WLAN function of the communication device is not enabled; receiving a first configuration message configuring the LTE-WLAN aggregation from the BS via the LTE communication; receiving at least one first LTE packet from the BS via a WLAN configured by a WLAN configuration in the first configuration message; and transmitting a notification message indicating that a connection to the WLAN is lost or requesting the BS to release the WLAN configuration to the BS via the LTE communication, when the WLAN function of the communication device is enabled by an operating system of the communication device.
US10342047B2
This disclosure describes systems, methods, and devices related to reverse direction multi-user multiple input multiple output (MU-MIMO). A device may determine a reverse direction indication to be included in a frame for transmission to one or more first devices in a MU-MIMO communication. The device may cause to wirelessly transmit the frame to a first device of the one or more first devices. The device may identify an acknowledgment frame from the at least one of the first devices based at least in part on the reverse direction indication
US10342045B2
Disclosed are a method and an apparatus for transmitting a downlink in a wireless communication system. A method for transmitting the downlink in a WLAN comprises the steps of: an access point (AP) transmitting, to a plurality of stations (STA), each of a plurality of request to send (RTS) frames through each of a plurality of channels; and the AP receiving a clear to send (CTS) frame from at least one of the plurality of STAs through at least one channel from the plurality of channels, wherein each of the plurality of RTS frames may include channel information for indicating a channel to be used from among the plurality of channels when transmitting the downlink to each of the STAs, and identifier information for indicating the plurality of STAs.
US10342044B2
Various aspects described herein relate to reducing transmission latency in unlicensed spectrum. These latency reduction techniques include enabling ultra low latency (ULL) traffic to gain fast channel access. These latency reduction techniques further include updating a size of a contention window for channel access. In addition, these latency reduction techniques include enhancing CPDCCH-based signaling to accommodate the ULL frame structure. Further, these latency reduction techniques include providing robust operation against bursty interference for ULL transmissions. Moreover, these techniques include managing DRX for ULL. Additionally, these latency reduction techniques include joint scheduling of different TTI durations. These latency reduction techniques further include updating SRS transmission opportunities. In addition, these latency reduction techniques include reducing latency associated with PRACH transmissions. Further, these latency reduction techniques include reducing ULL transmission delays by either ignoring or cancelling scheduled uplink (e.g., LTE) transmissions.
US10342019B2
A 5G or pre-5G communication system for supporting a higher data transmission rate beyond a 4G communication system such as long-term evolution (LTE) is provided, including a method for performing device to device (D2D) discovery by a user equipment (UE), which is out of the coverage area serviced by a base station, in a wireless communication network. The method includes the operations of receiving pre-configuration information for transmitting a discovery message, and transmitting the discovery message in a transmission resource determined on the basis of the pre-configuration information, wherein the pre-configuration information includes a list of pools for transmitting the discovery message, and the transmission resource is determined from the list of pools.
US10342016B2
A radio station (3) allocates a first plurality of time-frequency resources (430) and a second plurality of time-frequency resources (530) to at least one radio terminal (1, 2). The first plurality of time-frequency resources (430) are used to transmit or receive a first transport block (460) in accordance with a first transmission time interval (TTI). The first TTI is equal to a duration of one subframe (410, 510). The second plurality of time-frequency resources (530) are used to transmit or receive a second transport block (560) in accordance with a second TTI. The second TTI is shorter than the duration of the subframe (410, 510).
US10342013B2
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., without utilizing an intermediate access point. Embodiments relate to scheduling of NAN ranging procedures, including to a first wireless station sending first information, including first scheduling preferences and a first ranging role, to a second wireless station. The first wireless device receives second information, including second scheduling preferences and a second ranging role, from the second wireless device. The first wireless station may initiate the ranging procedure based on the scheduling preferences and ranging parameters. Alternatively, the second wireless station and may initiate the ranging procedure based on the scheduling preferences and ranging parameters.
US10342010B2
A method and apparatus for requesting and releasing resources for a wireless transmit/receive unit (WTRU) and/or Node B. The WTRU may transmit a channel acquisition request to the Node B and receive a resource allocation from the Node B. The resource allocation may include a common resource. The WTRU may release the common resource. The release may be based on one or more conditions. The channel acquisition request or the resource allocation may include information related to one or more channels or resources.
US10342007B2
A method for use in a wireless transmit/receive unit (WTRU) for receiving data over physical downlink shared channels from different cells, monitoring physical downlink control channels of a first cell for downlink control information associated with the WTRU, and recovering data from the physical downlink control channel in response to the downlink control information.
US10342000B2
Embodiments of this application provide a control information sending method and apparatus, where the method includes: obtaining a control information indication message from a first standard network, selecting a second standard network from one or more other networks that constitute a heterogeneous network with the first standard network, and sending the control information indication message to the second standard network, and then to a client over the second standard network. The control information indication message is used to instruct to substitutively send control information of the first standard network. According to the method and apparatus provided, the control information of the first standard network is substitutively sent over the second standard network, and sending the control information does not need to occupy bandwidth of the first standard network. Therefore, in comparison with the prior art, a network capacity of service data sent over the first standard network can be increased.
US10341998B2
A user equipment (UE) is described. The UE includes a higher layer processor configured to acquire a first dedicated radio resource control (RRC) configuration and a second dedicated RRC configuration. The first dedicated RRC configuration specifies a configuration of a first physical downlink control channel (PDCCH) which indicates a slot format. The second dedicated RRC configuration specifies a configuration of repetition of a physical uplink shared channel (PUSCH). The UE also includes PDCCH receiving circuitry configured to monitor the first PDCCH. The UE further includes PUSCH transmitting circuitry configured to transmit the PUSCH with the repetition. In a case that the first PDCCH indicates that a symbol for the PUSCH in a slot is other than either downlink or uplink, the PUSCH is not transmitted in the slot and the PUSCH in the slot is counted as one of the repetition.
US10341997B2
Disclosed are a method and a device for transmitting uplink control information (UCI) by a terminal in a wireless communication system. The UCI transmission method comprises the steps of: generating an encoding information bit stream by performing channel coding for a UCI bit stream; generating complex modulation symbols by performing modulation for the generated encoding information bit stream; spreading the complex modulation symbols in block-wise on the basis of an orthogonal sequence; and transmitting the spread complex modulation symbols to a base station. The encoding information bit stream is generated by a channel coding for circularly repeating the UCI bit stream.
US10341996B2
A user apparatus configured to perform communication with a base station in a mobile communication system that supports downlink spatial multiplexing, including: transmission means configured to transmit capability information of the user apparatus to the base station; reception means configured to receive configuration information from the base station; bit width determination means configured, if a parameter indicating a transmission mode corresponding to the downlink spatial multiplexing and predetermined additional information are received as the configuration information, to determine a bit width of a rank indicator based on the predetermined additional information.
US10341994B2
The present disclosure generally discloses an autonomous wireless transmission mechanism. The autonomous wireless transmission mechanism may be configured to support autonomous transmissions by wireless end devices to wireless access nodes in a connectionless manner. In general, an autonomous wireless transmission by a wireless end device may include transmission of a preamble in a preamble transmission zone and autonomous transmission of a payload over one or more resource units of one or more payload transmission zones without requiring establishment of a connection between the wireless end device and the wireless access node. The autonomous wireless transmission mechanism, by obviating the need for a wireless end device to establish a connection with a wireless access node in order to transmit data to the wireless access node, also obviates a need for the wireless end device to operate in a scheduled transmission mode.
US10341987B2
There is provided a mobile electronic device including a first display, a second display overlaid on the first display and switchable between a transmissive state in which incident light is allowed to be transmitted and a reflective state in which incident light is allowed to be reflected, a storage configured to store therein a notification method determining condition for determining whether to provide notification of an interrupt event by using the first display or provide the notification of the interrupt event by using the second display, and at least one controller configured to, upon occurrence of the interrupt event, provide the notification of the interrupt event by using the first display or provide the notification of the interrupt event by using the second display, according to the notification method determining condition.
US10341985B2
A wireless device of the present disclosure may be able to reduce the time needed to determine a subarray and/or beamforming direction used for mmW communication. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. In one aspect, the apparatus may maintain first information associated with a correlation between each of a plurality of wireless device positions and wireless device orientations and a plurality of nodes, at least one subarray, and a corresponding beamforming direction. In another aspect, the apparatus may transmit the first information associated with the correlation to a plurality of nodes.
US10341978B2
A mobile node includes: a status acquiring unit for acquiring status information; and a communication module for transmitting the status information to a mobile management server. The mobile management server includes: an input/output unit for receiving the status information from the mobile node; a management data creating unit for analyzing changes in the distribution of the status information, thereby calculating, as characteristic parts, parts having high distribution densities; and a request processing unit for outputting information about the calculated characteristic part. The management data creating unit includes: a node data registering function for storing the status information; a label calculating function for calculating a label in which the status information is multiplexed; and a characteristic part extracting function for extracting, in descending order of distribution density, characteristic parts representative of parts having high label distribution densities.
US10341975B2
Exemplary embodiments provide a method and apparatus for transmitting a synchronization signal for Device-to-Device (D2D) communication in a wireless communication system. With respect to a D2D synchronization source to transmit a synchronization signal for D2D communication, the method includes: generating a D2D Synchronization Signal (D2DSS); and transmitting, by a synchronization source, the D2DSS to a D2D reception (Rx) UE, wherein the D2DSS includes a Primary D2D Synchronization Signal (PD2DSS) generated based on information associated with the synchronization source.
US10341970B2
Techniques are described for wireless communication. A first method includes generating a first type of synchronization signal based at least in part on a first type of transmission in a shared radio frequency spectrum band, and generating a second type of synchronization signal based at least in part on a second type of transmission in the shared radio frequency spectrum band. The second type of synchronization signal is different from the first type of synchronization signal. A second method includes receiving a synchronization signal associated with a type of transmission in a shared radio frequency spectrum band; determining a type of the synchronization signal; and determining one or more cell parameters based at least in part on the synchronization signal.
US10341958B2
There is provided a terminal device that communicates with a base station apparatus. The terminal device includes means for setting a maximum output power value in uplink transmission to a first serving cell group based on a maximum output power value of the terminal device and an output power value for the first serving cell group in a case where the uplink transmission to the first serving cell group overlaps with uplink transmission to a second serving cell group in a certain timing, and means for setting a maximum output power value in the uplink transmission to the second serving cell group based on the maximum output power value of the terminal device, the output power value for the first serving cell group and a value for guaranteeing the uplink transmission to the first serving cell group.
US10341947B2
The present disclosure includes gateways and methods for node selection of virtual network nodes in virtual evolved packet core networks. The methods include receiving, at a gateway from an evolved Node B (eNodeB), an attach request for a user equipment (UE), and determining a network selection hint corresponding to the received attach request, where the network selection hint is used for determining a virtual network node for selection in a mobile cloud network. The methods further include determining a domain name for establishing a network connection based at least in part on the network selection hint, where the selected domain name is associated with a virtual network node in the mobile cloud network. The methods also include selecting a virtual network node associated with the determined domain name, and establishing a network session to the selected virtual network node.
US10341937B2
A wireless device (WD) capable of performing a function; a first register (FR), maintained on a dead zone service (DZS) connected to a network, including a first database (FD) of first conditions (FCs) wherein the function of WD is to be disabled, a FC defined in FD by an entry that defines FC; DZS configured to query whether WD has met one of FCs defined in FR and to disable the function of WD when WD has met one of FCs defined in FR; a second register (SR) maintained on WD including a second database (SD) of second conditions (SCs) wherein the function of WD is to be disabled, the SCs defined in SD by an entry that defines a SC; WD configured to query whether it has met a SC defined in SR and to disable the function of WD when it has met a SC defined in SR.
US10341931B1
In one embodiment, a system includes: a download server instantiated on a computing device, and a multiplicity of wireless access points (APs), where the download server is operative to: receive a download request from a mobile device, determine a current location for the mobile device, predict a route for the mobile device based at least on the current location, allocate at least one target AP along the route from among the multiplicity of wireless APs, and in response to the download request, forward at least one download file to the at least one target AP, where the at least one target AP is operative to: receive the at least one download file, identify the mobile device, and download at least part of the download file to the mobile device in an mmWave transmission.
US10341930B2
A mobile ad-hoc routing apparatus includes a first communication module and a second communication module configured to transmit and receive data through a first communication band and a second communication band, respectively, a memory configured to store a program for transmitting and receiving the data, and a processor configured to execute the program stored in the memory, wherein when the program is executed, the processor receives first control information broadcast by one or more neighboring nodes via the first communication module and stores the first control information in the memory, wherein the first control information includes current position and communication status information of the neighboring node, the processor updates information on the neighboring node on the basis of the first control information, generates packet forwarding information which includes information on a node which currently allows packet data to be transmitted based on the updated information on the neighboring node, and stores the generated packet forwarding information in the memory, and the processor determines a subsequent node which allows the packet data to be transmitted to a destination node on the basis of the packet forwarding information and transmits the packet data to the subsequent node via the second communication module.
US10341929B2
A method and computing system for monitoring a data signal quality level for a wireless client electronic device. The data signal quality level is indicative of the level of data connectivity between the wireless client electronic device and a wireless data network. A cellular signal strength level is monitored for the wireless client electronic device. The cellular signal strength level is indicative of the level of cellular connectivity between the wireless client electronic device and a cellular network. A request for voice communication with the wireless client electronic device is received. If the cellular signal strength level is not sufficient to support the voice communication and the data signal quality level is sufficient to support the voice communication, the voice communication with the wireless client electronic device via the wireless data network is enabled.
US10341928B2
Systems and methods of a portable device roaming between a plurality of access point devices with which the portable device is enrolled are provided. Some methods can include the portable device saving a respective network parameter of each of the plurality of access point devices, the portable device traversing a plurality of channels in which the plurality of access point devices operate, the portable device operating in a respective one of the plurality of channels to receive a packet from a respective one of the plurality of access point devices, the portable device comparing a received network identifier in the packet with the respective network parameter of each of the plurality of access point devices as saved, and responsive to a match, the portable device transmitting a command signal to the respective one of the plurality of access point devices.
US10341909B2
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. For licensed assisted access (LAA) technology used in a wireless communication system, an apparatus and a method for scheduling downlink data at a base station is provided. In the method, based on at least one part of parameters of a bearer to which the downlink data belongs, the base station determines a serving cell for scheduling the downlink data. Further, information about the identified serving cell is transmitted to a user equipment (UE).
US10341906B2
A method of performing CSFB in an IMS comprises receiving, at a TAS, an incoming voice call for a UE attached to an EPS; paging the UE by the first ICS GW; receiving, by a second ICS GW associated with a second CS RAN currently connected to the UE, a Location Update message from the UE, the Location Update message containing a first CSFB indicator; transmitting, by the second ICS GW, a Registration message to the TAS, the Registration message containing a second CSFB indicator in response to the first CSFB indicator in the Location Update message; transmitting, by the TAS, a Cancel message to the first ICS GW; and transmitting, by the TAS, an Invite message to the second ICS GW to complete the voice call with the UE.
US10341905B2
According to some embodiments, a method in a wireless device operable in a first wireless communication network and a second wireless communication network comprises receiving, from the first wireless communication network, an identification of network nodes of the second wireless communication network. The network nodes of the second wireless communication network are operable to process traffic for the wireless device. The method further comprises receiving an instruction from the second wireless communication network to move traffic from a first network node of the second wireless communication network to a second network node of the second wireless communication network. The first network node is one of the identified one or more network nodes of the second wireless communication network. The method also comprises determining that an identification of the second network node is not included in the received identification of one or more network nodes of the second wireless communication network.
US10341903B2
In an access device associated with a first network cell, a method for enabling user equipment (UE) to obtain a service unavailable through the first network cell includes receiving a request for the UE to access the service, and identifying, in a message to the UE, a plurality of second network cells providing the service.
US10341897B1
A wireless access point (WAP) supports one or more physical layer (PHY) operational parameters which can be restricted from use to lessen congestion within a wireless network (WN). The WAP periodically transmits a management frame to enable one or more communication devices to establish and/or maintain communication with the WAP. The wireless network can restrict one or more of the one or more PHY operational parameters, such as PHY data rates to provide an example, that are supported by the WAP from being utilized for communicating the management frame. This restriction of the one or more PHY operational parameters allows the WAP to periodically transmit the management frame at an increased PHY data rate thereby decreasing time needed for communicating the management frame which can lessen the congestion within the WN.
US10341890B2
Channel state information (CSI) feedback in long term evolution (LTE) and LTE-Advanced (LTE-A) networks including contention-based shared unlicensed spectrum is disclosed in which a user equipment (UE) identifies at least one carrier utilizing a contention based radio frequency spectrum. The UE detects a transmission signal indicative of clear channel assessment (CCA) result information for the carrier and determines whether a reference signal for channel state information measurement is present in a subframe based on the detected transmission signal. The UE would transmit a measurement report based on this presence determination of the reference signal.
US10341885B2
In one embodiment, a device receives data regarding usage of access points in a network by a plurality of clients in the network. The device maintains an access point graph that represents the access points in the network as vertices of the access point graph. The device generates, for each of the plurality of clients, client trajectories as trajectory subgraphs of the access point graph. A particular client trajectory for a particular client comprises a set of edges between a subset of the vertices of the access point graph and represents transitions between access points in the network performed by the particular client. The device identifies a transition pattern from the client trajectories by deconstructing the trajectory subgraphs. The device uses the identified transition pattern to effect a configuration change in the network.
US10341879B2
A mobile communications system comprising a base station as a network controller configured to receive measurement information from one or more infrastructure units, analyze the measurement information to identify all potential communications paths between the infrastructure units and create and transmit a look-up table from the analysis that links each of the incoming communications paths with relevant communications sessions of the infrastructure units into outgoing communications paths with relevant combined sessions for each of the relay nodes.
US10341877B2
According to one embodiment, a system and computer-readable storage medium for storage of software directed to the management of associations between network devices is described. The computer-readable storage medium comprising instructions which, when executed by at least one hardware processor on a network device, causes performance of operations, comprising: (1) determining a desired operating state for a client device under analysis, the client device being associated with a first network device of a plurality of network devices; (2) detecting if a triggering event has occurred based on a comparison of the desired operating state for the client device under analysis to an actual operating state for the client device under analysis; and (3) in response to detecting that the triggering event has occurred, causing the client device to wirelessly connect to a second network device of the plurality of network devices in lieu of the first network device.
US10341873B2
A method is provided in one example embodiment and may include determining for each of one or more macro cell radios, a corresponding set of one or more small cell radios that are under a coverage area of each of the one or more macro cell radios, wherein each corresponding set is associated with a corresponding macro cell radio; calculating interference coordination parameters for each small cell radio belonging to each corresponding set, wherein the interference coordination parameters for each small cell radio belonging to each corresponding set comprises an uplink interference budget for each small cell radio; and communicating the interference coordination parameters to each small cell radio belonging to each corresponding set.
US10341869B2
An embedded universal integrated circuit card (eUICC) configured to control and enforce policy rules includes a policy rule storage configured to define actions and conditions required to enforce a plurality of policies and store a plurality of policy rules; a policy controller configured to control the plurality of policy rules; and a policy enforcer configured to enforce the plurality of policy rules. The policy is a principle reflecting rules for controlling the eUICC and an external entity remotely managing the eUICC. The plurality of policy rules includes a first type of policy rules and a second type of policy rules, the first type of policy rules and the second type of policy rules being managed in physically different places.
US10341864B2
A device can receive, from a network device, information that identifies a user device. The network device might have authenticated the user device based on the user device accessing a radio access network. The device can receive, from the user device, a request for a first token. The request can include an encrypted session identifier. A server device might have encrypted the session identifier. The device can determine the session identifier, and generate the first token based on the session identifier and the information that identifies the user device. The device can encrypt the first token using an application public key, and provide, to the user device, the encrypted first token. The user device can provide, to the server device, the encrypted first token. The server device can register the user device to receive content based on the encrypted first token.
US10341859B2
A method of generating a key for D2D communication between a first user equipment and a second user equipment in a first radio access node is disclosed. In an exemplary embodiment, the method may comprise: receiving a request for D2D key generation from the first user equipment which is served by the first radio access node; determining whether the second user equipment is served by the first radio access node; when it is determined that the second user equipment is served by the first radio access node, generating a first random number and a second random number; generating a first D2D key based on the first random number and a second D2D key based on the second random number; sending the first D2D key and the second random number to the second user equipment; and sending the second D2D key and the first random number to the first user equipment; and when it is determined that the second user equipment is not served by the first radio access node, determining a second radio access node which serves the second user equipment; generating a first random number; generating a first D2D key based on the first random number; sending the first D2D key to the second radio access node; receiving a second D2D key from the second radio access node; and sending the second D2D key and the first random number to the first user equipment.
US10341856B2
The present invention discloses a system and a method for securing the privacy of cellular network subscribers and the security of data stored on the said subscribers' User Cellular Devices (UCDs). The system comprises a Controlled Cellular Network (CCN), interfacing a cellular Public Land Mobile Network (PLMN), hosting a plurality of cellular subscribers. The said CCN system provides said security services to “serviced subscribers” of the hosting PLMN. The CCN encapsulates communication between UCDs of serviced subscribers and the hosting PLMN, including at least part of: control, signaling, SMS and data communications. The CCN is configured to identify security threats to the privacy of serviced subscribers and to the data stored on their UCDs, and determine said threats' category and probability, based on analysis of said encapsulated communication. CCN is configured to respond to said threats in real or near-real time, and take active measures to avert said suspected threats.
US10341841B2
An example embodiment may involve providing for display a discovery schedule creation page for creating a discovery schedule. The embodiment may also involve, in response to receiving user input indicative of creation of a discovery schedule via the discovery schedule creation page, providing for display a discovery process page. Providing the discovery process page for display may involve, while the discovery process is being carried out according to the discovery schedule, dynamically updating the discovery process page to include total numbers of discovery results. The discovery process page may include selectable links for navigating to and displaying three pages: a discovered configuration items page, an error flow page, and a scheduling summary page.
US10341837B2
Systems and methods are disclosed for permitting higher transmit power at a mobile device. In one embodiment, a method is disclosed, comprising: receiving, at a base station, an emergency request from a mobile device; sending, from the base station to a neighboring base station, a high power reservation message to reserve one or more radio resource blocks at the neighboring base station for non-use; and sending, from the base station to the mobile device, a resource allocation including the one or more radio resource blocks and a power control message requesting high transmit power.
US10341835B2
A Bluetooth microphone (10) comprises a controller (MCU) and Bluetooth transceiver (12) arranged to: establish a Bluetooth paired connection with a device; establish an Advanced Audio Distribution Profile, A2DP, connection with the paired device to receive a sequence of packets from the paired device for decoding by the microphone; and establish a Serial Port Profile, SPP, connection with the paired device for simultaneously transmitting a sequence of packets based on a microphone transducer signal to the paired device as the received sequence of packets are being decoded for transmission to a set of headphones.
US10341830B2
Provided are a method and apparatus for sending or forwarding information. The sending method is applied to an M2M communication system and includes: a sending device sends to-be-sent information to a target device through a communication network, wherein the information carries one of the followings: a first ID, which is used for identifying the target device outside the communication network, and a second ID, which is used for identifying the target device inside the communication network; the sending device acquires a recognizable ID corresponding to the specified ID through the communication network; and the sending device sends the information to the target device through the communication network according to the recognizable ID. The technical problem that there is still no effective object identification solution which is compatible with various standard systems in the related arts is solved, and different M2M user equipment can be distinguished in the M2M communication system.
US10341829B2
A directed data plan service-launching system includes an intelligent communication terminal, a virtual operator directed data plan system, a virtual operator billing system and an application background server, wherein the intelligent communication terminal calculates and stores mobile network data usage, and periodically uploads the same to the virtual operator directed data plan system with a certain time period, the virtual operator directed data plan system performs bill integration on data of the data usage to form and send a directed data plan bill to the virtual operator billing system, and the virtual operator billing system performs a charge deduction or billing with a specific price on the directed data plan bill; a primary operator billing system performing a charge deduction or billing with a specific price on the directed data plan bill; and an application background service system providing a background service to an application client side.
US10341827B2
Systems and processes that incorporate teachings of the subject disclosure may include, for example, receiving from a mobile device, by way of a cellular network, a request for delivery of high-bandwidth application service. A location of the mobile device can be obtained and used to determine availability of any nearby wireless packet-network services. If it is determined that a wireless packet-network service is available, a network connection between the mobile device and the wireless packet-network service can be established. The request for delivery of high-bandwidth services can then be forwarded to an application server that delivers the requested services by way of the wireless packet-network service. Other embodiments are disclosed.
US10341826B2
Systems and methods for sharing location information during a message conversation are provided. An electronic device detects a location-sharing request from a first participant of a message conversation to share first participant location information with a second participant. The device then enables the second participant to obtain the first participant location information during a predetermined location-sharing time period. In response to detecting interaction by one of the first participant and the second participant with the message conversation during the predetermined location-sharing time period, the device extends the predetermined location-sharing time period.
US10341825B2
Systems, methods, and computer-readable storage devices for converting text messages to speech data. A text message may be received. The text message may be associated with a recipient identification of a recipient of the text message. Preference information for converting the text message to speech data may be received. The text message may be converted to the speech data based on the preference information. The speed data may be communicated to the recipient.
US10341817B2
A positioning method and apparatus based on an electronic device or application are disclosed. A particular embodiment of the method comprises: receiving a positioning request from an unpositionable electronic device or application, the positioning request comprising a timestamp acquiring location information of a positionable electronic device or application having a network identification identical to a network identification of the unpositionable electronic device or application, and a timestamp corresponding to the location information; and estimating location information of the unpositionable electronic device or application at a time corresponding to the timestamp of the positioning request, based on the location information of the positionable electronic device or application, the timestamp corresponding to the location information, and the timestamp of the positioning request. According to this embodiment, a high-accuracy positioning for an unpositionable electronic device or application is achieved. Thus, a content pushing or a pushing for an ordered search result based on location information can be customized and optimized, for an unpositionable electronic device or application with an accurate location, and the user may obtain more precise pushing information.
US10341815B1
A mobile device locationing system that overrides the reported position with that of the charge room when the AC charge signal is detected by the device.
US10341814B2
Methods, systems, and techniques for wireless device detection, information, tracking, and authentication within a platform are provided. Example embodiments provide a Wireless Device Detection, Tracking, and Authentication System and methods, which enables users to detect wireless devices, obtain stored information about wireless devices, and authenticate wireless devices for a variety of purposes including determining similarity of devices based upon prior network connections, pinpointing the location of the device, verifying the cryptographic signature of the device, obtaining metadata associated with the device, and controlling the device to perform a particular action such as alerts and notifications. An example WDDTAS platform includes a server, one or more edge sensors communicatively connected to wireless/wired devices with or without software to configure the device to perform as an electronic tag and connected to electronic smart tags, and a persistent data repository.
US10341805B2
The present invention relates to a method of displaying contents by using a device identifier of a wireless communication device, and a method of providing contents. The contents displaying method includes: receiving the device identifier from the wireless communication device if the device is located within a coverage thereof; and receiving and displaying at least one content corresponding to the device identifier from a contents providing system.
US10341804B2
According to one embodiment, a system includes a data storage device having data stored therein and a native computer system having resident thereon a controlling operating system in communication with the data storage device. The system also includes a primary computer system having resident thereon a primary operating system in communication with the native computer system via a first connection, the primary computer system being in communication with the data storage device via a second connection that is not in communication with the native computer system, the primary computer system having a processor executing a primary application. A volume on the data storage device is under logical control of the controlling operating system of the native computer system, and the primary computer system reads or writes data to the volume directly via the second connection. Other systems, methods and computer program products are also described relating to accessing data.
US10341792B1
Described are techniques for distributing audio data to multiple audio devices for generation of a synchronized audio output. A master device may receive audio data from a content server or other remote data source and store the audio data in a local cache. The master device may provide the audio data to multiple slave devices using a single multicast transmission. In some cases, the master device may also provide the audio data to individual slave devices unable to receive the multicast transmission using a network connection. Each slave device may store the audio data in a local cache. To generate the audio output, each audio device may retrieve the audio data from the associated local cache, which may enable the audio data to be distributed without modifying the commands used by audio applications to generate the audio output.
US10341781B2
A driver for a loudspeaker including an inner magnet disposed within a housing, an outer magnet disposed within the housing radially outward of the inner magnet, an inner voice coil having a first diameter, an outer voice coil having a second diameter, the second diameter being larger than the first diameter, where poles of the inner and outer magnets are oppositely disposed, where the inner magnet is configured to contribute only to a magnetic circuit of the inner voice coil, and where the outer magnet is configured to contribute to the magnetic circuit of the inner voice coil and to a magnetic circuit of the outer voice coil.
US10341776B2
An electronic device includes a body and a first support coupled to one portion of the body, where the first support extends from the body along a line in a first direction relative to a central axis of the body. The device further includes a second support coupled another portion of the body, where the second support extends from the body along a line in a second direction relative to a central axis of the body, and an ear loop connecting the first support to the second support. The shape of the ear loop permits coupling with a user's ear, such that the shape of the ear loop changes according to changes in a degree of an angle between the line in the first direction and the line in the second direction.
US10341767B2
Speaker protection may be based on multiple speaker models with oversight logic that controls the speaker protection based on the multiple speaker models. At least one of the speaker models may be based on a speaker excursion determined from feedback information from the speaker, such as a current or voltage measured at the speaker. Excursion based on the speaker feedback may be used to determine an error in an excursion prediction made from the audio signal. The excursion prediction may then be compensated for that error. In some embodiments, a direct displacement estimate of excursion generated from speaker monitor signals is used to correct a fixed excursion model applied to an input audio signal.
US10341762B2
A media content packaging and distribution system for dynamic generation of multi-channel audio includes a server, which stores location information of a plurality of subjects located in a defined area. A subject-of-interest is selected from the plurality of subjects in the defined area. Thereafter, a set of audio-capture devices are selected from the plurality of audio-capture devices. A set of audio streams are received from the selected set of audio-capture devices. A multi-channel audio is generated based on the received set of audio streams. The generated multi-channel audio is communicated to a consumer device. Based on an output of the multi-channel audio by the consumer device, an acoustic environment is reproduced as a surround sound environment at the consumer device from a perspective of the subject-of interest.
US10341750B2
The present disclosure generally provides an apparatus and method of forming a pressure equalizing audio speaker that can be easily manufactured and provides a high quality audio output. One or more of the embodiments of the disclosure provided herein include a sealed enclosure that has at least one liquid impermeable and gas permeable region that allows the flow of a gas between an interior region and an exterior region, while preventing or substantially inhibiting the movement of a liquid from the exterior region into the internal region. In general, the liquid impermeable and gas permeable regions are configured to allow slowly changing gas pressures registered between the internal region and exterior region to be relieved, while allowing rapidly changing gas pressures generated by the diaphragm at audible frequencies to function at a desired level during use.
US10341749B2
Provided is a method of controlling a digital photographing apparatus recording moving image data being input to a recording medium in a moving image photographing mode. The method includes creating a moving image file in the recording medium and storing the moving image data being input in the moving image file when a first signal is generated by a first button of the digital photographing apparatus pressed, stopping storing of the moving image data being input when the first signal is generated by a second button of the digital photographing apparatus pressed by the user, continuing to store the moving image data being input in the moving image file when a second signal is generated by the second button pressed by the user, and stopping storing of the moving image data being input and completing the moving image file when the second signal is generated by the first button pressed.
US10341748B2
A method and system for packet-optical in-band telemetry (POINT) that may be used in a packet-optical network is disclosed herein. An intermediate POINT device may receive a packet including at least a header and a payload at a packet layer. The POINT device may read intent information from the header, and the intent information may indicate a type of telemetry data to be collected. The POINT device may translate the intent information from the packet layer to generate a device-specific action in an optical layer to the type of telemetry data indicated by the intent. The POINT device may execute the device-specific action in the optical layer to generate a response corresponding to the intent, associate the response with the intent, and encode the response in the packet layer for downstream data forwarding.
US10341746B2
A sensor system including a sensor data buffer, the sensor data buffer being configured in such a way that sensor data are organized in frames. The sensor data buffer is configured in such a way that a frame has a header and a sensor data area.
US10341745B2
Methods and systems for providing content are disclosed. An example method can comprise a first device receiving a video content item via a first communication link. The video content item can comprise a plurality of fragment identifiers. A plurality of audio content items and metadata associated with the plurality of audio content items can be generated based on the video content item. At least one of the plurality of audio content items and the metadata associated with the at least one of the plurality of audio content items can be transmitted to a second device via a second communication link. The video content item and the one of the plurality of audio content items can be synchronized, based on at least one fragment identifier associated with the video content item and the metadata associated with one of the plurality of audio content items.
US10341744B2
Systems and methods for controlling related video content based on domain specific language models are disclosed. Some embodiments include one or more processors configured to obtain a first audio information of first video content, identify first primary time codes based on the first audio information, obtain second audio information of second video content and identify a first secondary plurality of time codes based on the second audio information, determine an amount of differences between the first primary time codes and first secondary time codes, and generate information indicating whether the first video content and the second video content are related based on the determined amount of differences.
US10341743B1
A computer-implemented method for transmitting video from a source to a plurality of video receivers is provided. The method comprises receiving video from a camera corresponding to a scene being imaged; transmitting the video as a plurality of video streams, each to one of the plurality of video receivers; receiving feedback information from each of the plurality of video receivers; performing an optimization operation to optimize each of the plurality of video streams being transmitted based on the feedback information; wherein each optimized video stream is optimized for a particular video receiver based on the feedback information received for that video receiver.
US10341742B1
Methods and systems are described herein for notifying a user about content that the user has previously missed in media. Users may get easily distracted when viewing media by mobile device notifications or other users viewing the media with the user. Consequentially, the user may miss content in media. The user may miss the same content in the media when consuming the media for a second time if the distractions are still present. An interactive media guide determines when the user has previously missed content in media and alerts the user when the content is going to be missed for a second time.
US10341737B2
Various embodiments of systems, apparatus, and/or methods are described for integrating a broadcast media stream with media streams from one or more amateur sources. In one implementation, a method includes receiving, at a stream integrator, one or more user media streams captured by one or more user capture devices, receiving a broadcast stream from a broadcast provider, selecting at least one of the one or more user media streams based on one or more parameters, and integrating one or more of the selected user media streams into the broadcast stream.
US10341728B2
Multimedia systems and related methods and devices are provided for recommending media programs to a user. Viewing characteristics of the user are determined based on usage information detailing preceding viewing sessions for the user. In one or more embodiments, the user's current interest in one or more currently available media programs that originated after the user's preceding viewing session is predicted based on the user's viewing characteristics and the current viewing context, and media programs having the highest predicted current interest are indicated to the user as being recommended.
US10341720B2
Systems and methods allow playback of a media stream received via a network. The media stream is received and stored in a buffer prior to playback. Responsive to receiving the user command to change the content of the media stream, the buffer is flushed prior to receiving the changed content in the media stream.
US10341719B2
A entry adapter configured to allow external signals to be received by the entry adapter and including a first splitter electrically connected to a first port and a second port. The entry adapter includes a frequency band rejection device electrically connected to the first splitter, and configured to allow the external signals to proceed therethrough to a plurality of third ports, and to block the client signals from proceeding therethrough to the first port. The entry adapter also includes a second splitter electrically connected to the frequency band rejection device and the plurality of third ports, and configured to distribute the external signals received from the frequency band rejection device to the plurality of third ports. The external signals do not proceed through the second splitter.
US10341714B2
Digital video data and digital multiple-audio data are extracted from a source, using a hardware processor in a content source device within a premises. The extracted digital video data is processed for display on a main display device in the premises; and the extracted digital multiple-audio data is processed into a primary soundtrack in a primary language, to be listened to within the premises in synchronization with the displayed extracted digital video data. The primary soundtrack corresponds to the displayed extracted digital video data, in the primary language. The extracted digital multiple-audio data is processed into at least one secondary audio asset, different than the primary soundtrack; and the at least one secondary audio asset is transmitted to a personal media device within the premises, for apprehension by a user of the personal media device in synchronization with the displayed extracted digital video data.
US10341702B1
A system and method for providing programming data includes a first module that generates first programming data for content and a second module generating billing data corresponding to the content. A listing service module receives first programming data from the first module and receives billing data from the second module. The listing service module combines the first programming data and the billing data to form combined programming data. A first cache module is in communication with the listing service module and a user device and stores the combined programming data.
US10341688B2
Various new and non-obvious apparatus and methods for using frame caching to improve packet loss recovery are disclosed. One of the disclosed embodiments is a method for using periodical and synchronized frame caching within an encoder and its corresponding decoder. When the decoder discovers packet loss, it informs the encoder which then generates a frame based on one of the shared frames stored at both the encoder and the decoder. When the decoder receives this generated frame it can decode it using its locally cached frame.
US10341680B2
A video data decoding apparatus is configured to detect a control flag associated with at least a part of an encoded image for decoding, in which in a lossless mode of operation, a first control flag state enables sample-based angular intra-prediction but disables edge filtering of prediction samples, and a second control flag state disables sample-based angular intra prediction but enables edge filtering of prediction samples; and in a lossy mode of operation, the first control flag state enables residual differential pulse code modulation coding and enables edge filtering of prediction samples, and the second control flag state disables residual differential pulse code modulation coding but enables edge filtering of prediction samples.
US10341675B2
A method of encoding digital video data corresponding to a sequence of input video frames is disclosed. The input video frames are encoded into a sequence of output video frames. The method comprises encoding a first input video frame in a first encoder instance using intra-frame encoding to produce a first intra-frame, decoding the first intra-frame to produce a first decoded frame, encoding the first decoded frame in a second encoder instance to produce a first output video frame. A digital video encoding system is also disclosed, as well as a camera comprising such a system, and a computer program product for performing the method.
US10341662B2
Aspects of the present invention are related to systems and methods for initialization of entropy encoders and decoders.
US10341654B1
A method of content adaptive decoding is provided. The method involves receiving a bitstream encoded wherein video content is segmented into portions based on predefined classifications or models. Based on the segment classifications, each segment or portion is encoded with a different encoder chosen from a plurality of encoders. Each encoder is associated with a model. The chosen encoder is particularly suited to encoding the unique subject matter of the segment. The coded bit-stream for each segment includes information regarding which encoder was used to encode that segment. A matching decoder of a plurality of decoders is chosen using the information in the coded bitstream to decode each segment using a decoder suited for the classification or model of the segment. If scenes exist which do not fall in a predefined classification, or where classification is more difficult based on the scene content, these scenes are segmented, coded and decoded using a generic coder and decoder.
US10341650B2
Systems, methods and apparatuses of processing data of a VR system are disclosed that comprise receiving tracking information which includes at least one of user position information and eye gaze point information. One or more processors may be used to predict, based on the user tracking information, a user viewpoint of a next frame of a sequence of frames of video data to be displayed. Using the prediction, a portion of the next frame of video data to be displayed is rendered at an estimated location in the next frame. A corresponding matching portion in a previously encoded frame is determined based on the estimated location of the portion in the next frame and the portion of the next frame of video data is encoded.
US10341648B1
Systems, methods, and computer-readable media are described for performing automated analysis of frame-over-frame pixel changes in recorded video of the display output of a computing device to determine whether the computing device presented an animated buffering indicator or other animated problem indicator. A system may be configured to detect motion by determining frame-over-frame pixel intensity changes at various pixel locations across a number of frames, then to determine whether the pixel locations that suggest motion (such as those pixel locations that had sufficient intensity change when accounting for potential noise in the video data) are concentrated in an area of the screen in which problem indicators are expected to be displayed. The system may then determine whether the shape of the pixel locations that indicated sufficient motion match an expected shape or path of motion for a given class of problem indictors.
US10341647B2
A method for calibrating a camera. The method includes a step of reading in and a step of ascertaining, an imaging trajectory and a reference trajectory of a moving calibration object detected by using the camera being read in in the step of reading in, the imaging trajectory representing a trajectory imaged in image coordinates of the camera and the reference trajectory representing the trajectory in world coordinates, and at least one calibration parameter for the camera being ascertained in the step of ascertaining by using the imaging trajectory and the reference trajectory.
US10341641B2
An electronic device according to various embodiments of the present disclosure includes: a first image sensor; a second image sensor; and a processor operatively coupled to the first image sensor and the image second sensor, configured to determine at least one Region of Interest (ROI) based on a first information acquired using the first image sensor, acquire second information corresponding to at least a part of the at least one ROI using the second image sensor, identify a motion related to the at least one ROI based on the second information, and perform a function corresponding to the motion.
US10341639B2
Automatic scanning and representing an environment with collision avoidance includes, for example, obtaining a first representation of the environment using a first scanning path, determining a second scanning path based on the first representation of the environment operable to avoid contact with the environment when obtaining a second representation of the environment, obtaining the second representation of the environment based on the second scanning path, and wherein the second representation of the environment is different from the first representation of the environment. The method may be employed in imaging and/or representing a rock wall having a plurality of spaced-apart holes for receiving charges for mining.
US10341620B2
An image sensor includes: a plurality of microlenses arranged in a two-dimensional pattern; and a plurality of pixels that are provided in correspondence to each of the microlenses and receive lights of different color components, respectively. Pixels that are provided at adjacent microlenses among the microlenses and that receive lights of same color components, are adjacently arranged.
US10341613B2
A method for use in providing content includes hosting a network site on a computer network, displaying on the network site links to one or more videos, and displaying on the network site at least an on-demand preview of a first video in response to a corresponding one of the links being selected. A storage medium stores a computer program for use on a client computer. Several other methods, systems and programs are also disclosed.
US10341606B2
Systems and methods of multiplexing information from a plurality of monochrome sensors/cameras is provided. The systems and methods provided can be useful to achieve pixel-level time synchronization between information acquired by different monochrome sensors/cameras that are configured to view a scene from different viewing directions.
US10341603B2
A method of tracking digital images includes inputting data identifying a subject of an image into a camera, acquiring an image with the camera, and storing the image and the inputted data, as metadata, in an image file when the image is acquired. The method can be implemented using a scanner, a digital camera, and a data processor. The scanner obtains the identifying data and transmits the data to the camera. The camera obtains digital images and embeds the data into digital image files encoding the digital images. The identifying data has a format different from any of the formats processable by the digital camera. The data processor converts the format of the identifying data to one of the plurality of formats processable by the digital camera loads the converted information into the digital camera as metadata.
US10341601B2
An image processing apparatus receives an input of an image signal obtained by imaging an object, and performs signal conversion on the image signal to output the image signal to a display apparatus. The image processing apparatus includes a calculation unit configured to calculate an absolute luminance value of the object from a luminance value of the object acquired from the image signal and an exposure parameter in the imaging, a determination unit configured to determine a predetermined absolute luminance code for the luminance value of the object according to input-output characteristics of the display apparatus so that the object is displayed at the absolute luminance value on the display apparatus, and a conversion unit configured to perform signal conversion for converting the image signal based on a relationship between the luminance value of the object and the absolute luminance code.
US10341594B2
Embodiments of the subject application disclose various light field capture control methods and apparatuses and various light field capture devices, wherein one light field capture control method comprises: acquiring depth information of a to-be-shot scene; determining target pixel density distribution information of an image sensor of a light field camera according to the depth information; adjusting pixel density distribution of the image sensor according to the target pixel density distribution information; and performing, by the adjusted image sensor, light field capture of the to-be-shot scene. The technical solution provided in the embodiments of the subject application can make full use of overall pixels of the image sensor of the light field camera to unevenly record light field information of different regions of the to-be-shot scene in a depth of field (DOF) direction, thereby improving light field capture efficiency.
US10341592B2
A pixel is included, the pixel including a photoelectric conversion portion configured to convert incident light to a charge by photoelectric conversion and accumulate the charge, a charge transfer unit configured to transfer the charge generated in the photoelectric conversion portion, a diffusion layer to which the charge is transferred through the charge transfer unit, the diffusion layer having a predetermined storage capacitance, a conversion unit configured to convert the charge transferred to the diffusion layer to a pixel signal, and connection wiring configured to connect the diffusion layer and the conversion unit. The connection wiring is connected to the diffusion layer and the conversion unit through contact wiring extending in a vertical direction with respect to a semiconductor substrate on which the diffusion layer is formed and is formed closer to the semiconductor substrate than other wiring provided in the pixel.
US10341577B2
An imaging apparatus comprising an imaging device; a photometry device; first to third exposure factors; first and second operation members for setting the first and second exposure factors; a first-to-third-exposure-factors-calculating-and-setting exposure mode for calculating and setting the first to third exposure factors to the calculated and set ones; a first-exposure-factor-manually-setting exposure mode for manually setting the first exposure factor, and calculating and setting the second and third exposure factors; a second-exposure-factor-manually-setting exposure mode for manually setting the second exposure factor, and calculating and setting the first and third exposure factors; and a first/second-exposure-factors-manually-setting exposure mode for manually setting the first and second exposure factors, and calculating and setting the third exposure factor; the operation of the second operation member changing the first-exposure-factor-manually-setting exposure mode to the first/second-exposure-factors-manually-setting exposure mode.
US10341576B2
A device includes a first multi-element image sensor; a second multi-element image sensor; and a polarizing layer positioned between the first and second multi-element image sensors. A portion of light having a first polarization state incident on the device along a first direction is transmitted through the first image sensor, is transmitted through the polarizing layer, and is detected by the second image sensor, and light having a second polarization state orthogonal to the first polarization state incident on the device along the first direction is transmitted through the first image sensor, is blocked by the polarizing layer.
US10341569B2
The present disclosure discloses a method and an apparatus for varying a focal length of a camera device, and a camera device capable of varying a focal length thereof. The method includes: obtaining a position where one finger of a user touches a touch screen of the camera device; obtaining an image zooming multiple according to a distance and a direction that the finger of the user slides on the touch screen of the camera device; and zooming, according to the image zooming multiple and by using the position on the touch screen of the camera device where the finger of the user touches the touch screen of the camera device as a center, an image currently taken by the camera device, so as to vary a focal length of the camera device. The apparatus includes: a first obtaining module, a second obtaining module, and a zooming module.
US10341564B1
Images with an optical field of view are captured by an image capture device. An observed trajectory of the image capture device reflects the positions of the image capture device at different moments may be determined. A capture trajectory of the image capture device reflects virtual positions of the image capture device from which video content may be generated. The capture trajectory is determined based on a subsequent portion of the observed trajectory such that a portion of the capture trajectory corresponding to a portion of the observed trajectory is determined based on a subsequent portion of the observed trajectory. Orientations of punch-outs for the images are determined based on the capture trajectory. Video content is generated based on visual content of the images within the punch-outs.
US10341558B2
A system, apparatus, or method is provided for imaging and for capturing visuals to provide image manipulation options for increasing resolution of subject images. A system, apparatus or method for increasing resolution of subject images using a camera to deliver unexposed photographic emulsion or a digital image and to generate images of greater resolution by modifying digital images or modifying digital and emulsion images.
US10341556B2
An image capturing apparatus comprising: an image sensor having a plurality of photoelectric conversion portions that correspond to each of a plurality of microlenses arranged in a matrix; a control circuit that controls read-out from the image sensor by either of first read-out control for obtaining focus detection signals and second read-out control for obtaining an image signal, a setting circuit that sets rows to be read out by the first read-out control among rows that include a focus detection area; an amplification circuit that amplifies a signal with a gain set in accordance with an exposure state; and a signal processing circuit that performs signal processing on an image signal using an image signal of neighboring rows, wherein the setting circuit sets the rows to be read out by the first read-out control according to the gain.
US10341553B2
Several methods for operating a built-in digital camera of a portable, handheld electronic device are described. In one embodiment, the device receives a user selection (e.g., tap, tap and hold, gesture) of a region displayed on the display screen (e.g., touch sensitive screen). A touch to focus mode may then be initiated in response to the user selection and exposure and focus parameters determined and adjusted. Then, an automatic scene detection mechanism can determine whether a scene has changed. If the scene has changed, then the touch to focus mode ends and a default automatic focus mode initiates. This mode sets a new exposure metering area and focus area prior to determining and adjusting exposure and focus parameters, respectively.
US10341544B2
A server and method are provided for determining a matching score related to users of wearable camera systems. In one implementation, a server determines a matching score related to users of wearable camera systems. Each wearable camera system is configured to capture images from an environment of a corresponding user and produce image data from the captured images. At least one processing device associated with the server may be programmed to receive image data from the wearable camera systems. The processing device may further determine a value of a matching score related to at least two users of the wearable camera systems. The value of the matching score may be based on the image data received from the wearable camera systems. The value of the matching score may indicate a level of exposure of the two users to similar visual details in their environments.
US10341543B2
In general, techniques are described that facilitate processing of color image data using both a mono image data and a color image data. A device comprising a monochrome camera, a color camera, and a processor may be configured to perform the techniques. The monochrome camera may capture monochrome image data of a scene. The color camera may capture color image data of the scene. A processor may determine a parallax value indicative of a level of parallax between the monochrome image data and the color image data and determine that the parallax is greater than the parallax threshold. The processor may further combine, in response to the determination that the parallax is greater than the parallax threshold, a luma component of the color image data with a luma component of the monochrome image data to generate a luma component of enhanced color image data.
US10341540B2
A camera system for gas-insulated switchgear systems, includes a front plate of the gas-insulated switchgear system having two front-plate connections, a central unit, and at least one camera in a camera housing or in respective camera housings. The line between the front-plate connections and the at least one camera is branched in the shape of a Y and the data communication and the current and voltage supply of the central unit occur via a common connection.
US10341538B2
A display system includes a controller and an image display panel. The controller includes a signal transmitter configured to output at least a vertical synchronization signal to a plurality of image-capturing apparatuses; and a synthesizer configured to provide synthesized image signals in units of lines obtained by synthesizing, in units of lines, image signals in units of lines output from the respective image-capturing apparatuses at a timing corresponding to a horizontal synchronization signal formed in a predetermined cycle based on an output timing of the vertical synchronization signal. The image display panel is configured to display sequentially, in units of lines, the synthesized image signals in units of lines.
US10341519B2
In a communication system, in which an image forming apparatus and an information processing apparatus are connected via a network and remote maintenance is performed between the image forming apparatus and the information processing apparatus, the image forming apparatus has a wireless communication unit for performing wireless communication with a mobile terminal and determines whether or not remote maintenance using the mobile terminal is possible. In a case that it is determined that the remote maintenance is possible, the image forming apparatus establishes wireless communication with the mobile terminal in response to a connection request from the mobile terminal, and performs input/output of audio data via the mobile terminal with the information processing apparatus.
US10341516B2
A rotation drive device includes a driven rotation member, a driving rotation member, a rotation relay member, a shaft, and a holder. The rotation relay member transmits only a unidirectional rotational driving force from the driving rotation member to the driven rotation member. The rotation relay member includes a housing and a cylindrical one-way clutch. A contact portion between the driving rotation member and the shaft is configured to rotate the driving rotation member and the shaft to transmit the driving force to an inner peripheral side of the cylindrical one-way clutch via the shaft. The driving rotation member includes a boss projected toward the holder and rotatably held in the holder. A portion of the shaft to support the driving rotation member and an inner wall surface of a through hole of the driving rotation member are shaped to rotate the shaft and the driving rotation member. together.
US10341501B2
A monitoring apparatus which acquires, at a monitoring timing, device information which is a target of collection from a device includes a status information acquisition unit configured to acquire from the device, status information that includes information representing a power supply state of the device; and a monitoring interval setting unit configured to set a monitoring interval which is an interval of the monitoring timing in accordance with the power supply state denoted by the status information which has been acquired.
US10341498B2
A method for revenue assurance in a telephone network. The method comprises receiving a call request from a first user device on a network to a second user device, where the user device associated with a first user account has an account credit value insufficient to complete the requested call. A call timer duration is set to instantly expire on encountering a chargeable event. The call is continued toward the second user device. Upon encountering a chargeable event, the call is released. The chargeable event may be presenting a Ring Back Tone to the caller and confirming that the second device is ringing. The chargeable event may be detecting when the call has been answered.
US10341497B2
An association server in a communication system receives a device identifier of a user device and searches a device-to-token database in order to determine whether the device identifier is currently associated with any device communication token. In response to determining that the device identifier is associated with a device communication token, the association server creates a communication account for the user device on a communication server, and sends a login credential for the communication account to the user device in a message transmitted via a message server. The message is addressed by the device communication token to a predetermined application installed on the user device. The predetermined application on the user device receives the message from the message service, and thereafter automatically logs in to the communication server according to the login credential included in the message.
US10341496B2
The present invention discloses a policy control method and system, and a relevant apparatus. The method includes: receiving, by a policy decision apparatus, a control policy request sent by a gateway device, where the control policy request carries a subscriber identifier; sending, by the policy decision apparatus, a session request message carrying the subscriber identifier to a charging system; receiving, by the policy decision apparatus, a response message; receiving, by the policy decision apparatus, a notification message sent through an established session by the charging system, and generating a service data flow control policy according to information of an occurred charging relevant event; and sending, by the policy decision apparatus, the control policy to the gateway device. The method may implement, based on charging relevant information of a subscriber, policy control of a data flow, flexibility is desirable, and service experience of the subscriber is good.
US10341488B2
Methods and systems for managing real-time conversations include are disclosed. In one or more examples, an audio response selected from among a plurality of selectable audio responses associated with a call script may be communicated to a caller. The call script can include a number of segments, and the segments may be associated with the selectable audio responses. In addition to the selectable audio response being communicated to the caller, background sound may also be mixed with the communicated audio response and communicated to the caller. Other aspects, embodiments, and features are also included.
US10341484B2
A communication device and system are disclosed for providing communication and data services to residents of a controlled facility. The device can be restricted to communicating only using an internet protocol so as to restrict the device communication to an internal intranet. Wireless access points may be disposed throughout the environment to route calls and data between the device and a central processing center. By converting a protocol of the communications received from the device to a protocol used by the central processing center, minimal modifications to the central processing center are needed to support a wireless communication infrastructure. Many restrictions and safeguards may be implemented within the phone and system in order to prevent improper use.
US10341483B2
A method and mobile transceiver providing container security is described. In accordance with one aspect, there is provided a method of operating a mobile transceiver comprising a processor, memory, wireless transceiver and radiation detector. The method comprises detecting, by the radiation detector, radiation emitted from a radioactive emitter. The radiation detector and the radioactive emitter are arranged such that a substantially constant rate of radiation from the radioactive emitter is detected when one or more doors of the shipping container are closed. When the detected radiation is outside a tolerance of the constant rate, the processor wakes up the processor from a low power mode, and updates an asset tracking log stored in the memory by adding a record representing a door open event.
US10341476B2
A mobile terminal includes a first body including a first surface; a second body including a second surface; a third body including a third surface; and a flexible screen coupled to the first surface of the first body, the second face of the second body and the third surface of the third body and including a first end and a second end, wherein the first end of the flexible screen is movable relative to the second surface of the second body, and the second end of the flexible screen is movable relative to the third surface of the third body.
US10341474B1
A mobile device is disclosed. A mobile device comprises a display, a battery disposed on the back side of the display, and a film speaker disposed on the back side of the battery.
US10341471B2
A packet analysis apparatus, method, and non-transitory computer readable medium thereof are provided. The packet analysis apparatus stores a plurality of packets whose formats are unknown. The packet analysis apparatus calculates a plurality of cross-correlation values of the packets. The packet analysis apparatus decides at least one group according to the cross-correlation values and at least one first threshold, wherein each group includes a subset of the packets. The packets included in a specific group of the groups define a plurality of bit positions. Each packet included in the specific group has a plurality of bits. For each of the bit positions, the packet analysis apparatus calculates a variation degree of the bits corresponding to the bit positions. The packet analysis apparatus selects the at least one bit position whose variation degree(s) is/are smaller than a second threshold as at least one field boundary of the specific group.
US10341463B2
The present invention provides a method, and associated computer system and computer program product, for optimizing and updating a message queuing system by comparing a current message queuing configuration with various message queuing configurations stored in a database, prioritizing the various configurations based upon a criticality level of components, objects and connections, and submitting a prioritized list of suggested configurations for consideration for implementation into the current message queuing system.
US10341457B2
This document describes a content caching system for pre-loading digital components, the system including a communication interface configured to communicate with a remote device over a wireless network, a local content cache; and an evaluation system comprising one or more processors. The one or more operations include pre-loading a digital component for rendering in a browser at a time that is subsequent to a time of the pre-loading, registering a scheme of a network reference for the cached digital component, with the scheme comprising a specified portion of the network reference for the cached digital component; retrieving, from the local content cache, the pre-loaded digital component associated with the digital component tag comprising the network reference; and rendering, from the local content cache, the pre-loaded digital component in a graphical user interface rather than requesting the digital component from the remote device.
US10341454B2
Content delivery network storage may be provided. A first proxy module may receive a first content object request from a first user device. The first content object request may correspond to a content object. Next, the first proxy module may send the first content object request to a first cache module. The first cache module may then obtain the content object corresponding to the first content object request from an object store. The object store may be shared by a plurality of cache modules including the first cache module. The first proxy module may then receive, from the first cache module, the obtained content object. The first proxy module may send the content object to the first user device.
US10341452B2
A conference management system, network, and method for enabling the management of teleconference resources across multiple telecommunications networks that serve multiple conference domains. A disclosed multi-domain conference manager (MDCM) subscribes to a network management platform and for one or more sets of entities. Each set defines a particular combination of i) communications service provider(s) (CSP) and ii) enterprise, in which the combination defines a particular scope of management. When a conference-related event occurs, such as a particular conference involving video endpoints being set up with a unified communications (UC) network, the MDCM can notify a CSP network that is within a same scope of management as the UC network, to report on related events as they occur. The MDCM can then coordinate the connection of resources associated with the multiple domains via a cascaded link between bridging resources that serve the different domains.
US10341450B2
In one embodiment, a method includes a content provider (e.g., a social-media network) receiving an event notification from a network-operator system (e.g., a cellular-service provider) with which a user has a data account. The event notification may include status information associated with the user's data account. The content provider may receive a content request from a client device of the user. Based on the status information associated with the user's data account, the content provider may determine content to transmit to the client device in response to the content requests. The content provider may then transmit the content to the client device through a network associated with the network-operator system.
US10341443B2
In one embodiment, a user may transfer a multimodal conversation. A multimodal conversation may have a first mode communication session and a second mode communication session. A first user point of presence may execute a first transfer of the first mode communication session with a first partner point of presence from the first user point of presence to a first target point of presence. A second user point of presence may execute a second transfer of the second mode communication session with a second partner point of presence from the second user point of presence to a second target point of presence.
US10341438B2
A device can receive information indicating a set of instructions associated with a microservices application, where the microservices application is associated with one or more microservices. The device can generate a deployment specification. The device can deploy one or more containers and one or more replicate containers. The one or more containers and the one or more replicate containers are associated with the one or more microservices. The one or more containers and the one or more replicate containers can be associated with a distributed file system. The device can receive information associated with modifying the one or more microservices. The device can modify the one or more microservices, as one or more modified microservices, based on receiving the information associated with modifying the one or more microservices. The device can deploy the one or more modified microservices.
US10341435B2
This document discloses high performance data storage solutions. In an aspect, some solutions can be employed in a cloud-computing environment that provides shared storage for a plurality of customers. In other aspects, the solutions provided by some embodiments can provide multiple tiers of storage, each having a different performance level. This feature can provide a customer with the ability (e.g., through a web portal) to design its own custom storage solution that blends multiple tiers of storage at different capacity and performance levels to attain an optimal level of capacity, performance, and cost. Some disclosed solutions provide a novel arrangement of different types of storage devices that are provisioned through a common API, which can access each storage device's native management interface, as well as the host computer for which the storage will be provisioned, to allocate multiple tiers of storage to the host computer in an automated manner.
US10341434B2
The present teaching relates to a system, method, medium for a data system, which comprises a plurality of data centers with one read/write master server designated to handle write and consistent read requests and a plurality of read master servers designated to handle normal read requests, wherein the master servers form a ring structure and each is connected to a corresponding slave server. When a data access request is received, a read master communication unit invokes one of the plurality of read master servers in the data system if the received data access request is a normal read request, a main master communication unit invokes the read/write master server if the received data access request is either a write request or a consistent read request. When a response is received from the invoked handling master server, a response processing unit responds to the data access request based on the received response.
US10341429B2
A method for configuring a service function path (SFP) for a software defined network (SDN) based service function chain (SFC) may comprise configuring a SFC which is a set of ordered service functions (SFs) by reflecting requirements of a flow flowing into a network; generating a primary SFP that is a path through which the flow is to be actually transmitted in the network according to the SFC; generating a secondary SFP against an error of the primary SFP; and controlling a transmission path through which the flow is transmitted to be at least one of the primary SFP and the secondary SFP.
US10341417B2
One or more computing devices, systems, and/or methods for generating a recommendation for increasing loading time performance of a target webpage are provided. For example, a third party window, specifying a target webpage as a source, is inserted into a webpage. The webpage is provided to a browser that displays the webpage and loads the target webpage into the third party window. Resource timing data, associated with loading the target webpage into the third party window, is retrieved. Loading time performance of the target webpage is measured based upon the resource timing data. A recommendation for increasing loading time performance of the target webpage is generated. In an example, an action such as a resource allocation change for hosting the target webpage, compression of an image of the target webpage, a connection reduction of files connected to by the target webpage, etc. is performed based upon the recommendation.
US10341394B2
Aspects of the disclosure provide a method for setting up a call for a user equipment. The method includes receiving, by the user equipment, a measurement configuration message that specifies a set of measurement events corresponding to poor signal quality between the user equipment and a packet-switched network, and sending, by the user equipment, a measurement report when one of the set of measurement events occurs while performing a first call setup process for setting up the call using the packet-switched network. The method also includes terminating the first call setup process after sending the measurement report that indicates poor signal quality between the user equipment and the packet-switched network, and sending, by the user equipment, a service request to begin a second call setup process for setting up the call for the user equipment using a circuit-switched network after terminating the first call setup process.
US10341387B2
The various implementations described herein include systems, methods and/or devices method for applying security policies in a virtualization environment. In one aspect, the method is performed at an electronic device of a plurality of electronic devices in a computing network, the electronic device having one or more processors and memory storing instructions for execution by the one or more processors. A plurality of user-space instances is instantiated. Furthermore, a security instance distinct from the plurality of user-space instances is instantiated. The security instance, which executes in user space of a respective virtual address space, monitors operations and data communications for the plurality of user-space instances. The security instance applies security policies to the monitored operations and data communications for the plurality of user-space instances so as to detect and/or remediate violations of the security policies.
US10341382B2
A system for filtering electronic messages includes a client machine that includes a security module, wherein the security module has access to at least one message sent by a sender identified in the message through respective identification data and received by the client machine, wherein the security module is configured for reading the sender's identification data from the header of the message, finding and storing any potentially harmful contents of the body of the message, verifying if said potentially harmful contents satisfy validation conditions which are specific for the sender having the identification data specified in the header of the message, allowing or denying access to at least part of the body of the message, in which the potentially harmful contents are present, based on the result of the verification.
US10341378B2
Methods, systems, and media for inhibiting attacks on embedded devices are provided. In some embodiments, a system for inhibiting on embedded devices is provided, the system comprises a processor that is configured to: identify an embedded device that is configured to provide one or more services to one or more digital processing devices within a communications network; receive a first firmware associated with the embedded device; generate a second firmware that is functionally equivalent to the first firmware by: determining unused code within the first firmware; removing the unused code within the second firmware; and restructuring remaining code portions of the first firmware into memory positions within the second firmware; and inject the second firmware into the embedded device.
US10341377B1
The disclosed computer-implemented method for categorizing security incidents may include (i) generating, within a training dataset, a feature vector for each of a group of security incidents, the feature vector including features that describe the security incidents and the features including categories that were previously assigned to the security incidents as labels to describe the security incidents, (ii) training a supervised machine learning function on the training dataset such that the supervised machine learning function learns how to predict an assignment of future categories to future security incidents, (iii) assigning a category to a new security incident by applying the supervised machine learning function to a new feature vector that describes the new security incident, and (iv) notifying a client of the new security incident and the category assigned to the new security incident. Various other methods, systems, and computer-readable media are also disclosed.
US10341376B2
Various embodiments of the present technology include methods of assessing risk of a cyber security failure in a computer network of an entity. Various embodiments also include automatically determining, based on the assessed risk, a change or a setting to at least one element of policy criteria of a cyber security policy, automatically recommending, based on the assessed risk, computer network changes to reduce the assessed risk, and providing one or more recommended computer network changes to reduce the assessed risk. Various embodiments further include enactment by the entity of at least one of the one or more of the recommended computer network changes to reduce the assessed risk to the entity, determining that the entity has enacted at least a portion of the recommended computer network changes, and in response, automatically reassessing the risk of a cyber security failure based on the enacted recommended computer network changes.
US10341370B2
Among other things, traces are received of activities of an online user who is associated with an entity. By analysis of the traces a security state of the entity is inferred. Also, a map is generated between (a) technical assets that contribute to security characteristics of respective entities and (b) the identities of the entities that are associated with the respective technical assets. At least part of the generating of the map is done automatically. A user can be engaged to assist in the generating of the map by presenting to the user through a user interface (a) data about the technical assets of entities and (b) an interactive tool for associating the technical assets with the identities of the entities.
US10341369B2
Security rules of a security system include original security scores as conditions for raising alerts. The original security scores are dependent on the underlying scoring mechanism of the security system. When the scoring mechanism is updated to produce new security scores, the security rules are updated ensuring that the alert rates associated with the original security scores match the alert rates associated with the new security scores, which replace the original security scores in the security rules.
US10341367B1
Methods, systems, and devices are provided for inquiring and storing Indicator of Compromise (IoC) information. In one example, a method of inquiring and storing IoC information can include determining a target IoC information to be identified when an event occurs, requesting an encryption socket communication module of a first user terminal to request the target IoC information from an IoC information providing server, requesting a P2P socket communication module of the first user terminal to request the target IoC information from a P2P socket communication module of at least one other user terminal, and storing the target IoC information that is received first from either the IoC information providing server or the P2P socket communication module of the at least one other user terminal.
US10341366B2
Approaches for managing security breaches in a networked computing environment are provided. A method includes detecting, by at least one computer device, a breach of a production system in the networked computing environment, wherein the networked computing environment includes a decoy system interweaved with the production system. The method also includes receiving, by the at least one computer device, a communication after the detecting the breach. The method further includes determining, by the at least one computer device, the communication is associated with one of a valid user and a malicious user. The method additionally includes, based on the determining, routing the valid user to an element of the production system when the communication is associated with the valid user and routing the malicious user to a corresponding element of the decoy system when the communication is associated with the malicious user.
US10341355B1
A multi-tenant provider network may implement confidential data capture and analysis for virtual computing resources. Network traffic for virtual compute instances may be evaluated to identify possible malicious behavior of the virtual compute instances. In some embodiments, a stream of raw metering data for individual network communications to the virtual compute instances may be evaluated. A confidential analysis may be performed for identified virtual compute instances, evaluating confidential data utilized by the virtual compute instances for malicious software. Results of the confidential analysis may be generated according to an access policy that restricts access to the confidential data. The results may be provided to a client that is restricted from accessing the confidential data according to the access policy.
US10341348B2
A method to onboard a slave node to a high performance computing system that includes a fabric switch network that includes a fabric switch master and a group of slave nodes, wherein the fabric switch master is configured to route messages between slave nodes of the group comprising: receiving a fabric switch master address message, at an onboarding slave node, over an external network; providing an identification message, by the onboarding slave node, over the fabric switch network; receiving the identification message, at the fabric switch master, over the fabric switch network; providing the permission message, by the fabric switch master, over the fabric switch network; and receiving, a permission message, at the onboarding slave node, over the fabric switch network.
US10341340B2
The invention relates to an authentication system (14) comprising a data terminal (1) with a data terminal device, a communication network (15), and an authentication service (16), said data terminal device having an image capturing device (3), an image preparing module (4), and a wireless communication interface (5). A communication connection (17) is established between the data terminal device and the authentication service (16) via the communication network (15), said data terminal (1) being provided in the form of a watch.
US10341337B2
The present invention relates to a system and method for issuing an OTP application in a face-to-face confirmation manner, and the system includes at least one or more service provider devices for transmitting OTP application issuance request information, including information on recognition of a terminal device tagged on a reader provided for each service provider or entering a previously set service area, to an integrated service device; and the integrated service device for registering secure storage medium identification information as medium identification information for OTP authentication and transmitting an OTP installation guide to the terminal device if the recognition information is the secure storage medium identification information, and transmitting the OTP installation guide to the terminal device if the recognition information is terminal device identification information, in which the terminal device can be a terminal device of a user seeing a service provider face-to-face.
US10341333B2
Systems and methods for multi-dimensional password generation and authentication is provided. The method includes selecting a virtual reality (VR) environment, rendering interactive objects in the VR environment, tracking a first set of activities including user behavior, user interaction with the objects, and changes made to the objects, the behavior including user position(s), head rotation, time spent on a particular position, GPS coordinates, and the changes include one of position, shape, color, and rotation of the objects. The method generates a multi-dimensional password based on the first set of tracked activities, and authenticates based on comparison of a second set of tracked activities and the first set of activities. When the comparison results in mismatch, the system generates a one-time multi-dimensional image, based on which a third set of activities are tracked and compared with the first set of activities for resetting the password or authenticating the user accordingly.
US10341328B2
Embodiments of a mobile device and method for secure on-line sign-up and provisioning of credentials for Wi-Fi hotspots are generally described herein. In some embodiments, the mobile device may be configured to establish a transport-layer security (TLS) session with a sign-up server through a Wi-Fi Hotspot to receive a certificate of the sign-up server. When the certificate is validated, the mobile device may be configured to exchange device management messages with the sign-up server to sign-up for a Wi-Fi subscription and provisioning of credentials, and retrieve a subscription management object (MO) that includes a reference to the provisioned credentials for storage in a device management tree. The credentials are transferred/provisioned securely to the mobile device. In some embodiments, an OMA-DM protocol may be used. The provisioned credentials may include certificates in the case of certificate-based credentials, machine-generated credentials such as username/password credentials, or SIM-type credentials.
US10341322B1
A domain name registrar may suggest and/or allow a user to select one or more domain names registered to the user for on demand multifactor authentication. The user may select one or more protected activities that trigger the enhanced security for the selected domain name(s). The user may also enter a plurality of authenticatees, contact information for the authenticatees and a minimum number of authenticatees required to approve the one or more protected activities. The user and/or authenticatees may also enter at least two authentication methods for each authenticatee and corresponding correct responses. The selected domain names are thus protected from the protected activities until approved by a minimum number of authenticatees using at least a first authentication method and a second authentication method selected from different groups of “what you know,” what you have” and “what you are” authentication methods.
US10341318B2
Methods, systems and computer readable media for providing skill-based, secure and dynamic contact center agent network access are described.
US10341311B2
The present disclosure pertains to systems and methods for selectively encrypting data flows within a software defined network (SDN). In one embodiment, a communication device may be configured to receive a plurality of unencrypted data packets. The communication device may receive from an SDN controller a criterion used to identify at least one of the unencrypted data flows to be encrypted. Based on the criterion, an encryption subsystem may generate an encrypted data flow the unencrypted data packets based on an encryption key. In some embodiments, the encryption system may parse the packets and encrypt the data payloads without encrypting the routing information associated with the packet. In other embodiments, the encryption subsystem may be configured to encapsulate and encrypt the entire unencrypted data packet. In some embodiments, the encryption subsystem may further be configured to authenticate a sending device and/or to verify the integrity of a message.
US10341307B2
An application is instrumented with a document protection service provider interface (SPI). The interface is used to call an external function, e.g., an encryption utility, to facilitate secure document exchange between a sending entity and a receiving entity. When the application invokes the SPI, the user is provided with a display panel. The end user provides a password for encryption key generation, together with an indication of desired encryption strength. The service provider uses the password to generate an encryption key. In one embodiment, the service provider provides the key to the service provider interface, which then uses the key to encrypt the document and to complete the file transfer operation. In the alternative, the service provider itself performs encryption. The SPI generates and sends a message to the receiving entity that includes the key or a link to enable the receiving entity to retrieve the key.
US10341305B2
Disclosed are an encrypted communications method and communications terminal. The method comprises: reading from a first NFC security label the encryption algorithm and the index of the encryption algorithm; using the encryption algorithm to encrypt a data packet to be transmitted so as to generate an encrypted data packet; transmitting the encrypted data packet; transmitting the index; the index is configured so that the target communication terminal can obtain the encryption algorithm and decrypt the encrypted data packet. Also disclosed is a computer storage medium.
US10341294B2
A detection apparatus 30 stores a determination list (A1601) for determining whether there is unauthorized communication, receives a communication packet (A1501) flowing in a control system, determines whether a valid data pattern in the determination list (A1601) and a data pattern relating to the communication packet (A1501) match each other. When the valid data pattern in the determination list (A1601) and the data pattern relating to the communication packet do not match each other, the detection apparatus 30 calculates a similarity degree between the valid data pattern in the determination list and the data pattern relating to the communication packet, and determines whether the similarity degree satisfies a predetermined condition. When the similarity degree is determined not to satisfy the predetermined condition, the detection apparatus 30 determines that the communication packet (A1501) is an unauthorized communication packet.
US10341292B2
Network session identification information is received. The network session identification information is associated with a destination IP address and a destination network port. An available source network port for a new session to be established for a source IP address is determined based on the destination IP address and the destination network port.
US10341287B2
Overhead of sending data from one application to another by doing input and output processing can be costly. The present invention provides a method of transmitting data with a low overhead between applications in a multi-tenant runtime environment. The multi-tenant runtime detects a connection between tenants, and then performs low-overhead data transmission mechanisms by cloning data from one tenant space to another tenant space, while keeping the data isolated for two tenants.
US10341273B2
A middleware messaging system is connected between user devices and content providers possibly through one or more networks. The middleware messaging system includes a coordination manager for coordinating partial messages transmitted between the user devices and the content providers. Partial messages received by the middleware messaging system from one or more sources through one or more channels. Partial messages that are associated with each other comprise a single context and as such are coordinated and transmitted to one or more destinations through one or more channels.
US10341264B2
Technologies for scalable packet reception and transmission include a network device. The network device is to establish a ring that is defined as a circular buffer and includes a plurality of slots to store entries representative of packets. The network device is also to generate and assign receive descriptors to the slots in the ring. Each receive descriptor includes a pointer to a corresponding memory buffer to store packet data. The network device is further to determine whether the NIC has received one or more packets and copy, with direct memory access (DMA) and in response to a determination that the NIC has received one or more packets, packet data of the received one or more packets from the NIC to the memory buffers associated with the receive descriptors assigned to the slots in the ring.
US10341263B2
VM-to-VM switching is an enhancement to Ethernet card technology that enables virtual machines on the same hardware server platform to switch Ethernet Frames (or IP Packets) directly without exiting the server or using a slower and bandwidth limited software process in the hypervisor. The method does not require new network switch hardware. The invention creates a unique switching ability that allows users to modify parameters applied to Ethernet Frames passing between Virtual Machines, such as quality of service or firewall rules without adding considerable latency to the switching process. The hardware switching method enriches the functionality of the Ethernet Card and permits more advanced switching architectures in servers and thus increases density of VMs and reduces complexity of planning the location of virtual machines in a virtualized infrastructure.
US10341261B2
A device that includes a plurality of transceivers configurable to simultaneously operate with a combination of bonded and unbonded transceivers. A first transceiver of the plurality of transceivers is operable at a first data rate, and a second transceiver of the plurality of transceivers is simultaneously operable at a second data rate that is different than the first data rate. The first and second transceivers are operable as bonded transceivers and wherein a third transceiver, of the plurality of transceivers, is simultaneously operable at a third data rate and the third transceiver is not bonded with any other transceiver.
US10341248B2
An evaluation device includes a first evaluator configured, for each record used for transmission control of data circulating in a network, to evaluate extent of variation of an amount of the data, based on a history of the amounts of the data matching a condition of the record; a second evaluator configured, for each of the records, to evaluate a size of a space represented by the record, based on the condition of the record; and a calculator configured, for each of the records, to calculate an index value representing a possibility that a predetermined or a greater amount of the data matches the condition of the record within a fixed period of time, based on an evaluation result by the first evaluator, and an evaluation result by the second evaluator. Therefore, it is possible to evaluate a possibility of a sudden occurrence of a flow whose traffic volume is large.
US10341246B1
A method of performing an update packet sequence number packet ready command (drop packet mode operation) is described herein. A first packet ready command is received from a memory system via a bus and onto a first network interface circuit. The first packet ready command includes a multicast value. A first communication mode is determined as a function of the multicast value. The multicast value indicates a single packet was communicated by a second network interface circuit. A packet sequence number stored in a memory unit is updated. The memory unit is included in the first network interface circuit. The first network interface circuit does not free the first packet from the memory system. The network interface circuits and the memory system are included on an Island-Based Network Flow Processor. The bus is a Command/Push/Pull (CPP) bus.
US10341244B2
One embodiment is directed to a method comprising selecting a group of packets for at least one access category, determining a set of contention parameters based on the at least one access category, transmitting the selected group of packets by using the determined set of contention parameters, obtaining information about collision of the transmitted group of packets, and determining an updated set of contention parameters based on the obtained collision information and a predefined condition.
US10341238B2
The present invention discloses a transmission control method, apparatus and system, so as to effectively utilize network link resources. The method of the present invention includes: acquiring link status information about a network; determining recommended values of TCP transmission parameters according to the link status information; and performing TCP transmission according to the determined recommended values of the parameters. The present invention can enable TCP transmission status to reflect network congestion status more real, prevent a congestion misjudgment from occurring, and improve a utilization ratio of link resources in a network.
US10341235B2
A load balancing implementation method, device, and system, where the method includes determining, by a switch according to a meter entry of each output port, a write value corresponding to a real-time flow rate of each output port when a flow entry used to forward traffic does not exist, sending the write value to a controller such that the controller creates a forwarding flow entry used to forward the traffic according to the write value, receiving, by the switch, the forwarding flow entry, and forwarding the traffic through the target output port. Therefore, the controller can obtain a rate range of a real-time flow rate of an output port of the switch and allocate a forwarding path according to the obtained rate range of the real-time flow rate, and implement a better load balancing.
US10341229B2
A method of configuring optical network nodes (6a, 6b) between a plurality of Remote Radio Units (4a, 4b) and at least one Baseband Unit (2a, 2b). The method comprises monitoring a bandwidth demand of each Remote Radio Unit (4a, 4b), and calculating a routing configuration of the nodes to connect at least one Remote Radio Unit on a tree arrangement to a said Baseband Unit. The calculating (82) the routing configuration is based on at least one connection requirement between the Remote Radio Units and the Baseband Units and the bandwidth demand of each Remote Radio Unit. The method further comprises dynamically configuring one or more optical network nodes to adapt the routing configuration from a said Remote Radio Unit to a said Baseband Unit, according to the calculated routing configuration.
US10341226B2
One embodiment of the present invention provides a switch in a software-defined network. The switch includes at least one port, a flow management module, and forwarding circuitry. The port is capable of receiving a frame belonging to a software-defined data flow and a frame belonging to a regular data flow. The flow management module logically partitions the port for the frame belonging to the software-defined data flow from the frame belonging to the regular data flow. The forwarding circuitry forwards the frame belonging to the software-defined data flow based on a flow definition in a local flow table. The flow definition indicates how the software-defined data flow is processed in a software-defined network.
US10341220B2
The present application provides virtual shortest path tree establishment and processing methods and a path computation element, so as to improve a resource utilization rate in a process of establishing and processing a virtual shortest path tree. In a process of establishing the virtual shortest path tree, a cost of an established path from a root node (a destination node) to a leaf node is compared with a cost threshold, and a new path branch is added to the VSPT when the cost is less than the cost threshold. In a process of processing the virtual shortest path tree, a resource occupied by a path branch in the VSPT that does not belong to an optimal path is released after the optimal path is obtained.
US10341216B2
An apparatus for a compliance test on a communication node includes: a monitoring port; a switch turning on or off a connection between the monitoring port and a communication port connected to the communication node; and a processor controlling the switch to turn on or off the connection between the monitoring port and the communication port.
US10341214B2
Transaction data is generated during monitoring of a plurality of transactions in a system and a respective flow is determined, from the transaction data, for each of the plurality of transactions. Each of the determined flows involves participation of a respective subset of software components of the system. A plurality of sets of overlapping flows in the plurality of flows are determined and a particular one of the plurality of sets of overlapping flows is determined to correspond to a use scenario of the system. A measure of the degree to which a set of artifacts modeling the system corresponds to the use scenarios of the system is determined.
US10341211B2
An analytics and diagnostic node according to the present disclosure monitors oversubscription and determines flow metrics by receiving mirror command frames from one or more switching nodes. The mirror command frames could correspond to a multiple flows traversing over a connection within a network. The analytics and diagnostic node collects at least one latency metric for each of the flows using timestamps found within the mirror command frames. Based on the latency metrics and timestamps, the analytic diagnostic node determines an average data rate for each of the flows. The analytics and diagnostic node also computes the cumulative data rates corresponding to different bucket intervals based on the average data rates. To detect oversubscription, the analytics and diagnostic node compares the cumulative data rates with one or more oversubscription rules.
US10341199B2
Techniques for state synchronization in a service environment are described. In at least some embodiments, different synchronization models are employed to synchronize state for resources in a service environment. For instance, embodiments may employ a “pull model” whereby a resource periodically queries for changes in resource state to be applied to the resource. Alternatively or additionally, a “push model” can be employed whereby notifications are pushed to resources, informing the resources that they are to update their state. Thus, based on various considerations for a service environment, instances and/or combinations of the disclosed synchronization models can be implemented.
US10341196B2
A messaging system enables client applications to send and receive messages. The messaging system includes independent component programs performing different functions of the messaging system. The component programs include persistent connection managers that maintain connections with the client applications, a dispatcher that establishes connections, and a message router that sends received messages to recipient applications through corresponding connections. The connection managers share a state memory containing a received message and a completion state associated with the received message. The messaging system retains the message until the completion state fulfills a completion condition. The messaging systems supports live deployment of updates the message router and dispatcher because the state of the messaging system is stored independently from memory allocated to these component programs, so they may be restarted without loss of messages, connections or other state information.
US10341194B2
A method for building, optimizing, and maintaining a computing infrastructure on a cloud computing environment is provided. A user provides a high-level declaration to a cloud environment operating system, specifying the details of the infrastructure that is intended to be built on the cloud. A cloud environment operating system converts the high level declaration to a lower level declaration and then to a series of instructions that can be executed by the cloud to build the desired infrastructure. The cloud environment operating system can also continuously monitor the infrastructure once it is built on the cloud. If the cloud environment operating system notices any discrepancies between the user's original specification and the infrastructure as built on the cloud, the operating system can work to modify the existing infrastructure on the cloud to conform to the infrastructure specified by a user.
US10341193B2
Systems and methods for optimizing a distributed Wi-Fi network via a cloud based system using a plurality of control loops over multiple timescales include receiving and storing data measurements associated with operation of the distributed Wi-Fi network; performing one or more of: a fast loop optimization of operating parameters associated with the distributed Wi-Fi network based on one or more first metrics and associated first thresholds; and a slow loop optimization of the operating parameters associated with the distributed Wi-Fi network based on one or more second metrics and associated second thresholds, wherein a timescale of the fast loop optimization is finer than a timescale of the slow loop optimization; and providing the operating parameters to the distributed Wi-Fi network for configuration thereof.
US10341192B2
Improved interfaces for cloud migration are provided. In one implementation, the interface may include a plurality of rows, each row being associated with one of a plurality of portfolio groups, each portfolio group including at least one software technology asset, as well as a plurality of columns intersecting the plurality of rows, one column indicating a name of the portfolio group of the intersecting row, and at least one other column indicating a compliance measure of the portfolio group, wherein the compliance measure comprises an indicator of compliance with one or more architectural guidelines related to a cloud migration of the at least one software technology asset included in the portfolio group.
US10341188B2
A service description may be used in network virtualization in order to specify requirements of an application. In order to provide network virtualization for generic networking components, including legacy networking components, the service description is mapped to a logical network implementation and then subsequently mapped to a physical implementation.
US10341187B2
A method and system for discovering, defining, and implementing an application topology through the user of a graphical user interface is provided. A topology system may analyze the topology of an enterprise and provide a graphical representation of the application topology. The topology system may discover the application topology of an enterprise by accessing various configuration data stores of the enterprise. The topology system provides a graphical representation of the application topology and allows a user to modify the topology using a graphical user interface. The topology system may then control the implementation of the application topology.
US10341182B2
A system and method identify a network upgrade from a data set including a plurality of configuration sessions. The system performs the method by receiving a plurality of configuration sessions. Each of the configuration sessions comprises a plurality of configuration commands. The configuration commands are generated by a same user identifier and within a time threshold. The method further includes identifying one of the configuration sessions as a network upgrade session. The identification is based on a rareness of the configuration session or a skewness of the configuration session.
US10341178B1
A communication system and method for the utilization of social networks to provide computing devices operational information. The computing devices access one or more social networks and associate with an account of a specified user. The computing devices can maintain social network profiles that provide configuration information of the computing device. The computing devices can process information provided profile updates to cause a configuration of the client device. The computing devices can also process social network communications to process operational parameters of the client device.
US10341172B1
A system and method for handling queries where the queries and the answers to those queries are transmitted by means of a network which may have significantly variable latencies. The system and method involve copying the queries and calculating a response to each copy of the query and sending each response over the network. The first-received response can then be acted upon. The query may be divided up into sub-queries which are then replicated and sent for determination.
US10341169B2
The present disclosure is related in general to content management and a method and system for generating a notification for an event. A notification generation system receives a recovery notification that indicates recovery from the event and contextual data associated with the event from a service provider. The event is a disruption caused in delivering multimedia content such as audio, video, text, images etc. to a user interested to access the multimedia content from the service provider. Further, the notification generation system generates the notification upon analysis of the recovery notification, the contextual data and predefined profile settings of the user. The notification is generated and provided to the user to indicate recovery of the multimedia content from transient disruption so that the user is well informed for better usage of services provided by the service provider. Further, the notification is provided on the preferred electronic devices of the user.
US10341161B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for communicating signals using a multi-dimensional symbol constellation. In one example, a process for modulating a carrier signal includes the actions of mapping data to symbols of a multi-dimensional symbol constellation that includes at least three dimensions, each dimension of the constellation represented by a respective modulation signal. The dimensions of the constellation include first and second dimensions each of which are represented by respective in-phase modulation values and quadrature phase modulation values of a quadrature amplitude modulation (QAM) signal, and a third dimension represented by a transpositional modulation (TM) signal. The method further includes modulating a carrier signal with the TM signal and the QAM signal.
US10341153B2
A peak power reduction device includes a unit for dividing digital information to be transmitted into a plurality of streams; a unit for selecting the modulation level of the streams and distribution of transmission power according to a transmission state; a unit for performing singular-value decomposition on the transmission path characteristic of a streams and precoding the resultant data by a right singular value matrix; a unit for performing complex mapping on the subcarrier of a stream according to the modulation level; a unit for converting a complex mapping signal into a time domain signal; a first unit for storing a conversion result as a time domain signal; a second unit for calculating a peak time signal exceeding a predetermined threshold value from a peak value, if any exists, that exceeds a prescribed threshold value for the amplitude of the time domain signal.
US10341152B2
The present invention relates to transmission and reception of downlink control information in a communication system. In particular, a serving base station transmits to a terminal a downlink control information which includes a first field with a scheduling information and a second field with interference parameters (interference information). The receiver employs the interference parameters for interference estimation used in interference cancellation or suppression.
US10341143B2
Methods and apparatus of channel estimation using time-domain parameter extraction are disclosed. The wireless channel can be modeled by a multipath model with a limited number of parameters in the continuous time domain. Extracting the time-domain parameters and then reconstructing the channel yields channel estimates that have better accuracy. Time-domain parameter extraction also has lower computational complexity than existing methods.
US10341138B2
A STP n-node VLT system includes a first VLT device with a first virtual port, and a second VLT device with a LAG port, a non-LAG port, and a second virtual port coupled to the first virtual port. A STP engine designates the first VLT device as a root bridge and, in response, designates the first virtual port a designated port and the second virtual port a root port. The STP engine then designates a networking device coupled to the LAG port as the root bridge based on it having a higher priority than the first VLT device. Then STP engine then determines that a non-LAG link between the networking device and the second VLT device has caused the redesignation of the second virtual port as an alternate port and the non-LAG port as a root port, and swaps the designations of the second virtual port and the non-LAG port.
US10341131B2
In one embodiment, a system includes a hardware processor and logic implemented with and/or executable by the processor to determine that expiration of a timer has occurred, and in response to expiration of the timer, import entries from a media access control (MAC) address table stored by a switch controller into a MAC address table stored by a switch until the MAC address table stored by the switch is full, where the logic to import entries includes logic to import entries in the MAC address table stored by the switch controller determined to be more often used into the MAC address table stored by the switch before entries determined to be less often used.
US10341129B2
Disclosed is a method and system to provide the trending news stories to the plurality of groups based on the plurality of group members' existing conversations. Group admin registers the group by adding the phone number or email address. The impersonation access acquired from the group admin to read through the existing conversation by the group members. The present invention retrieves the top words from the existing group conversations among the group members and retrieves the trending news stories for the individual words to format them and presented it to the group. The group members' interactions on the presented trending news stories are being monitored and updated it to the respective social media accordingly.
US10341128B2
The present disclosure relates to a method and system for optimizing usage of network resources in the communication network. In an embodiment, a session is initiated by a user with a plurality of media servers. The usage of the network resources is optimized by a routing server which monitors session characteristics of an on-going session, user characteristics, media server characteristics and network conditions, wherein the on-going session is hosted by a plurality of session handling media servers from the plurality of media servers in the communication network. The routing server further compares the monitored data with corresponding threshold values and identifies at least one media server which violates the pre-defined threshold. The routing server further identifies one or more alternate media servers based on the media server characteristics and transfer the connectivity of one or more users to the one or more alternate media servers without disconnecting the on-going session.
US10341124B2
The invention relates to a power distribution system comprising a power providing device (3) for providing power and a powered device (4, 5, 6) like a luminaire to be powered by the power providing device. The power providing device and the powered device are operable in a maximum power mode and a normal operation mode, wherein in the maximum power mode the powered device consumes an amount of power maximally consumable by the powered device and the power providing device measures the power consumed by the powered device. This measured power allows for an allocation of an amount of power in the operational mode, which is really maximally needed, wherein it is not necessary to allocate a larger amount of power, which is large enough to consider, for instance, a maximally assumed length of an electrical connection (8) connecting the devices, thereby improving the power budget allocation.
US10341123B2
Systems and methods for managing the identity of a user are provided. One example includes receiving personal data identifying the user to define input data. The receiving of personal data is via an application that enables entry of said personal data for verifying the identity of the user by third parties. Then, executing a hash of the input data for generating a hash value. The method includes executing, responsive to input via a user accessible interface of the application, instructions for transmitting the hash value to a block chain over a network connection. The application is configured for receiving back from the block chain a transaction number corresponding to the hash value transmitted to the block chain. Then providing said personal data identifying the user and the transaction number to a third party for verifying the identity of the user. The third party is configured to generate a second hash value using at least part of the personal data. The third party is configured to use the transaction number to retrieve the hash value from the block chain and compare the second hash value with the hash value retrieved from the block chain. If said second hash value matches the retrieved hash value the identity of the user is considered verified by the third party.
US10341119B2
A computer system including a processor and a memory is provided. The processor includes a microcode executing unit and a programmable fuse which stores trusted information which is pre-generated using China commercial cryptography algorithms. The memory is operatively coupled to the processor and is configured to store a trusted module and a digital certificate of the trusted module. The microcode executing unit uses the China commercial cryptography algorithms to authenticate the digital certificate according to the trusted information, and authenticates the trusted module according to the authenticated digital certificate.
US10341116B2
An attestation protocol between a prover device (P), a verifier device (V), and a trusted third-party device (TTP). P and TTP have a first trust relationship represented by a first cryptographic representation based on a one-or-few-times, hash-based, signature key. V sends an attestation request to P, with the attestation request including a second cryptographic representation of a second trust relationship between V and TTP. In response to the attestation request, P sends a validation request to TTP, with the validation request being based on a cryptographic association of the first trust relationship and the second trust relationship. TTP provides a validation response including a cryptographic representation of verification of validity of the first trust relationship and the second trust relationship. P sends an attestation response to V based on the validation response.
US10341093B2
The present disclosure discloses a method, an apparatus and a system for device identification. A specific implementation of the method comprises: receiving a device identification request sent from a terminal device, the device identification request comprising a current user identifier of a current user of the terminal device; acquiring a public key in a preset asymmetric key pair to serve as a first public key; sending the first public key and a randomly-generated first random number to the terminal device; receiving device characteristic information sent from the terminal device, the device characteristic information being generated by the terminal device based on the current user identifier, the first public key, the first random number and a device identifier of the terminal device; and identifying the terminal device based on the current user identifier, the first random number and the device characteristic information.
US10341092B2
Application specific certificate deployment may be provided. An application may generate a security certificate comprising a public key and a first private key. The public key may be stored in a shared segment of a memory store, from where it may be retrieved and signed. The signed public key may be re-deployed and/or used to transmit securely encrypted resources.
US10341090B2
A cipher processing configuration, of which the resistance against various attacks is improved, having a high security level is realized. In a cipher processing configuration in which a nonlinear transformation process and a linear transformation process are repeatedly performed for state data formed from a plurality of elements, a linear transformation unit performs a matrix operation applying a quasi-MDS matrix and a substitution process. As the substitution process, a substitution process is performed which satisfies the following (Condition 1) and (Condition A). (Condition 1) According to the substitution process of the substitution unit for the input X, each column element of the output Y is configured by elements of four mutually-different columns of the input X (Condition A) In a case where the substitution process performed by the substitution unit for the input X is repeatedly performed continuously twice, each column element of the output Y is configured by elements of three or more mutually-different columns of the input X.
US10341084B2
A method for synchronizing data, via a broadcast network, which includes at least one fixed transmitter and a plurality of broadcast sites. The synchronization method uses the following acts, at at least one of the broadcast sites: obtaining a delay, referred to as an absolute delay, determined from the geographic location of the broadcast site; determining an additional delay, by subtracting the absolute delay from a fixed delay shared by the broadcast sites in the network; resetting at least one time datum or at least one portion of a data stream from the fixed transmitter, applying the additional delay to the time datum or to the portion of the data stream.
US10341080B2
Provided are a method and apparatus for determining the quantity of channel quality indicators (CQI). The method comprises: a terminal determining the quantity of ranks or the quantity of CQIs to be fed back according to at least one piece of the following pieces of information: the quantity of ports of a channel state information referenced signal (CSI-RS), the quantity of ports of a downlink demodulation reference signal (DMRS), and a configuration signalling of a base station. The present invention solves the problem of non-matching between CQIs reported by a TDD system under an FD-MIMO and CQIs actually needing to be used in the related art, improves the reliability of downlink transmission, saves overheads of a downlink signalling, and improves the downlink transmission performance.
US10341077B2
The present invention relates to a method for transmitting channel quality indicators, the method being performed in a wireless device served by a first radio network node of a wireless communication network. The wireless device receives a reference signal from the first radio network node and information relating to an interfering transmission of a second radio network node. It estimates a first channel quality based on the reference signal, and a second channel quality based on the reference signal and on the information relating to the interfering transmission, wherein the second channel quality indicates a channel quality for which the information relating to the interfering transmission, wherein the second channel quality indicates a channel quality for which the interfering transmission has been cancelled. Corresponding first and second channel quality indicators are determined and transmitted to the first radio network node.
US10341073B2
An information transmission method used in a base station includes: determining mode indication information regarding reference signals to be transmitted; transmitting the mode indication information to a mobile station; and transmitting the reference signals to the mobile station based on the mode indication information.
US10341061B2
Systems, methods, and apparatuses are described for wireless communication, including for hybrid automatic repeat request (HARQ) feedback in a system that supports communications using transmission time intervals (TTIs) of different durations. A base station may identify a user equipment's (UE) capability to provide HARQ feedback for transmissions that use TTIs of a shorter duration relative to other TTIs supported in the system. The base station may select a HARQ timing mode based on the capability of the UE and may indicate the selected HARQ timing mode to the UE. The base station may then transmit one or more data transmissions to the UE using the reduced TTIs. The UE may respond with HARQ feedback based on the HARQ timing mode. The HARQ timing mode may be based on different response times based on the location of the data transmission within a TTI or relative to data transmission in other TTIs.
US10341059B2
A method is provided in a receiving node for handling status information of data units transmitted from a sending node to the receiving node over a radio link. The receiving node establishes that a number of data units that has been transmitted by the sending node are missing. The receiving node sends a reduced status message to the sending node over the radio link, which message is reduced such that it comprises the negative acknowledgement for a first part of missing data units and omits negative acknowledgements for the rest of the missing data units. The omitted negative acknowledgement for the rest of the missing data units will not erroneously be interpreted as correctly received data units by the sending node.
US10341056B2
A decoding method in a mobile communication system using a non-binary LDPC code according to various embodiments of the present disclosure includes: selecting a message value having the highest reliability from each column and each row of an input vector message; generating a configuration set using the message value selected for each column and a GF element corresponding to the message value; and generating a check node output message using the generated configuration set and an extra output message value. According to various embodiments of the present disclosure, a decoding time period is reduced.
US10341051B2
A transmitter and receiver of a broadcasting signal and a method of processing the broadcasting signal are provided. The transmitter includes: a segmenter configured to segment an L1 signaling of a frame into a plurality of segmented L1 signalings such that each of the segmented L1 signalings has bits a number of which is equal to or smaller than a predetermined number; and an encoder configured to perform a Bose, Chaudhuri, Hocquenghem (BCH) and a low density parity check (LDPC) encoding, or the LDPC encoding without the BCH encoding, with respect to the segmented L1 signalings.
US10341050B2
The present invention related to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present invention relates to a method and an apparatus for encoding a channel in a communication or broadcasting system supporting parity-check matrices having various sizes are provided. The method for encoding a channel includes determining a block size of the parity-check matrix; reading a sequence for generating the parity-check matrix, and transforming the sequence by applying a previously defined operation to the sequence based on the determined block size.
US10341049B2
The present invention relates to a method for generating, by a transmission device, a packet in a broadcasting and/or communication system, the method comprising the steps of: generating a first source symbol block consisting of one or more source symbols with the same length using a source packet block consisting of one or more source packets; performing a forward error correction (FEC) coding operation on the first source symbol block; generating a second source symbol block containing information about each source packet constituting the source packet block; and generating a second recovery symbol block with one or more recovery symbols by performing an FEC coding operation on the second source symbol block.
US10341048B2
Embodiments of the present invention provide a channel encoding and decoding method and apparatus, where a channel encoding method includes: acquiring, by an encoder, an information bit index set; generating, by the encoder, a second bit vector according to a to-be-encoded first information bit and the information bit index set; and performing, by the encoder, Polar code encoding on the second bit vector to generate an encoded first code word. In technical solutions of the present invention, an encoder first acquires an information bit index set, generates a second bit vector according to a to-be-encoded first information bit and the information bit index set, and then performs Polar code encoding on the second bit vector to generate an encoded first code word.
US10341046B2
Mixed mode constellation mapping to map a data block to a block of sub-carriers based on a configurable set of one or more constellation mapping schemes, and corresponding mixed mode least likelihood ratio (LLR) de-mapping based on the configurable set of one or more modulation schemes. The set may be configurable to include multiple modulation schemes to provide to a SEvSNR measure that is a non-weighted or weighted average of SEvSNR measures of the multiple modulation schemes. Mixed mode constellation mapping may be useful be configurable to control spectral efficiency versus SNR (SEvSNR) over a range of SNR with relatively fine SNR granularity, and may be configurable to control SEvSNR over a range of SNR at a fixed FEC code rate, which may include a highest available or highest permitted code rate.
US10341042B2
Methods, systems, and devices for wireless communication are described. A wireless device may use a sampling rate that is less than a default sampling rate associated with a wireless carrier. The device may operate in a narrowband portion of a system bandwidth, and the sampling rate may be less than that used by devices monitoring the whole bandwidth. Multiple sampling rates may be used so that a portion of signal processing may be associated with one sampling rate and another portion of the signal processing may be associated with another sampling rate. The size of a cyclic prefix (CP) may be adjusted based on the sampling rate to align subframe timing boundaries for signals of different sampling rates. In some cases, each symbol of a signal may include both a CP and a postfix such that the postfix for each symbol overlaps the prefix of the next symbol.
US10341039B1
In some embodiments, an apparatus includes a reconfigurable optical add-drop multiplexer (ROADM). The ROADM has a wavelength selective switch (WSS) that does not perform power equalization when the WSS is operative. The ROADM also has a first pre-amplifier, a first channel power equalizer operatively coupled to the first pre-amplifier, a second pre-amplifier operatively coupled to the first channel power equalizer and the WSS, a first post-amplifier operatively coupled to the WSS, a second channel power equalizer operatively coupled to the first post-amplifier, and a second post-amplifier operative coupled to the second channel power equalizer.
US10341036B2
A method is provided for transmitting a broadcast signal in a transmitting system. Audio data of a broadcast service is generated. An audio frame coded by an Audio Compression-4 (AC-4) scheme is generated. The audio frame includes configuration information on the audio frame and at least one substream including the audio data and metadata for the audio data. The configuration information includes substream index information and substream size information. Real time Object delivery over Unidirectional Transport (ROUTE) packets containing the audio frame are generated. The ROUTE packets are processed to generate Internet Protocol (IP) packets. The IP packets are processed to generate link layer packets, and the broadcast signal including at least one data pipe that includes the link layer packets is transmitted.
US10341033B2
A device is configured to perform a method for performing a radio frequency (RF) calibration of a Wi-Fi device. The method includes transmitting, by a transmitter, a CTS (clear-to-send)-to-self frame, the CTS-to-self frame having a duration field indicating a first time duration of the RF calibration. The method also includes waiting, by at least one processor, for a second time duration associated with a distributed inter-frame space (DIFS) time period. The method further includes performing, by the at least one processor, the RF calibration.
US10341028B2
A method for transmitting and receiving a radio frequency (RF) signal over an optical channel is described, where a nonlinear optical harmonic generation device is used to increase the system performance. The RF signal is phase modulated onto an optical carrier. The received optical carrier propagates through a nonlinear optical harmonic generation device, which increases a phase modulation depth at the harmonic wavelength. This larger modulation depth can be used to achieve larger gain. By photo-detecting both the fundamental and the harmonic optical wavelengths, then properly scaling and subtracting the two photo-detected signals, the enhanced modulation depth at the harmonic optical wavelength can be used to cancel out unwanted nonlinear distortions thereby linearizing the measured RF signal. The method uses a phase-to-amplitude conversion device to change phase modulation into amplitude modulation, and is compatible with phase-to-amplitude devices that perform photonic down-conversion thereby allowing for reduced bandwidth photo-detectors.
US10341026B2
An optical bus system (1) having a start-up state and at least one operating state is disclosed. The optical bus system (1) includes a mechanical support structure (21) arranged to receive and hold a master module (2) having a downstream optical interface (3) and a set of slave modules (6) each having an upstream optical interface (7) and a downstream optical interface (8). The modules are attached to the mechanical support structure (21) such that optical interfaces of adjacent modules are aligned and in close proximity to each other in order to enable optical communication (24, 25) between adjacent modules. Each slave module (6) is further provided with circuitry to form one or two shunting signal paths (30, 31) depending on operating state after an addressing procedure is completed in the start-up state. Hereby, it is e.g. possible to realize a robust and cost-efficient optical bus system with high bandwidth capability.
US10341024B2
Embodiments of the disclosure relate to a high-directivity directional coupler, and related methods and systems. The high-directivity directional coupler includes a first microstrip and a second microstrip disposed parallel to the first microstrip. The high-directivity directional coupler inherently generates an even mode current and an odd mode current in the second microstrip. The second microstrip provides a linear forward path for conveying the even mode current and a non-linear return path for conveying the odd mode current. The non-linear return path is longer than the linear forward path to compensate for phase velocity difference between the even mode current and the odd mode current. As a result, the odd mode current and the even mode current in the second microstrip can destructively cancel out each other, thus rendering high-directivity without compromising other performance aspects of the high-directivity directional coupler.
US10341012B2
An example of a configurable channelizer includes N input ports and K output ports, each supporting M separately sampled subchannels; and one or more control circuits configured to store and apply a set of first routing tables to route subchannels in groups of R subchannels, each first routing table has M*K/R entries that link M*K/R groups of subchannels with the input ports, where R is an integer that is greater than or equal to 1.
US10341010B2
A communication system is described. The system includes: at least one gateway able to provide broadband connectivity, a set of ground terminals, and a set of high altitude platforms (HAPs), where at least one aerial platform is able to communicate with at least one gateway using radio frequencies, each HAP is able to communicate with ground terminals using radio frequencies, and each HAP is able to communicate with each other HAP using radio frequencies. Ways to handoff a ground terminal/gateway from one HAP beam to another HAP beam are described. Ways to handoff a ground terminal/gateway from one HAP to another HAP are described. Ways that keep the communications payload radios active when there is data traffic and put the radios in sleep mode otherwise, thereby adjusting the communications payload power consumption to the data traffic requirements as a function of time and coverage area, are described.
US10341004B2
A system for beam training including a transmitter forming a transmission beam using a transmission array and a receiver forming a receiving beam using a receiving array is disclosed. The transmitter transmits an identifier of a transmission training beam selected from the transmission beams using a secondary synchronization signal or a common reference signal, etc. The identifier of the transmission training beam is used for the beam training.
US10341003B2
Embodiments of the present application disclose a precoding method, an information sending method, and apparatuses thereof. The precoding method comprises: acquiring first information associated with a receiving matrix of at least one user equipment associated with a base station; and determining a first transmitting precoding matrix of the base station according to at least the receiving matrix of the at least one user equipment. According to the methods and apparatuses in the embodiments of the present application, a transmitting precoding matrix of a base station is designed according to a receiving matrix of a user equipment, which can reduce inter-cell interference.
US10340993B2
There is disclosed a method of operating a transmitter arrangement for a wireless communication network, the transmitter arrangement adapted for beamforming. The method comprises determining a maximum power level mask for the power of transmission and/or beams in a critical angular interval, the maximum power level mask covering at least the critical angular interval and controlling beamforming based on the maximum power level mask.
US10340990B2
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
US10340989B2
Methods and apparatuses for channel state information (CSI) reporting are provided. A UE capable of CSI reporting includes a transceiver configured to receive, from a base station (BS), CSI configuration information including a number (L) of beams and a number (T) of CSI reports. L and T are positive integers. The UE also includes at least one processor operably connected to the transceiver and configured to generate the T CSI reports. Each of the CSI reports is generated based on a subset of the L beams. The transceiver is further configured to transmit, to the BS, the T CSI reports in T CSI reporting instances, respectively. Each of the T CSI reports is independently decodable.
US10340987B2
Methods, apparatuses, and systems that receive a communication signal. The communication signal may be split into a first communication signal and a second communication signal. The first communication signal may be zero padded. The zero padded first communication signal may be excursion compensated to generate an excursion compensated signal. The excursion compensating may be performed by fast Fourier transform logic. Zero padding may allow for efficient fast Fourier transform process by ensuring that the length of data frames processed is an integer power of two.
US10340986B2
This invention presents a method for frequency resource allocation in a MU-MTMO system comprising assigning UEs with CQI higher than a predefined value and/or CEE lower than a predefined value and/or SII lower than a predefined value to a first group and the rest UEs to a second group, allocating different frequency resource to each group, and applying different precoding or decoding algorithm to each group.
US10340983B2
Aspects of the subject disclosure may include, for example, a surveying system operable to receive a plurality of electromagnetic waves via a guided wave transceiver that include environmental data collected via a plurality of sensors at a plurality of remote sites. Weather pattern data is generated based on the environmental data. Other embodiments are disclosed.
US10340974B2
A wireless terminal and data receiving and transmitting methods thereof are described. When the wireless terminal receives data, an antenna is used for receiving receipt signals from an uplink band and a downlink band, allowing mixed signals to enter a duplexer. The duplexer separates receipt signals from the uplink band and downlink band, and passes the receipt signal from the downlink band through a downlink band receiving end and passes the receipt signal from the uplink band through a shift switch to enter a central processing unit for aggregation together.
US10340971B2
A PA module (10A) includes a previous stage amplification element (12) to amplify a high-frequency signal, a posterior stage amplification element (13) to amplify the high-frequency signal amplified by the previous stage amplification element (12), and a variable filter circuit arranged between the previous stage amplification element (12) and the posterior stage amplification element (13) to vary a pass band and an attenuation band in accordance with a frequency band of the high-frequency signal, in which the variable filter circuit includes a filter portion (16) and switches (14 and 15) to vary the pass band and the attenuation band of the variable filter circuit, and the previous stage amplification element (12) and at least a part of the switches (14 and 15) are formed in one chip using a chip A, the posterior stage amplification element (13) are included in a second chip which is different from the chip A.
US10340965B2
Examples of passive diode-based transmitter detuning circuits and low-voltage active diode-based and receiver detuning circuits are provided.
US10340948B2
A data structure of a check matrix for the error correction code is a data structure of a check matrix for an error correction code, in which the error correction code is the LDPC code, and in which the check matrix has a matrix structure in which rows are rearranged for submatrices consisting of a part of columns of the check matrix. Moreover, in the method and device for varying the coding rate of the error correction code, a puncture position that is determined in accordance with a puncture position determination signal is a puncture position with which a number of columns in which two or more 1s are contained in a region of the check matrix that is directly affected by puncturing is minimized.
US10340947B2
In a method of controlling reclaim of a nonvolatile memory device including a plurality of memory blocks, wherein each of the memory blocks includes a plurality of pages, a recovery read operation is performed on first data using an optimal read voltage determined based on the first data, when the first data includes errors which are not correctable, wherein the first data is read from a first page of a first memory block of the memory blocks, and, when the errors of the first data are corrected after the recovery read operation is performed, whether to perform a reclaim of the first page is determined based on threshold voltage distributions of memory cells of the first page, wherein the memory cells are disposed in a region of interest adjacent to the optimal read voltage.
US10340946B2
An encoder for encoding input data to generate corresponding encoded data is provided. The encoder (10) is operable to process a sequence of elements in the input data from a first element thereof to a last element thereof. The elements have corresponding symbols. The encoder is operable to compute probabilities of symbols present in the sequence, wherein the probabilities of the symbols are computed while disregarding those elements of the sequence that have already been encoded into the encoded data. Moreover, the probabilities of the symbols are adaptively changed as the sequence of elements is progressively encoded into the encoded data. Furthermore, information describing the probabilities is delivered; optionally, the probabilities of the symbols are accompanied with additional information indicating how the probabilities are adaptively changing. There is also provided a decoder for performing an inverse of encoding performed by the encoder.
US10340945B2
Methods and systems for encoding of integers are discussed. For example, various methods and systems may utilize Huffman coding, Tunstall coding, Arithmetic Coding, LZ77 coding, LZ78 coding, LW coding, or Shannon Fano Elias coding to encode the integers.
US10340944B2
An object of the invention is to speed up processing of adding floating-point numbers. A floating-point adder includes: a first register configured to store a first fixed-point number having a predetermined number of digits corresponding to a result of accumulation of a plurality of floating-point numbers; a first conversion unit configured to convert an input first floating-point number into a second fixed-point number having the predetermined number of digits; a second register configured to store the second fixed-point number; an adder configured to add the second fixed-point number stored in the second register and the first fixed-point number stored in the first register, and store a result of the addition in the first register as the first fixed-point number; and a second conversion unit configured to convert the first fixed-point number into a second floating-point number, and output the second floating-point number.
US10340940B2
A novel and useful variable step serial DAC having a desired trajectory between input samples with a defined slope at intermediate points to form the output dynamic curve. The serial DAC is implemented to achieve higher order interpolation between the input sample points in the analog domain using switched capacitor CMOS circuits and without the use of a sample and hold circuit at the output. Conceptually, only two capacitors are needed for defining the output voltage for the conventional serial DAC. Dynamically programmable capacitor arrays define, via digital codes, the desired interpolation trajectory or output curve for the DAC between input sample points by defining the ratio of input charge Q(i) to the total capacitance C(i) at the ith time interval [Q(i)/C(i)]. The voltage at the output of the DAC is defined by incremental charge transfer at a defined rate between the input sample points. This technique uses minimum energy and area to define the dynamic curve for the DAC.
US10340937B2
The invention relates to a voltage amplifier (100, 300) that places defined ranges (12, 14) of an input voltage signal (10) in different relations in terms of the input voltage signal (10) at one or more operating points of an amplifier circuit (130). An appropriate division of the ranges (12, 14) of the input voltage signal (10) makes it possible to linearly amplify the appertaining ranges (12, 14). Such linearly amplified output signals (191, 192, 193, 194) can then be converted into digital signals (531), for example, by means of several analog-to-digital converters (510).
US10340936B2
An analog-to-digital converter (110) for an imaging device comprises an analog signal input (123) for receiving an analog signal from a pixel array of the imaging device and N ramp signal inputs (121, 122) for receiving N ramp signals, where N is an integer ≥2. The N ramp signals have different slopes. The ADC has a clock input (143) for receiving at least one clock signal. A comparison stage (120) is connected to the ramp signal inputs and to the analog signal input. The comparison stage (120) is configured to compare the ramp signals with the analog signal to provide comparison outputs during the conversion period. A control stage (130) is configured to control a counter stage (140) based on the comparison outputs and a selection input indicative of when at least one handover point has been reached during the conversion period.
US10340931B1
An arbitrary waveform generator including a first processor configured to output first digital data, a second processor configured to output second digital data, a first digital-to-analog converter to receive the first digital data from the first processor and output a first analog signal representing the first digital data, a second digital-to-analog converter to receive the second digital data from the second processor and output a second analog signal representing the second digital data, a system phase detector to receive the first analog signal and the second analog signal and determine a phase difference between the first analog signal and the second analog signal, and a controller configured to receive the phase difference from the system phase detector and determine a delay time for the first processor to delay an output of third digital data based on the phase difference.
US10340927B1
In some implementations, a system includes a phase locked loop (PLL) circuit and a digital control unit. The PLL circuit includes a digital loop filter, a digitally controlled oscillator (DCO), and a divider circuit. The digital control unit is configured determine a preset value for the DCO; determine initial gain coefficients and final gain coefficients for the digital loop filter; determine N/R values for the divider circuit; while the PLL circuit is operating in an open-loop configuration, provide the preset value to the DCO, the initial gain coefficients to the digital loop filter, and the N/R values to the divider circuit; after providing the preset value, initial gain coefficients, and N/R values, initiate operation of the PLL circuit in the closed-loop configuration; and in response to detection of a phase lock of the PLL circuit operating in the closed-loop configuration, provide the final gain coefficients to the digital loop filter.
US10340926B2
Aspects of this disclosure relate to reducing settling time of a sawtooth ramp signal in a phase-locked loop. Information from a loop filter of the phase-locked loop can be stored and used within the loop filter so as to improve the settling time of the sawtooth ramp signal. In certain embodiments, the settling time of a periodic sawtooth ramp signal can be reduced to less than one microsecond. An output frequency at the end of the sawtooth chirp can be brought back to an initial value without significantly modifying phase error in disclosed embodiments.
US10340910B2
A drive circuit includes a first level shift circuit, a second level shift circuit, a pre-driver, and a high-side transistor. The first level shift circuit outputs a first switch signal. The second level shift circuit outputs a second switch signal. The pre-driver includes a first switch portion configured to perform switching in accordance with the first switch signal and a second switch portion configured to output a gate signal in accordance with the second switch signal. The high-side transistor outputs a high-side output signal to an output terminal with a second power supply voltage which is fed in accordance with the gate signal.
US10340909B2
Provided is a technique for a stably operable complementary single ended push pull (SEPP) circuit. A buffer circuit includes the following: an NPN transistor and a PNP transistor that constitute a complementary SEPP circuit; a first resistor; a second resistor; a first load element having one end connected to a gate of a semiconductor switching element and another end connected to a base of the NPN transistor; and a second load element having one end connected to the gate of the semiconductor switching element and another end connected to a base of the PNP transistor.
US10340907B2
A drive device to drive a semiconductor element includes: an identification signal generating circuit generating an identification signal depending on a type of an input error signal; a protection operation signal generating circuit generating a protection operation signal having a pulse width equal to that of one of the error signal and the identification signal having a longer pulse width; an identification signal terminal inputting and outputting the identification signal; a protection operation signal terminal inputting and outputting the protection operation signal; and a protection circuit performing an error protection operation depending on an own-phase protection operation signal generated by the protection operation signal generating circuit and an other-phase protection operation signal input through the protection operation signal terminal.
US10340902B1
Multiplying delay locked loops (MDLLs) with compensation for realignment error are provided. In certain implementations, an MDLL includes a control circuit, a multiplexed oscillator, and an integrate and subtract circuit. The control circuit selectively injects a reference clock signal into the multiplexed oscillator, which operates with an injected period when the reference clock signal is injected and with a natural period when the reference clock signal is not injected. The integrate and subtract circuit receives an oscillator signal from the multiplexed oscillator, and tunes an oscillation frequency of the multiplexed oscillator based on a difference between an integration of the oscillator signal over the injected period and an integration of the oscillator signal over the natural period.
US10340901B2
A random number generator capable of generating a natural random number using a spin-orbit torque (SOT) is provided. The random number generator includes a ferromagnetic metal layer and a spin-orbit torque wiring extending in a first direction crossing a lamination direction of the ferromagnetic metal layer and being joined to the ferromagnetic metal layer, wherein the direction of spins injected from the spin-orbit torque wiring into the ferromagnetic metal layer and an easy magnetization direction of the ferromagnetic metal layer intersect each other.
US10340900B2
In an embodiment, an apparatus includes a first latch including a true storage node and a complement storage node, a discharge circuit, and a second latch. The first latch may pre-charge the true storage node and the complement storage node to a first voltage level using a clock signal. The discharge circuit may, in response to a determination that a scan mode signal is asserted, selectively discharge either the true storage node or the complement storage node based on a value of a scan data signal, and otherwise may selectively discharge either the true storage node or the complement storage node based on a value of a data signal. The second latch may store a value of a data bit based on a voltage level of the true storage node and a voltage level of the complement storage node.
US10340898B1
The disclosed pulsed latched circuitry includes first and second latch circuits. The first and second latch circuits can be provided with additional logic circuit components to permit them to be operated as a flip-flop circuit, or as a FIFO circuit with a depth of two.
US10340895B2
Described herein are reduced-power electronic circuits with wide-band energy recovery using non-interfering topologies. A digital logic driver comprising a pulldown switch, an energy saving component (e.g., inductor) coupled in series with the pulldown switch, and a reference supply connected in series with the energy saving component that is configured to enable the digital logic driver to resonate with a load capacitance and reuse electrical energy at the load capacitance without interfering with a signal path of the digital logic driver.
US10340886B2
A ceramic substrate is formed of a polycrystalline ceramic and has a supporting main surface. The supporting main surface has a roughness of 0.01 nm or more and 3.0 nm or less in terms of Sa. The number of projections and depressions with a height of 1 nm or more in a square region with 50 μm sides on the supporting main surface is less than 5 on average, and the number of projections and depressions with a height of 2 nm or more in the square region is less than 1 on average.
US10340876B2
A high performance integrated tunable impedance matching network with coupled merged inductors. Embodiments include a combination of merged multiport constructively coupled spiral inductors and tunable capacitors configured to reduce insertion losses, circuit size, and optimization time while maintaining a high Q factor for the coupled spiral inductors. Some embodiments integrate one or more filter circuits with a tunable impedance matching network, useful in conjunction with such applications as radio frequency power amplifiers.
US10340873B2
A band pass filter includes parallel resonators. An inductor of a first parallel resonator at an intermediate stage is divided into a first inductor and a second inductor connected in parallel with each other. The first inductor and an inductor of a second parallel resonator are in magnetic coupling with each other, and the second inductor and an inductor of a third parallel resonator are in magnetic coupling with each other.
US10340870B2
A method or apparatus for delivering audio programming such as music to listeners may include identifying, capturing and applying a listener's audiometric profile to transform audio content so that the listener hears the content similarly to how the content was originally heard by a creative producer of the content. An audio testing tool may be implemented as software application to identify and capture the listener's audiometric profile. A signal processor may operate an algorithm used for processing source audio content, obtaining an identity and an audiometric reference profile of the creative producer from metadata associated with the content. The signal processor may then provide audio output based on a difference between the listener's and creative producer's audiometric profiles.
US10340868B2
An amplifier circuit includes a first input branch circuit including a first sampling capacitor, a second input branch circuit including a second sampling capacitor, an averaging capacitor, and a subtraction capacitor, a feedback capacitor, and an operational amplifier. The first sampling capacitor samples an input voltage in a first time period and outputs a first voltage. The second sampling capacitor samples the input voltage in the first time period and outputs a second voltage. The averaging capacitor takes an average of the second voltage in the second time period and outputs a third voltage. The subtraction capacitor receives the third voltage in the first time period. The subtraction capacitor subtracts the first voltage from the third voltage and outputs a fourth voltage in the second time period. The operational amplifier is connected to the feedback capacitor and amplifies the fourth voltage. The first and second time periods are repeated alternately.
US10340856B2
Aspects of the present disclosure generally relate to a RF high power amplifier designed for resonance mitigation. A method for resonance mitigation in RF high power amplifier enclosure and an enclosure for RF high power amplifier designed to mitigate resonance is provided. In an aspect, the enclosure can be configured with a metallic post or a grounded metallic post positioned at a suitable location with RF high power amplifier circuit to dampen and shift out resonance. In an aspect, the metallic post can be placed between printed circuit board (PCB) substrate and enclosure lid. Proposed metallic post solution eliminates the need of RF absorber in the design.
US10340853B1
A radio frequency receiving circuit, including: a tail current source, configure to be multiplexed to input radio frequency signals and amplify the radio frequency signals for producing a radio frequency current; a clock signal input unit, in connection with the tail current source and configured to input clock signals; a sampling-and-holding unit, in connection with the clock signal input unit and configured to output an orthogonal signal having a frequency of one half of a clock frequency; and a load unit, in connection with the sampling-and-holding unit. The radio frequency current flowing through the load unit is converted into a voltage which is modulated by the orthogonal signal, and a medium frequency signal having a frequency equivalent to a difference between a radio frequency signal frequency and an orthogonal signal frequency is output, whereby achieving the frequency mixing.
US10340847B2
A power supply control circuit includes: a power supply control switch provided between a load and a capacitor which stores power from an energy harvester in which a plurality of power generation cells are coupled in series and supplies stored power to the load and configured to select whether or not to supply the stored power in the capacitor to the load; and a controller configured to control the power supply control switch based on a first potential extracted from a first coupling node of the plurality of power generation cells and a second potential extracted from a second coupling node different from the first coupling node.
US10340846B2
A photovoltaic junction box is disclosed. The photovoltaic junction box has a base having a receiving chamber, a cover mounted on the base closing the receiving chamber, and a plurality of ventilation passageways. The plurality of ventilation passageways are disposed between a peripheral edge of the cover and a peripheral edge of the receiving chamber, and communicate between the receiving chamber and an area external of the photovoltaic junction box.
US10340842B2
A method of energy collection using a set of collecting manifolds or surfaces such as solar cells immersed into a refracting matrix. The combination of the surfaces and matrix into a module forms the system.
US10340837B2
A mounting system for supporting a plurality of photovoltaic modules on a sloped support surface, such as a sloped roof, is disclosed herein. The mounting system may include one or more support surface attachment devices, each support surface attachment device configured to attach one or more photovoltaic modules to a support surface; and one or more module coupling devices, each module coupling device configured to couple a plurality of photovoltaic modules to one another.
US10340821B2
Low speed and high speed estimates of rotor angle and speed relative to the stator are received from a low speed estimator and a high speed estimator, respectively. LS_θ_EST and a subset of torque-controlling I_Q trajectory curve (“IQTC”) parameter values appropriate to low speed rotor operation are selected for rotor speeds below a low speed threshold value ω_LOW_THRS. HS_θ_EST and a subset of IQTC curve parameter values appropriate to high speed rotor operation are selected for rotor speeds above a high speed threshold value ω_HIGH_THRS. LS_θ_EST and the low speed subset of IQTC parameter values remain selected for rotor speeds less than ω_HIGH_THRS after accelerating to a rotor speed greater than ω_LOW_THRS. HS_θ_EST and the subset of high speed IQTC parameter values remain selected for rotor speeds greater than ω_LOW_THRS after decelerating to a rotor speed less than ω_HIGH_THRS.
US10340815B2
A liquid ejecting apparatus includes a first ejecting section that includes a first drive element and ejects liquid by driving the first drive element, a first drive circuit that includes a first transistor and outputs a first drive signal to the first drive element, a second drive circuit that includes a second transistor and outputs a second drive signal to the first drive element, a circuit substrate on which the first drive circuit and the second drive circuit are mounted. The first drive circuit is mounted on a first surface of the circuit substrate, and the second drive circuit is mounted on a second surface of the circuit substrate, and the first transistor and the second transistor are disposed at position that do not overlap one another in plan view of the circuit substrate.
US10340807B2
A device comprises a gate drive bridge coupled between a bias voltage of a power converter and ground and a transformer connected to the gate drive bridge, wherein the transformer comprises a primary winding connected to two legs of the gate drive bridge respectively and a plurality of secondary windings configured to generate gate drive signals for low side switches, high side switches and secondary switches of the power converter.
US10340804B2
A power supply circuit includes inductors, capacitors, and switching elements. Ports are electrically insulated from each other. Two switching elements are alternately switched, and two other switching elements are alternately switched. The inductors are wound such that a magnetic flux is generated in the same direction when a phase difference between the switchings of the switching elements is zero. Duties of the switchings of the switching elements are changed equally, and a phase difference between the switchings is changed.
US10340800B2
A switched mode power converter is described, configured to convert electrical power between a first voltage at a first port and a second voltage at a second port, where the first and second voltages are relative to a reference potential. The power converter comprises an inductive element having a first side and a second side, where the first side of the inductive element is coupled to the first port. The power converter comprises a power switch configured to couple or to decouple the second side of the inductive element to or from the reference potential. The power converter comprises a capacitive element having a first side and a second side, where the first side of the capacitive element is coupled to the power switch and the second side of the capacitive element is coupled to the second port. The power converter comprises an auxiliary switch configured to couple or to decouple the second side of the capacitive element to or from the reference potential. The power converter comprises a control unit configured to control the power switch and the auxiliary switch in a repetitive manner to convert electrical power.
US10340798B2
The present invention discloses a switching control method for a dual auxiliary power supply comprising a master control module, a main auxiliary power supply, and a sleep auxiliary power supply, wherein the master control module controls the main auxiliary power supply by a switch control unit, and is further coupled to a trigger detection circuit powered by the sleep auxiliary power supply; and the main auxiliary power supply outputs a control signal to an energy conversion module. The sleep auxiliary power supply is constantly in an operation state; under the control of the switch control unit, (1) the main auxiliary power supply is in a locked state when no trigger signal is detected or the trigger signal is invalid, and (2) the main auxiliary power supply is in an operation state when a trigger signal is detected or a startup instruction is received.
US10340795B2
Systems and methods are provided for regulating a power converter. An example system controller includes: a driver configured to output a drive signal to a switch to affect a current flowing through an inductive winding of a power converter, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. One minus the duty cycle is equal to a parameter. The system controller is configured to keep a multiplication product of the duty cycle, the parameter and the duration of the on-time period approximately constant.
US10340789B2
A dynamic threshold determining circuit changes the threshold voltage used to determine when to inject additional energy to increase a power converter's output voltage in response to a low voltage transient for the converter. By being able to change the threshold, finer control of the energy input for correcting transients is possible. In one implementation, the threshold is closer to the target voltage than a typical static threshold value used for transient correction, and the energy injected is smaller than that typically used for transient correction. Thus, the power converter will have a fast response to a transient but be less likely to overshoot the correction. Should the transient continue, the threshold can be changed to move further from the target value while an increased amount of energy is added so that the system can dynamically move to correct bigger transients.
US10340785B2
A method and circuit are provided for implementing voltage sense point switching for regulators. A regulator voltage sensing circuit includes at least two sense points enabling a regulator to compensate for voltage drop at the sense points and providing at least one of the sense points at a location to be switched. Switched loads have gains at the sense points to compensate for the voltage drop in a transistor switch at maximum load. A non-switched output is sensed and functions as an over-voltage protection to limit the transistor switch voltage drop.
US10340783B2
The present invention provides a pulse modulating power source, which comprises: a plurality of discharging modules connected in series during discharging; a plurality of triggers corresponding to said plurality of discharging modules, wherein each trigger provides a trigger signal to the corresponding discharging module to turn it on; a control logic module for controlling the trigger signals so as to turn on said plurality of discharging modules successively with a time delay; an output terminal for outputting a voltage.
US10340776B2
The present invention provides an acceleration method for V/f controlled induction motor in flux-weakening region, which comprises: acquiring no-load magnetizing current Im of the induction motor at current stator frequency; selecting a smaller one of 0.5·Im(1/σ+1) and (Im2+σ)/(Im+σIm) as magnetizing current set point, in which σ is an estimated total leakage inductance coefficient; getting an error signal by subtracting the magnetizing current of the induction motor from the magnetizing current set point; determining the stator frequency for the next control period according to the error signal which is provided as a controlling variable of negative feedback. The acceleration method of the present invention can provide the maximum output torque in flux-weakening region and has a larger tolerance for the error of the estimated leakage inductance.
US10340772B2
Embodiments herein include electronically commutated (“EC”) motors, fans operated by such motors, cooling systems including the same, and related methods. In an embodiment, an electronically commutated fan motor is included. The fan motor can include a housing comprising an exterior wall, a shaft, a shaft drive assembly rotatably coupled to the shaft, a power input connector, a control input connector, a switch comprising a base and an actuator accessible outside the housing, the actuator comprising a first actuator position and a second actuator position. The fan motor can also include a controller configured to control the shaft drive assembly based on a control signal from the control input connector, a power signal from the power input connector, and a switch signal from the switch. Other embodiments are also included herein.
US10340771B2
A fan motor including: a motor body; a fan; a controller that includes a circuit board and a circuit element; a heat sink that is attached to the controller and that includes a heat dissipating section; a case body that includes a motor holder, and a center piece supporting the stator, with the heat dissipating section disposed between the center piece and the motor holder and the center piece forming an airflow passage along which airflow passes; an introduction section through which airflow flowing toward the heat dissipating section is introduced; a discharge section through which the airflow that has been introduced through the introduction section is discharged toward the fan side; and a facing section that is disposed at a downstream side of the airflow with respect to the heat dissipating section and that extends in a direction to obstruct the airflow.
US10340759B2
The ceiling fan motor according to the present invention includes a rotor assembly including a rotor housing installed with a plurality of yoke pieces and a plurality of magnets in the inner side, the rotor housing having a plurality of magnet fixing parts formed between the plurality of magnets, a stator assembly placed in the inner side of the rotor assembly, the stator assembly including a stator core, and an upper insulator and a lower insulator engaged with the upper part and lower part of the stator core, and a shaft fixed being engaged with the center part of the stator core, and the magnet is engaged being forcibly press-fitted between the fixing parts.
US10340757B2
To provide a rotor member, rotor, and electric motor equipped with the same, which suppress the stress or stretching concentrated on a part of a cylindrical member, thereby enabling to raise the maximum revolution speed, and enabling greater torque to be obtained. In a rotor member fixed by press-fitting to a rotary shaft part of a rotating electrical machine, a thrust member that thrusts a cylindrical member to an outer side in the radial direction against a sleeve part is present between a plurality of magnet segments which are adjacent in the circumferential direction.
US10340755B1
A walking beam pumping unit onboard above surface energy harvester and converter invention that can supplement electric power to actuate a reciprocating walking beam pumping unit's prime mover, auxiliary devices, and control devices. In one embodiment, the walking beam pumping unit kinetic energy can assist gravity actuated linear and circular generators attached on the reciprocating walking beam, crank arms, pitman arms, head, and articulated reciprocating counterweight. The electro mechanical devices can switch between generating and motoring and send electric current to a capacitor for distribution. In another embodiment, the walking beam pumping unit kinetic energy can assist a mechanically actuated reciprocating piston linear generator attached to the reciprocating walking beam and foundation. In another embodiment, a circular generator device is attached to the crank arms. Used to supply supplemental power for the lifting and lowering of loads with a reciprocating walking beam pumping unit and auxiliary devices.
US10340748B2
An electronic apparatus includes a transmitter circuitry, receiver circuitry, and controller circuitry. The transmitter circuitry is configured to transmit a first wireless signal for a wireless communication to a first terminal via a first frequency. The receiver circuitry is configured to receive a second wireless signal for the wireless communication from the first terminal via the first frequency. The controller circuitry is configured to detect position information of the first terminal based on the second wireless signal and form a beam pattern of radio waves of a second frequency different from the first frequency based on the position information, the beam pattern having directivity to the first terminal. And the transmitter circuitry is further configured to wirelessly supply power to the first terminal via the second frequency during the wireless communication with the first terminal.
US10340746B2
An apparatus, system and method for providing a contact point power pad for use with a battery charger, such as may reside in a mobile device. The apparatus, system and method may include a base insulation pad, a plurality of alternately charged strips electrically connected to at least one voltage source and physically atop the base insulation pad, and a plurality of raised insulating ridges interstitially between alternating ones of the alternately charged strips. The apparatus, system and method may also include a mobile device for use with a power pad. The mobile device may include three contact balls electrically associated with at least one battery charger for providing charging power to the at least one battery charger.
US10340743B2
A power transmitter includes a power converter that converts power fed from a power source into first DC power, an inverter circuit that converts the first DC power into first AC power, a power transmission coil that generates a magnetic field based on the first AC power, and is magnetically coupled with a power reception coil included in the power receiver, a sensor that detects a current and a voltage of the first DC power, and a controller that controls the power converter, wherein the controller controls the power converter to raise a voltage of the first DC power up to a first voltage lower than a predetermined power feeding time voltage predetermined, and determines whether power is not allowed to be fed to the power receiver based on the current of the first DC power when the voltage of the first DC power is the first voltage.
US10340733B2
A common mode choke in a 3-wire transformer free UPS system with which different rectifier and bypass power sources are used is eliminated by using different types of PWM control depending on whether the inverter is paralleled with the bypass power source. When the inverter is paralleled with the bypass power source, a type of PWM control is used that does not have common mode voltage injection. When the inverter is not paralleled with the bypass power source, a type of PWM control is used that has common mode voltage injection. In an aspect, the PWM control that does not have common mode voltage injection is sine-triangle PWM and the PWM control that has common mode voltage injection is space-vector PWM.
US10340717B2
A charging system, a charging method, and a power adapter are provided. The power adapter includes a first rectification unit, a switch unit, a transformer, a second rectification unit, a first charging interface, a sampling unit, and a control unit. The control unit is configured to output a control signal to the switch unit, and adjust a duty ratio of the control signal based on a voltage sampling value and/or current sampling value sampled by the sampling unit, in which a voltage of a third pulsating waveform output from the second rectification unit meets the charging requirements.
US10340708B2
A battery pack includes a battery comprising at least one battery cell, a first switch electrically connected between the battery and an external terminal of the battery pack, and configured to be switched in response to a first control signal, a capacitor configured to stabilize a switching state of the first switch, a second switch electrically connected in parallel to the capacitor, and configured to be switched in response to a second control signal, and a battery protection unit configured to output the first and second signals.
US10340706B2
An assembled battery monitoring apparatus includes: a first operation functioning device that carries out a monitoring process on an assembled battery configured by a plurality of battery cells connected in series and communicates with a host controller only in an ordinary operational timing in which the host controller controls an external power source to supply an operation power source; a second operation functioning device that carries out the monitoring process on the assembled battery in the ordinary operational timing and in a non-ordinary operational timing in which the external power source stops to supply the operation power source; and a power supply switching device that performs switching so as to enable the assembled battery to supply the operation power source in the non-ordinary operational timing.
US10340695B2
Systems and methods for black-starting a power system using a battery energy storage system can be provided. In one example implementation, a method includes obtaining, by the one or more controllers, a signal requesting a black-start of the power system using the battery energy storage system. The method further includes increasing, by one or more controllers, a system bus voltage to a nominal voltage level using the battery energy storage system for a start period according to a start ramp. The method further includes maintaining, by one or more controllers, the system bus voltage at about the nominal voltage level using the battery energy storage system during a normal period following the start period.
US10340692B2
The present invention is directed to an intelligent dimmer that is capable of “learning” the type of load it is controlling, and adjusts its operating parameters accordingly. The present invention can adaptively drive electrical loads over a wide range of wattages. The intelligent dimmer of the present invention is configured to automatically calibrate itself based on the load current demands of a particular electrical load. The intelligent dimmer of the present invention can also adaptively limit in-rush currents to extend the life expectancy of the solid state switching components used therein.
US10340690B2
An interference suppression stage for a power supply. The interference suppression stage has an input connected to an input module of the power supply, the input module connected to an electrical supply system, an output connected to an output module of the power supply, the output module connected to an electrical load, at least two power paths connected in parallel between input and output, wherein each of the power paths are configured to be switched between an active state and an inactive state, and a control unit configured to switch at least one of the power paths to the inactive state in a saving mode. The control unit switches different power paths alternately in time to inactive in saving mode.
US10340687B2
Disclosed examples include an ESD protection circuit to protect an IC pad with high immunity against hot-plug surges, switching noise or other transient voltage conditions on the protected pad. The ESD protection circuit includes a clamp transistor and a trigger circuit responsive to rises in the protected pad voltage at or above a first slew rate to turn on the clamp transistor, as well as a second circuit coupled between the control terminal of the clamp transistor and a voltage supply node. The second circuit responds to rises in a voltage of the clamp transistor control terminal at a second, lower slew rate to reduce the voltage of the first control node to at least partially turn the clamp transistor off to reduce leakage current flow through the clamp transistor during transient voltage conditions on the protected pad.
US10340683B2
To provide a semiconductor device for driving an electric load to be divided into a plurality of opening/closing devices so that when an abnormality exists in any one of the division devices, that division device can be removed and replaced by an auxiliary device. Each of a plurality of opening/closing circuit units has an upper-side opening/closing device and a lower-side opening/closing device; while load driving is stopped, there is monitored the potential of the connection point between the upper and lower opening/closing devices at a time when any one of the opening/closing devices is closed or both of them are opened, and it is determined whether there exists short-circuit abnormality or disconnection abnormality in each of the opening/closing devices. When abnormality exists, the upper and lower opening/closing devices are removed and the auxiliary circuit is made effective.
US10340680B2
The invention relates to a method and to a device for shutting down an installation part provided with connected equipment in an ungrounded power supply system in case of an insulation fault in a direct-current circuit connected to the installation part to be shut down. The invention is based on first determining the insulation resistance of the IT power supply system and measuring the displacement direct voltage present in the IT power supply system and then determining by combined evaluation of the measured results if there is a risk of an disruptive influence on the operating behavior of the connected equipment due to the displacement direct voltage occurring during the duration of a predeterminable time interval. If a disruptive influence is to be expected, the installation part exhibiting the insulation fault is immediately shut down together with the direct-current circuit and the equipment connected thereto.
US10340676B2
Protective housings for an electrical device, such as a switches or receptacle, and methods for installing protective housings are disclosed. A protective housing for an electrical device includes a baseplate with an internal opening and first arcuate cutout along the internal opening. The protective housing also includes a first insert with a second arcuate cutout and at least one aperture. The first insert fits within the opening. The first and second arcuate cutouts form a through hole when the first insert is fitted within the opening.
US10340673B2
An electronic device includes a support frame, an electronic unit and a cable. The support frame includes a frame body and a first cable management unit. The frame body has a cable management recess and a cable management hole, wherein the cable management recess communicates with the cable management hole. The first cable management unit is connected to the frame body and rotatably located in the cable management recess. The electronic unit is disposed on the frame body. The cable has a first end and a second end opposite to the first end. The first end is connected to the electronic unit and the second end passes through the cable management hole to enter the cable management recess. The first cable management unit limits the cable in the cable management recess. When the cable is pulled to move, the first cable management unit rotates along with the cable.
US10340670B2
A low voltage electrical distribution installation including at least one busbar linked to a power supply bus or to an upstream protection switchgear, and to switchgears of an electrical equipment item, this installation includes, for each of at least two bars, an insulating support configured to house the bar over substantially all of its length, each insulating support including a device for fixing to another insulating support adjacent to the first, each insulating support situated at the end of a group of insulating supports being configured to be fixed to at least one upright belonging to a device housing the switchgears, via at least one crossmember extending substantially at right angles to the longitudinal direction of the corresponding bar, at least one crossmember being fixed to the upright(s), and to the insulating support such that the assembly including the upright(s), the crossmember(s) and the insulating supports housing the bars, forms a rigid assembly.
US10340666B2
A spark plug having a noble metal tip that is joined to a tip-joining surface of a ground electrode so as to face an end face of a center electrode. When the noble metal tip is projected onto a projection plane parallel to the tip-joining surface, the noble metal tip has an elliptical shape in the projection plane. When the ground electrode is also projected onto the projection plane, an angle of 45° or less is formed between the major axis of the elliptical shape in the projection plane and a straight line extending in the lengthwise direction of the ground electrode and passing through the center of the noble metal tip in the projection plane.
US10340665B2
A spark plug, including an insulator, a casing including a sealing surface, and a gasket which rests against the sealing surface, the sealing surface including a plurality of recesses.
US10340662B2
A QCL (10) includes a first electrode (15), a first contact layer (11) that is in contact with the first electrode (15) and is made of a first compound semiconductor, a second electrode (14) having a polarity opposite to that of the first electrode (15), a second contact layer (13) that is in contact with the second electrode (14) and is made of a second compound semiconductor, and an active layer (12) disposed between the first contact layer (11) and the second contact layer (13) and including two or more active layer units. Each of the active layer units includes one or more quantum well layers made of a third compound semiconductor and one or more barrier layers made of a fourth compound semiconductor, and each of the quantum well layers and each of the barrier layers are alternately stacked. The vibrational energies of longitudinal optical phonons of the third compound semiconductor and the fourth compound semiconductor are higher than the vibrational energy of a longitudinal optical phonon of GaAs and lower than or equal to the vibrational energy of a longitudinal optical phonon of AlN.
US10340654B2
A laser apparatus includes a light source configured to output excitation light, an optical resonator in which laser medium is excited by the excitation light, the optical resonator being configured to output laser beam, a temperature regulator configured to adjust temperature of the light source to a standard temperature, an optical detector configured to detect output power of the laser beam, and a controller configured to change the standard temperature based on the detected output power of the laser beam.
US10340652B2
A laser device according to the present invention may comprise: a pumping laser supply unit for emitting a pumping laser having a nano-second pulse width; and a laser output unit disposed at one side of the pumping laser supply unit and generating an output laser which is pumped by the pumping laser to have a nano-second pulse width corresponding to the pulse width of the pumping laser.
US10340645B2
A multifunctional socket comprises a main socket module (5) and at least two functional device modules. The functional device modules and the main socket module (5) can be assembled in any manner. At least one of the functional device modules is detachably connected to the main socket module (5). Adjacent functional device modules are detachably connected. At least one of the functional device modules and the main socket module (5) are electrically connected. The adjacent functional device modules are electrically connected. The multifunctional socket enables at least two functional device modules to be integrated into a single device, such that a user can use the components separately or combine the same in any fashion, thereby meeting the needs of the user.
US10340635B1
A pluggable and unpluggable device and a handle for the same are provided. The pluggable and unpluggable device includes a carrier, a shaft disposed at the carrier, and a handle movably mounted on the shaft and adapted to engage with and pull out, from an apparatus, the pluggable and unpluggable device in an engaged state and a pulled-out state respectively, alternately and repeatedly. The handle includes a handle body, a guide tunnel disposed in the handle body, and an engaging portion disposed on the handle body. The handle body fits around the shaft by the guide tunnel to thereby slide or rotate relative to the shaft. The engaging portion engages with and escapes from the apparatus as the handle body slides relative to the shaft by the guide tunnel. Therefore, the handle is unlikely to sever, capable of being locked and unlocked, one-piece and thus structurally simple, and space-efficient.
US10340627B2
An electrical connector includes a housing, a conductive pin, a first seal, and a sealant. The housing has a bore and first and second ends exposed at different pressures when in use. The bore extends between the first and second ends. The conductive pin is arranged within the bore and configured to engage a first wire at the first end and a second wire at the second end. The first seal is arranged around the conductive pin and engaged between the conductive pin and the bore to provide seal therebetween. The sealant is provided to fill the bore between the first end and the first seal. The sealant may be an epoxy-based sealant.
US10340621B2
A housing (10) includes a housing body (11) and a receptacle (12) projecting forward from the housing body (11). The housing body (11) includes first cavities (13) into which first male terminals (70) are inserted, and second cavities (14) into which second male terminals (80) are inserted. Each second male terminal (80) includes a second tab (82) longer than a first tab (72) of each first male terminal (70). Recesses (23) are provided on a front surface (17) of the housing body (11) around openings of the second cavities (14) and are recessed farther rearward than areas around openings of the first cavities (13). A moving plate (40) is movable from an initial position to a connection position in the receptacle (12). The moving plate (40) has interpolar partitioning portions (52) configured to partition between the adjacent second tabs (82) by entering the recesses (23) at the connection position.
US10340620B2
An object is to reduce the size of a multi-contact connector having a wiping function. A multi-contact connector includes a front terminal and a rear terminal. The front terminal and the rear terminal are independently housed in one terminal accommodating groove in a housing in such a manner as to separate from each other. Unlike terminals of a multi-contact connector according to the related art, each terminal has no junction where it divides into a front contact and a rear contact. The housing requires no space for accommodating such a junction, and this reduces the size of the multi-contact connector.
US10340614B2
An electronic device includes: a substrate; a housing which covers the substrate; a conductive pin mounted on one edge portion of the substrate. The conductive pin projects from the substrate along a plane of the substrate, the conductive pin includes a projection portion and a soldered portion which is soldered to the substrate, and the soldered portion includes a conducting portion which is electrically conduction with a circuit wiring of the substrate.
US10340607B2
Systems and methods for wireless communications are provided. More particularly, disclosed aspects generally relate to an apparatus with an improved antenna design and use thereof. According to these aspects, the apparatus includes a substrate, first antennas disposed in the substrate, and second antennas disposed in the substrate. Each of the first antennas are configured to have a peak gain in one or more first directions substantially perpendicular to the substrate and each of the second antennas are configured to have a peak gain in one or more second directions substantially diverging from the first directions. According to these aspects, a subset of first and the second antennas contributing to the communications session can be determined and power for gain amplifiers not associated with the subset can be reduced.
US10340598B2
A loop antenna array that can form a linear and clear communication area boundary is provided. The loop antenna array includes two loop antennas. Currents flow through the loop antennas in opposite directions from each other. In other words, viewing in a direction passing through each of the loop antennas, at a timing when a positive voltage is applied to a signal terminal of an alternating-current source, a clockwise current flows through one loop antenna while a counterclockwise current flows through the other loop antenna. Conversely, at a timing when a negative voltage is applied to the signal terminal of the alternating-current source, a counterclockwise current flows through one loop antenna while a clockwise current flows through the other loop antenna.
US10340595B2
A dipole antenna is provided, which may include a substrate, a first radiator and a second radiator disposed thereon. The substrate may include a first metal layer and a second metal layer; the first metal layer may include a feed point connected to the signal wire of a coaxial cable; the second metal layer may include a ground point connected to the ground layer of the coaxial cable. The first radiator may include a first planar connection part and a first solid radiating part; the first planar connection part may be disposed on one end of the first solid radiating part and connected to the first metal layer. The second radiator may include a second planar connection part and a second solid radiating part; the second planar connection part may be disposed on one end of the second solid radiating part and connected to the second metal layer.
US10340593B2
Described embodiments provide techniques for controlling a phased array system by a control system including one or more distributed control stations. At least one of the control stations displays a control interface having a status window, a beam window, and a scan window. The control system instructs the phased array system to operate in an operating mode selected from among selectable operating modes displayed in the status window. In the beam window, at least one beam is selected from among selectable beams available to track a target. The control system instructs the phased array system to form the selected beam and assigns the formed beam to (i) track a target detected by the phased array system, or (ii) monitor a selected location. The scan window displays (i) targets tracked by the phased array system, and (ii) beams generated by the phased array system.
US10340588B2
As such, in the disclosure, a slit is formed in a side plate. The slit has an opening in the upper end surface of the side plate. The opening has a width which is smaller than a thickness of the side plate and enables to correspond to a thickness t of the substrate and a length which enables to correspond to a length a of one side of the substrate. An RF antenna module is housed in the slit formed in the side plate of the housing to be accommodated in the housing by inserting the one side of the substrate through the opening of the slit, which is formed in the upper end surface of the side plate, and inserting the substrate into the slit by an amount equal to or larger than a length of another side of the substrate.
US10340582B2
A terminal includes a metal frame body having: a top frame configured to receive a global positioning system (GPS) antenna; and a middle frame provided with a slot corresponding to the GPS antenna in position, wherein the top frame and the middle frame are electrically isolated from each other by a gap.
US10340579B2
An attachment instrument for an electronic device (10) includes a first angle adjustment part (30) configured to adjust an orientation of an antenna included in the electronic device (10) by two arc-shaped long holes (31a, 31b) formed in a plane and two axes (32a, 32b) moving inside the two long (31a, 31b), respectively. The first angle adjustment part (30) makes the adjustment by the axis (32a) inside one of the long holes (31a) being fixed and the axis (32b) inside the other one of the long holes (31b) being allowed to move.
US10340568B2
An apparatus includes a top conductive layer of on an integrated circuit waveguide filter and a bottom conductive layer. The top and bottom conductive layers are coupled via a plurality of couplers that form an outline of the waveguide filter. A dielectric substrate layer is disposed between the top conductive layer and the bottom conductive layer of the integrated circuit waveguide filter. The dielectric substrate layer has a relative permittivity, εr that affects the tuning of the integrated circuit waveguide filter. At least one tunable via includes a tunable material disposed within the dielectric substrate layer and is coupled to a set of electrodes. The set of electrodes enable a voltage to be applied to the tunable material within the tunable via to change the relative permittivity of the dielectric substrate layer and to enable tuning the frequency characteristics of the integrated circuit waveguide filter.
US10340563B2
A cooling system is provided for a traction battery of an electrified motor vehicle. That cooling system includes a cooling circuit, a refrigerant circuit, a plurality of flow control valves and a control system. That control system includes a controller configured to (a) control operation of the plurality of flow control valves, including a coolant proportional valve, and (b) prioritize cabin cooling over traction battery cooling.
US10340550B2
Provided is a lithium ion secondary cell using lithium manganese-based oxide as a positive electrode active material, wherein SEI films suppressing deterioration during repeated charge/discharge are easily formed not only on the negative electrode surface, but also on the positive electrode surface, deterioration in capacity upon use, in particular, under high-temperature environments is suppressed, charge/discharge cycle characteristics are improved and lifespan is lengthened. The lithium ion secondary cell includes a positive electrode active material layer containing lithium manganese-based oxide as a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and an electrolytic solution used to immerse the positive electrode active material layer and the negative electrode active material layer, wherein the positive electrode active material layer contains carbon nanotubes and the electrolytic solution contains sulfonic acid ester.
US10340546B1
Various embodiments of a biocompatible, self-rechargeable bio-fueling micro battery with a glucose burning chamber, are disclosed herein, to power an implanted medical device. The micro battery comprises a bio-membrane that is configured to diffuse a plurality of bio-fluids across an anode and cathode electrode. The bio-membrane includes: a biocompatible compartment storing at least one of a chemical substance configured to operate a plurality of bio-medical implant devices; one or more bio-fuel compartments (blood, glucose, and/or microbial) configured to store bio-fuels for generating electrolyte and to create a conductive path for electrons emitted by electrodes; and a processor in communication with the biocompatible compartment through plurality of connectors interface with the one or more bio fuel compartments to control the communication between user and the bio medical implant devices. The biofluids comprise a lemon juice, an orange juice, a pineapple juice, and a sour juice; and/or an ingested food.
US10340544B2
The invention describes an ion exchange membrane formed from a biaxially orientated single or multiple-layered β-porous polypropylene film which comprises at least one β-nucleating agent and an ion-conducting polymer and has a Gurley value of at least 10000 s.
US10340532B2
A separator for fuel cell includes a corrugated portion formed to have a corrugated cross section where a first groove that is concave to a first surface to form a flow path for a first fluid on the first surface and a second groove that is concave to a second surface opposite to the first surface to form a flow path for a second fluid on the second surface are arranged alternately and repeatedly. Each of the second grooves has at least one shallower groove section formed to have a less depth from the second surface than depth of a remaining groove section and provided to form a communication flow channel on the first surface side, which is arranged to communicate between two flow path spaces for the first fluid that are adjacent to each other across the shallower groove section.
US10340528B2
Provided herein are three-dimensional ion transport networks and current collectors for electrodes of electrochemical cells. Exemplary electrodes include interconnected layers and channels including an electrolyte to facilitate ion transport. Exemplary electrodes also include three dimensional current collectors, such as current collectors having electronically conducting rods, electronically conducting layers or a combination thereof.
US10340526B2
Provided is a nonaqueous lithium-type power storage element in which a lithium compound is included in positive electrode, wherein energy loss due to voltage decrease under high temperatures and high voltages is reduced, and the high-load charge and discharge cycle characteristics are exceptional.
US10340513B2
A positive active material for a lithium-ion secondary battery includes a lithium composite oxide particle containing nickel atoms, manganese atoms, and fluorine atoms. The lithium composite oxide particle includes a particle center portion and a surface layer portion that is closer to a surface of the lithium composite oxide particle than the particle center portion is. A fluorine atom concentration Fc (at %) of the particle center portion measured by energy dispersive X-ray spectroscopy is lower than a fluorine atom concentration Fs (at %) of the surface layer portion.
US10340504B2
A metal-air battery may include a housing, at least one hollow-cylindrical cathode arranged in the housing between an air chamber and an electrolyte chamber, and at least one metallic anode arranged in the electrolyte chamber. The battery may also include an air path leading through the housing from an air inlet to an air outlet of the housing, both of which may be fluidically connected to the air chamber, and an air supply device for generating an air flow following the air path and impinging on the cathode. The battery may further include an electrolyte path leading through the housing from an electrolyte inlet to an electrolyte outlet of the housing, both of which may be fluidically connected to the electrolyte chamber, and an electrolyte supply device for generating an electrolyte flow following the electrolyte path and impinging on the anode and the cathode.
US10340499B2
This invention provides a sealed secondary battery comprising a current cutoff mechanism. The current cutoff mechanism has a current breaking valve 30 comprising a sloped side wall 32A which tapers with decreasing diameter from the inner circumference of a flange 32 and a dome 32B descending in a spherical cap shape from the rim of sloped side wall 32A. The rotation axis L of sloped side wall 32A and the sloped side wall 32A form an angle θ to satisfy 60°≤θ≤75° while dome 32B has a sphere radius R of 30 mm or larger, but smaller than 100 mm. In a planer view along the rotation axis L, the outer circumference of dome 32B is located outside the outer circumference of a thin portion 76.
US10340485B2
A lid of a rechargeable battery includes a lid body that closes an opening of a case body and is supported by a case-side mating surface surrounding the opening of the case body. The lid also includes an inserted portion having a shape of a quadrangular column. The inserted portion protrudes from the lid body toward an inner part of the case body and extends along an inner circumferential surface of the case body. The lid also includes a rounded corner present in the distal end of the inserted portion in a protruding direction in which the inserted portion protrudes from the lid body. The lower limit of an edge-removal dimension of the corner is equal to an average particle diameter of a material for the lid.
US10340483B2
The present disclosure relates to a battery module that includes a housing having a first protruding shelf along a first perimeter of the housing, a second protruding shelf along a second perimeter of the housing, where the first and second protruding shelves each include an absorptive material configured to absorb a first laser emission. The battery module also includes an electronics compartment cover configured to be coupled to the housing via a first laser weld, and a cell receptacle region cover configured to be coupled to the housing via a second laser weld. The electronics compartment cover has a first transparent material configured to transmit the first laser emission toward the first protruding shelf and the cell receptacle region cover has a second transparent material configured to transmit the first laser emission or a second laser emission toward the second protruding shelf.
US10340477B2
A method of manufacturing a display device includes: providing a substrate including a first area, a second area at an end portion of the substrate, and a bendable area between the first and second areas; forming a display element on a first surface of the substrate in the first area; attaching a protective film on a second surface of the substrate which is opposite to the first surface thereof, in the first, second and bendable areas; attaching an electronic element on the first surface in the second area; forming a bending protective layer on the first surface in the bendable area, the bending protective layer extending from the bendable area to cover the electronic element in the second area of the substrate; and in the bendable area of the substrate, removing a portion of the protective film on the second surface of the substrate.
US10340472B2
A display device includes a base substrate, a first transistor, a second transistor, an organic light emitting diode, and a capacitor electrically connected to the first thin film transistor. The first transistor includes a first semiconductor pattern below a first interlayer insulation layer and a first control electrode above the first interlayer insulation layer and below a second interlayer insulation layer. The second transistor includes a second control electrode above the first interlayer insulation layer and below the second interlayer insulation layer. A second semiconductor pattern is above the second interlayer insulation layer.
US10340459B2
Detectors and methods of forming the same include aligning a semiconducting carbon nanotubes on a substrate in parallel to form a nanotube layer. The aligned semiconducting carbon nanotubes in the nanotube layer are cut to a uniform length corresponding to a detection frequency. Metal contacts are formed at opposite ends of the nanotube layer.
US10340449B2
A resistive memory device, such as a BMC ReRAM device, includes at least one resistive memory element which contains a carbon barrier material portion and a resistive memory material portion that is disposed between a first electrode and a second electrode.
US10340446B1
A semiconductor structure includes a seed layer and a multilayer stack of one or more multilayers disposed over the seed layer, each of the one or more multilayers including a magnetic layer and an additional layer disposed over a top surface of the magnetic layer. The additional layer includes a non-magnetic material and a dusting material. The multilayer stack provides a reference layer of a perpendicular magnetic tunnel junction stack. The magnetic layer may be formed of cobalt, the non-magnetic material may be at least one of iridium and rhodium, and the dusting material may be at least one of platinum, ruthenium, palladium, gold and nickel.
US10340445B2
MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include one or more electrode interface material layers disposed between a an electrode metal, such as TiN, and a seed layer of an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. The electrode interface material layers may include either or both of a Ta material layer or CoFeB material layer. In some Ta embodiments, a Ru material layer may be deposited on a TiN electrode surface, followed by the Ta material layer. In some CoFeB embodiments, a CoFeB material layer may be deposited directly on a TiN electrode surface, or a Ta material layer may be deposited on the TiN electrode surface, followed by the CoFeB material layer.
US10340443B2
An embodiment includes an apparatus comprising: first and second electrodes on a substrate; a perpendicular magnetic tunnel junction (pMTJ), between the first and second electrodes, comprising a dielectric layer between a fixed layer and a free layer; and an additional dielectric layer directly contacting first and second metal layers; wherein (a) the first metal layer includes an active metal and the second metal includes an inert metal, and (b) the second metal layer directly contacts the free layer. Other embodiments are described herein.
US10340438B2
A qubit may be formed by forming a Josephson junction between two capacitive plates. The Josephson junction may be an aluminum/aluminum-oxide/aluminum trilayer Josephson junction on a substrate. The Josephson junction may be annealed with a thermal source. Annealing the Josephson junction may alter the frequency of the qubit.
US10340437B2
This disclosure relates to methods for manufacturing devices capable of functioning as thermoelectric generators and related objects by the process of additive manufacturing or by 3-D printing or by casting. This disclosure also particularly relates to the uses of the thermoelectric generators and related objects produced by these methods.
US10340436B2
Embodiments of the present invention provide a thermoelectric element including a first element portion having a first cross-sectional area, a connection portion connected to the first element portion, and a second element portion connected to the connection portion and having a second cross-sectional area, wherein a cross-sectional area of the connection portion is smaller than at least one of the first cross-sectional area and the second cross-sectional area.
US10340424B2
In a lighting package, a printed circuit board supports at least one light emitting die. A light transmissive cover is disposed over the at least one light emitting die. A phosphor is disposed on or inside of the light transmissive dome-shaped cover. The phosphor outputs converted light responsive to irradiation by the at least one light emitting die. An encapsulant substantially fills an interior volume defined by the light-transmissive cover and the printed circuit board.
US10340422B2
A display device and a display panel are provided. The display panel includes an array panel and a plurality of display devices. The display device includes a display device main body and a magnetic member disposed on the display device main body. The display device can be transferred to the array panel under a force of a magnetic field outside of the display device. The present disclosure can efficiently transfer the display devices to the array panel.
US10340420B2
A semiconductor light-emitting device includes a light-emitting structure, a reflective electrode layer, and a transparent cover layer. The light-emitting structure includes a first semiconductor layer, an active layer, and a second semiconductor layer. The reflective electrode layer covers an upper surface of the second semiconductor layer. The transparent cover layer covers an upper surface of the second semiconductor layer on the reflective electrode layer. The transparent cover layer includes a tail portion including a first portion and a second portion. The first portion covers an edge of the reflective electrode layer and a convex upper surface. The second portion is thinner than and extends from the first portion.
US10340408B1
An exemplary non-invasive wearable brain interface system includes a headgear configured to be worn on a head of the user and a plurality of self-contained photodetector units configured to removably attach to the headgear. The photodetector units each include a plurality of photodetectors configured to detect photons of light after the photons reflect from a target within a brain of the user. The brain interface system further includes a master control unit communicatively coupled to each of the photodetector units by way of a plurality of wires and configured to control the photodetector units, the master control unit comprising an input power port configured to connect to a power cable that provides power from a power source for the master control unit and the photodetector units.
US10340406B2
A distributed photodiode with FIR filtering function enabled by a lumped transmission line is provided. The distributed photodiode includes inductors, a plurality of photodiode segments, photodiode biasing components, and termination impedance. The electrical bandwidth due to the junction parasitic capacitance of the photodiode is increased as the parasitic capacitance is absorbed in the transmission line structure. Moreover, the delay elements inherent in the transmission line enable implementation of an analog finite impulse response (FIR) filter that has equalization capability to allow a customized photodiode frequency response compensation.
US10340405B2
A photovoltaic cell comprises a first subcell formed of a Group IV semiconductor material, a second subcell formed of a Group II-VI semiconductor material, and a tunnel heterojunction interposed between the first and second subcells. A first side of the tunnel heterojunction is formed by a first layer that is adjacent to a top surface of the first subcell. The first layer is of a first conductivity type, is comprised of a highly doped Group IV semiconductor material. The other side of the tunnel heterojunction is formed by a second layer that adjoins the lower surface of the second subcell. The second layer is of a second conductivity type opposite the first conductivity type, and is comprised of a highly doped Group II-VI semiconductor material. The tunnel heterojunction permits photoelectric series current to flow through the subcells.
US10340394B2
A stacked III-V semiconductor diode having an n+-layer with a dopant concentration of at least 1019 N/cm3, an n−-layer with a dopant concentration of 1012-1016 N/cm3, a layer thickness of 10-300 microns, a p+-layer with a dopant concentration of 5×1018-5×1020 cm3, with a layer thickness greater than 2 microns, wherein said layers follow one another in the sequence mentioned, each comprising a GaAs compound. The n+-layer or the p+-layer is formed as the substrate and a lower side of the n−-layer is materially bonded with an upper side of the n+-layer, and a doped intermediate layer is arranged between the n−-layer and the p+-layer and materially bonded with an upper side and a lower side.
US10340393B2
Some embodiments include methods of forming vertical memory strings. A trench is formed to extend through a stack of alternating electrically conductive levels and electrically insulative levels. An electrically insulative panel is formed within the trench. Some sections of the panel are removed to form openings. Each opening has a first pair of opposing sides along the stack, and has a second pair of opposing sides along remaining sections of the panel. Cavities are formed to extend into the electrically conductive levels along the first pair of opposing sides of the openings. Charge blocking material and charge-storage material is formed within the cavities. Channel material is formed within the openings and is spaced from the charge-storage material by gate dielectric material. Some embodiments include semiconductor constructions, and some embodiments include methods of forming vertically-stacked structures.
US10340387B2
A manufacturing method of a LTPS-TFT is provided, including: providing a substrate, sequentially forming a buffer layer, a low temperature poly-silicon layer, a source contact region, a drain contact region, a gate insulator layer, a gate layer, and a dielectric layer on the substrate, respectively forming a first and a second contact holes through the dielectric layer and the gate insulator layer by dry etching to expose the source and the drain contact regions; and on the dielectric layer, forming a source electrode to contact the source contact region through the first contact hole and a drain electrode to contact the drain contact region through the second contact hole. A LTPS-TFT and an array substrate are also provided.
US10340385B2
A method for manufacturing a semiconductor device includes providing a substrate structure having PMOS and NMOS regions. The PMOS region includes a first region, a first gate structure on the first region, and first source and drain regions on opposite sides of the first gate structure. The NMOS region includes a second region and a second gate structure on the second region. The method also includes introducing a p-type dopant into the first source and drain regions, performing a first annealing, forming second source and drain regions on opposite sides of the second gate structure, introducing an n-type dopant into the second source and drain regions, and performing a second annealing. The method satisfies thermal budget requirements of forming PMOS and NMOS devices, thereby enabling a better diffusion of the p-type dopant into the source and drain regions of the PMOS device without affecting the performance of the NMOS device.
US10340381B2
The present invention provides a method for fabricating a semiconductor structure, the method at least comprises: firstly, a substrate is provided, a dielectric layer is formed on the substrate, a gate conductive layer and two spacers are formed and disposed in the dielectric layer, wherein the two spacers are respectively disposed on both sides of the gate conductive layer, next, parts of the gate conductive layer are removed, and parts of the two spacers are removed, wherein a top surface of the two spacers is lower than a top surface of the gate conductive layer, and afterwards, a stress cap layer is then formed, overlying the gate conductive layer and the two spacers, wherein parts of the stress cap layer is located right above the two spacers.
US10340378B1
According to one embodiment, a semiconductor device includes a first electrode, a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, a third semiconductor region of the first conductivity type, a gate electrode, a fourth semiconductor region of the second conductivity type, an interconnect portion, and a second electrode. The gate electrode includes a first portion, a second portion, and a third portion between the first portion and the second portion. The first portion opposes the first to third semiconductor regions. The second portion is separated from the first portion. The fourth semiconductor region includes a first region opposing the second portion. The interconnect portion is electrically connected to the third portion. The second electrode is provided on the second and third semiconductor regions and the first region. The second electrode is electrically connected to the second to fourth semiconductor regions.
US10340363B2
A vertical field-effect transistor (FET) device is fabricated with a self-aligned bottom insulating spacer for improved electrostatic control. A semiconductor fin is formed on a semiconductor substrate. A lower source/drain region, which is formed of a first type of epitaxial semiconductor material, is epitaxially grown on a surface of the substrate in contact with a bottom portion of the semiconductor fin. A sacrificial epitaxial semiconductor layer is epitaxially grown on top of the lower source/drain region, wherein the sacrificial epitaxial semiconductor layer is formed of a second type of epitaxial semiconductor material which is different from the first type of epitaxial semiconductor material. The sacrificial epitaxial semiconductor layer is selectively oxidized to form a self-aligned bottom insulating spacer comprising an oxide layer. A gate structure is formed contact with sidewalls of the semiconductor fin. The self-aligned bottom insulating spacer electrically insulates the gate structure from the lower source/drain region.
US10340362B2
Structures for spacers of a field-effect transistor and methods for forming such spacers. A mask layer has a feature separated from a vertical sidewall of a first gate structure by a space of predetermined width that exposes a top surface of a semiconductor body. A spacer is formed adjacent to the vertical sidewall of the first gate structure. The spacer has a first section in the space and a second section. The first section of the spacer is located vertically between the second section of the spacer and the top surface of the semiconductor body. The first section of the spacer extends through the space to the top surface of the semiconductor body, and the first section of the spacer fully fills the space.
US10340359B2
A high-k dielectric metal gate (HKMG) transistor includes a substrate, an HKMG gate stack with a gate dielectric layer and a gate electrode layer positioned above the substrate. The gate electrode layer has an upper portion and a lower portion. A first liner contacts a sidewall portion of the upper portion. A spacer contacts the first liner and a sidewall portion of the lower portion. Raised source and drain regions are positioned adjacent the spacer. A height of the uppermost surface of the spacer is greater than a height of an uppermost surface of the raised source and drain regions. A width of the upper portion between the raised source and drain regions is smaller than a width of the lower portion between the raised source and drain regions.
US10340353B2
A method for integrating epitaxial, metallic transition metal nitride (TMN) layers within a compound semiconductor device structure. The TMN layers have a similar crystal structure to relevant semiconductors of interest such as silicon carbide (SiC) and the Group III-Nitrides (III-Ns) such as gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and their various alloys. Additionally, the TMN layers have excellent thermal stability and can be deposited in situ with other semiconductor materials, allowing the TMN layers to be buried within the semiconductor device structure to create semiconductor/metal/semiconductor heterostructures and superlattices.
US10340350B2
A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes an isolation layer, a gate dielectric layer, a tantalum nitride layer, a tantalum oxynitride layer, an n type work function metal layer and a filling metal. The isolation layer is formed on a substrate, and the isolation layer has a first gate trench. The gate dielectric layer is formed in the first gate trench, the tantalum nitride layer is formed on the gate dielectric layer, and the tantalum oxynitride layer is formed on the tantalum nitride layer. The n type work function metal layer is formed on the tantalum oxynitride layer in the first gate trench, and the filling metal is formed on the n type work function metal layer in the first gate trench.
US10340345B2
A nitride semiconductor epitaxial wafer includes a substrate, a GaN layer provided over the substrate, and an AlGaN layer provided over the GaN layer. The GaN layer has a wurtzite crystal structure, and a ratio c/a of a lattice constant c in a c-axis orientation of the GaN layer to a lattice constant a in an a-axis orientation of the GaN layer is not more than 1.6266.
US10340342B2
A semiconductor device and its manufacturing method are presented. The semiconductor device includes a collection region, a base region adjacent to the collection region, an emission region adjacent to the base region, and a doped semiconductor layer on the emission region. The width of the doped semiconductor layer is larger than the width of the emission region, a conductive type (e.g., P-type or N-type) of the doped semiconductor layer is the same as a conductive type of the emission region. In this inventive concept, the width of the doped semiconductor layer on the emission region is larger than the width of the emission region, that equivalently increases the width of the emission region, which in turn increases the DC amplification factor (β) and therefore improves the overall performance of the semiconductor device.
US10340332B2
A junction termination with an internal field plate, the field plate structure and the junction termination extension region are folded inside the device to make full use of the thickness of the drift region in the body, thereby reducing the area of the termination and relieving the electric field concentration at the end of the PN junction. The breakdown position is transferred from the surface into the body of the original PN junction, and the withstand voltage of termination can reach to the breakdown voltage of the parallel plane junction. Under such design, a smaller area can be obtained than that of the conventional structure at the same withstand voltage.
US10340321B2
An electro-optical device includes a first electrode that is coupled to a first data transfer line, a second electrode that is coupled to a second data transfer line. The first and second electrodes are respectively formed in different layers. A first capacitor is formed of the first electrode, the second electrode, and a dielectric film between the first electrode and the second electrode. In addition, a power supplying line and the first data transfer line are formed in a same layer. A second capacitor is formed of the power supplying line, the first data transfer line, and an insulating layer between the power supplying line and the first data transfer line.
US10340318B2
A display device for preventing a defective operation and dark spots resulting from fine bubbles is disclosed. The display device includes a flexible substrate, a thin film transistor disposed on the flexible substrate, a first electrode connected to the thin film transistor, a bank layer including a pixel definition portion exposing the first electrode and a groove portion spaced apart from the pixel definition portion, an organic layer disposed on the first electrode and the bank layer, and a second electrode disposed on the organic layer.
US10340317B2
Disclosed are an organic light emitting display having a touch sensor, which may achieve process simplification and cost reduction, and a method of fabricating the same. The organic light emitting display includes a compensation film having a flat surface and formed to cover dams forming a boundary with an organic encapsulation layer and the compensation film has a planarized surface between a region above the dams and a boundary region between the dams and the organic encapsulation layer (144) and may prevent cut and short-circuit of routing lines cutting across the same. Further, touch sensors are disposed on an encapsulation unit including the organic encapsulation layer and thus a separate attachment process is not required, thereby simplifying the overall process and reducing manufacturing costs of the organic light emitting display.
US10340314B2
The present disclosure provides an OLED display panel, an electronic device, and a manufacturing method. The OLED display panel comprises a substrate, and a plurality of pixel regions formed on the substrate to emit light of different colors. A pixel region includes a first electrode, a light-emitting function layer, and a second electrode, configured facing away from the substrate. The second electrode is a light-emitting side electrode of the OLED display panel. Differences in transmittances at different wavelengths of the second electrode satisfy the following equations: |T(450 nm)−T(530 nm)|≤15%, |T(610 nm)−T(530 nm)|≤15%, and |T(400 nm)−T(700 nm)|≤50%, where T(Xnm) is a transmittance at a wavelength of Xnm of the second electrode.
US10340313B2
A first method comprises providing a plurality of organic light emitting devices (OLEDs) on a first substrate. Each of the OLEDs includes a transmissive top electrode. The plurality of OLEDs includes a first portion of OLEDs and a second portion of OLEDs that is different from the first portion. The first method further includes depositing a first capping layer over at least the first portion of the plurality of OLEDs such that the first capping layer is optically coupled to at least the first portion of the plurality of OLEDs. A second capping layer is deposited over at least the second portion of the plurality of OLEDs such that the second capping layer is optically coupled to the second portion of the plurality of OLEDs but not the first portion of the plurality of OLEDs.
US10340308B1
A light emitting device that includes: a plurality of light emitting elements arranged at different locations in a common plane, each light emitting element including: at least one layer of a semiconductor material; a first electrical terminal located at a first location; a second electrical terminal located at a second location; and a third electrical terminal located at a third location; a first electrode layer including one or more electrodes; a second electrode layer including one or more electrodes; a third electrode layer including one or more electrodes; a first electrically insulating layer disposed between the plurality of light emitting elements and also disposed between the first and second electrode layers; and a second electrically insulating layer disposed between the plurality of light emitting elements and also disposed between the second and third electrode layers.
US10340303B2
A semiconductor device includes a device substrate having a dielectric layer and a metal wire in the dielectric layer, a first opening on the metal wire and having a bottom at a depth the same as an upper surface of the metal wire, a first insulation layer including a first color filter material on sidewalls of the first opening, a second opening disposed at opposite ends of the semiconductor device and having a bottom at a depth the same as the depth of the bottom of the first opening, and a second insulation layer including a second color filter material on sidewalls of the second opening. The first opening is for leading out the metal wire to a pad. The second opening is disposed along scribe lines. The semiconductor device simplifies the process of drawing out and isolating the pads and satisfies technical requirements of a back seal ring.
US10340302B2
Various embodiments of a compact sensor module are disclosed herein. The sensor module can include a stiffener and a sensor substrate wrapped around a side of the stiffener. A sensor die may mounted on the sensor substrate. A processor substrate may be coupled to the sensor substrate. A processor die may be mounted on the processor substrate and may be in electrical communication with the sensor die.
US10340300B2
Among other things, one or more image sensors and techniques for forming such image sensors are provided. An image sensor comprises a photodiode array configured to detect light. A filler grid is formed over the photodiode array, such as over a dielectric grid. The filler grid comprises one or more filler structures, such as a first filler structure that provides a light propagation path to a first photodiode that is primarily through the first filler structure. In this way, signal strength decay of light along the light propagation path before detection by the first photodiode is mitigated. The image sensor comprises a reflective layer that channels light towards corresponding photodiodes. For example, a first reflective layer portion guides light towards the first photodiode and away from a second photodiode. In this way, crosstalk, otherwise resulting from detection of light by incorrect photodiodes, is mitigated.
US10340294B2
Disclosed is a method for manufacturing a thin film transistor. The method for manufacturing a thin film transistor includes: forming a patterned semiconductor layer and a patterned wiring layer on a substrate; and etching the wiring layer to form a channel part. Herein, the wiring layer includes a compensation layer and the compensation layer is formed from a material including a metal of a metal oxide component among components of a material forming the semiconductor layer.
US10340291B2
Reliability of a semiconductor device is improved. A p-type MISFET of a thin film SOI type is formed in an SOI substrate including a semiconductor substrate, an insulating layer on the semiconductor substrate, and a semiconductor layer on the insulating layer, and n+-type semiconductor regions which are source and drain region of the p-type MISFET are formed in the semiconductor layer and an epitaxial layer on the semiconductor layer. A semiconductor layer is formed via the insulating layer below the p-type MISFET formed in the n-type well region of the semiconductor substrate. In an n-type tap region which is a power supply region of the n-type well region, a silicide layer is formed on a main surface of the n-type well region without interposing the epitaxial layer therebetween.
US10340287B2
Some embodiments include apparatuses and methods having multiple decks of memory cells and associated control gates. A method includes forming a first deck having alternating conductor materials and dielectric materials and a hole containing materials extending through the conductor materials and the dielectric materials. The methods can also include forming a sacrificial material in an enlarged portion of the hole and forming a second deck of memory cells over the first deck. Additional apparatuses and methods are described.
US10340282B1
A semiconductor memory device includes a substrate, having a plurality of cell regions, wherein the cell regions are parallel and extending along a first direction. A plurality of STI structures is disposed in the substrate, extending along the first direction to isolate the cell regions, wherein the STI structures have a uniform height lower than the substrate in the cell regions. A selection gate line is extending along a second direction and crossing over the cell regions and the STI structures. A control gate line is adjacent to the selection gate line in parallel extending along the second direction and also crosses over the cell regions and the STI structures. The selection gate line and the control gate line together form a two-transistor (2T) memory cell.
US10340272B2
A manufacturing method of a semiconductor device includes the following steps. A barrier layer is formed in a first region and a second region of a semiconductor substrate. The barrier layer formed in the first region is thinned before a step of forming a first work function layer on the barrier layer. The first work function layer formed on the first region is then removed. The process of thinning the barrier layer in the first region and the process of removing the first work function layer in the first region are performed separately for ensuring the coverage of the first work function layer in the second region. The electrical performance of the semiconductor device and the uniformity of the electrical performance of the semiconductor device may be improved accordingly.
US10340265B2
An integrated circuit includes a power supply terminal, a reference terminal, and a signal terminal. A first protection device is coupled between the signal terminal and the power supply terminal, the first protection device including a first MOS transistor. A second protection device is coupled between the signal terminal and the reference terminal, the second protection device including a second MOS transistor. Gates of the MOS transistors are directly or indirectly coupled to the reference terminal. Substrates of the MOS transistors are coupled to the reference terminal via a common resistor.
US10340242B2
A semiconductor device includes a substrate, a package, first conductors and second conductors. The substrate includes a first surface and a second surface opposite to the first surface. The package is disposed over the substrate. The first conductors are disposed over the substrate. The second conductors are disposed over the substrate, wherein the first conductors and the second conductors are substantially at a same tier, and a width of the second conductor is larger than a width of the first conductor.
US10340241B2
Sintered connection structures and methods of manufacture are disclosed. The method includes placing a powder on a substrate and sintering the powder to form a plurality of pillars. The method further includes repeating the placing and sintering steps until the plurality of pillars reach a predetermined height. The method further includes forming a solder cap on the plurality of pillars. The method further includes joining the substrate to a board using the solder cap.
US10340238B2
A wiring substrate includes a first wiring structure. The first wiring structure has a first insulation layer including a reinforcement material. A first wiring layer is embedded in the first insulation layer. A second wiring structure having a higher wiring density than the first wiring structure is formed on the first insulation layer. The second wiring structure includes at least one second insulation layer and two or more second wiring layers. A lower surface of the first wiring layer is flush with a lower surface of the first insulation layer. The reinforcement material is located toward the second wiring structure from a thickness-wise center of the first insulation layer and laid out at a thickness-wise center of a thickness from the lower surface of the first insulation layer to an upper surface of the uppermost second wiring layer in the second wiring structure.
US10340237B2
A method of manufacturing a high quality a semiconductor device, includes loading a substrate comprising a conductive film and an insulating film into a process chamber. The insulating film is formed around the conductive film to expose the conductive film. A process gas, which comprises a component that reacts with a desorbed gas generated from the insulating film is supplied into the process chamber which causes a protective film to be selectively formed on the insulating film.
US10340234B2
Disclosed are substrates having an electronic component, including a frame having a through hole, the electronic component disposed in the through hole, a first wiring portion formed on a surface of the frame and the electronic component, a first layer formed on the first wiring portion, and a second wiring portion formed on the first layer, and the second wiring portion including an antenna layer.
US10340231B2
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
US10340210B2
Described examples include a system in package (SIP) device, including: a first leadframe having a first surface and a second surface opposite the first surface; an integrated circuit die including solder bumps on a first surface and having a second opposite surface, the solder bumps mounted to the second surface of the first leadframe; a second leadframe having a first surface including a die pad portion, and a second opposite surface, the die pad portion attached to the second surface of the integrated circuit die; and an inductor mounted to the first surface of the first leadframe, the inductor having terminals with exterior portions electrically connected and mechanically connected to the first surface of the first leadframe, the inductor terminals spaced from one another by a portion of an inductor body, the portion of the inductor body between the inductor terminals spaced from the first surface of the first leadframe by a gap of at least 100 μms.
US10340198B2
The invention provides a semiconductor package and a method for fabricating the same. The semiconductor package includes a redistribution layer (RDL) structure, a semiconductor die, a molding compound and a supporter. The RDL structure has a first surface and a second surface opposite to the first surface. The semiconductor die is disposed on the first surface of the RDL structure and electrically coupled to the RDL structure. The molding compound is positioned overlying the semiconductor die and the first surface of the RDL structure. The supporter is positioned beside the semiconductor die and in contact with the first surface of the RDL structure.
US10340196B1
The selection of metrology targets for use in a focus and dose application includes providing a FEM wafer including a plurality of fields with one or more metrology targets, measuring the one or more metrology targets within each field of the FEM wafer, performing a regression process on measurement results from the one or more selected fields of the FEM wafer to determine one or more DOI values for the one or more metrology targets of the one or more selected fields, calculating one or more diagnostic parameters for the one or more metrology targets of the one or more selected fields based on the regression process performed on the one or more selected fields of the FEM wafer, and identifying a set of candidate metrology targets based on the one or more calculated diagnostic parameters of the one or more selected fields of the FEM wafer.
US10340191B2
A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
US10340189B2
A method of forming a semiconductor device that includes providing a first set of fin structures having a first pitch, and a second set of fin structure having a second pitch, wherein the second pitch is greater than the first pitch. An epitaxial semiconductor material on the first and second set of fin structures. The epitaxial semiconductor material on the first fin structures is merging epitaxial material and the epitaxial material on the second fin structures is non-merging epitaxial material. A dielectric liner is formed atop the epitaxial semiconductor material that is present on the first and second sets of fin structures. The dielectric liner is removed from a portion of the non-merging epitaxial material that is present on the second set of fin structures. A bridging epitaxial semiconductor material is formed on exposed surfaces of the non-merging epitaxial material.
US10340188B2
The disclosed technology generally relates to manufacturing of semiconductor devices, and more particularly to manufacturing of a semiconductor device by transferring an active layer from a donor substrate. One aspect is a method of manufacturing a semiconductor device includes providing a donor wafer for transferring an active layer, comprising a group IV, a group III-IV or a group II-VI semiconductor material, to a handling wafer. The method includes forming the active layer on a sacrificial layer of the donor wafer, bonding the donor wafer to the handling wafer, and selectively etching the sacrificial layer to remove the donor wafer from the handling wafer, thereby leaving the active layer on the handling wafer.
US10340187B2
Disclosed herein are methods to eliminate or reduce the peeling-off of epitaxial lifted-off thin film epilayers on secondary host substrates that allow for the fabrication of high yield ELO processed thin film devices. The methods employ patterned strain-relief trenches.
US10340186B2
Systems, apparatuses, and methods related to the design, fabrication, and manufacture of gallium arsenide (GaAs) integrated circuits are disclosed. Copper can be used as the contact material for a GaAs integrated circuit. Metallization of the wafer and through-wafer vias can be achieved through copper plating processes disclosed herein. Various protocols can be employed during processing to avoid cross-contamination between copper-plated and non-copper-plated wafers. GaAs integrated circuits can be singulated, packaged, and incorporated into various electronic devices.
US10340180B1
The present disclosure relates to semiconductor structures and, more particularly, to merged mandrel lines and methods of manufacture. The structure includes: at least one metal line having a first dimension in a self-aligned double patterning (SADP) line array; and at least one metal line having a second dimension inserted into the SADP line array, the second dimension being different than the first dimension.
US10340179B2
A method of forming an interconnect element includes forming a trench in a dielectric material. The trench has a width equal to twice a natural pitch of a block copolymer. The block copolymer includes a first polymer and a second polymer. The method includes filling the trench with the block copolymer.
US10340177B2
Intermediate semiconductor devices and methods of reducing damage during back end of the line (BEOL) metallization and metal one (M1) layer integration scheme are provided. One method includes, for instance: obtaining a wafer having at least one contact region; depositing on the wafer a thin film stack having at least one layer of amorphous silicon (a-Si); performing lithography to pattern at least one opening; performing lithography to pattern at least one via opening and at least one trench opening; and removing the at least one a-Si layer. One intermediate semiconductor device includes, for instance: a wafer having at least one contact region; at least one first dielectric layer on the device; at least one second dielectric layer on the at least one first dielectric layer; and at least one a-Si layer on the at least one second dielectric layer.
US10340175B2
A method includes a first step of vertically moving the arm or the pins from a reference position in one direction by a predetermined distance, a second step of moving the arm in a horizontal direction, a third step of vertically moving the arm or the pins moved in the one direction in the other direction by a distance equal to or greater than the predetermined distance, a fourth step of detecting a horizontal position of the substrate held by the arm with respect to the arm. The steps are repeated. Whenever the processes are performed, the reference position in the first step is shifted in the one direction by the predetermined distance, and a vertical position of the arm or the pins which is obtained when the horizontal position of the substrate detected in the fourth step is deviated from a preset position is taught as the delivery position.
US10340173B2
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further incudes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
US10340170B2
A wafer grooving apparatus (100) for forming an elongate recess (103) in a semiconductor wafer surface, the apparatus comprising:a wafer table (110) for receiving and holding a semiconductor wafer;a radiation device (120) for generating a radiation beam (121);a beam directing device (130) for directing the radiation beam to a top surface (102) of the wafer so as to create a beam spot (142) where the radiation beam ablates wafer material on the wafer surface to form a recess;a wafer table displacement drive (170) for effecting a mutual displacement between the radiation beam and the wafer surface in a radiation beam displacement direction;a recess profile measuring device (180) arranged at a predetermined distance behind the beam directing device in the radiation beam displacement direction effected by the wafer table displacement drive for measuring a depth profile of the recess that has been formed by the radiation beam.
US10340168B2
A load port provided adjacent to a wafer transport chamber for taking in and out a wafer W between the wafer transport chamber and a FOUP, includes a plate-shaped part that constitutes a part of a wall of the wafer transport chamber, and has an opening for opening the wafer transport chamber; a door part for opening and closing the opening; a mounting table that is configured to mount a wafer storage container so as to oppose a lid part for opening and closing an internal space to the door part, and to move to and from the plate-shaped part; and an elastic part that is provided on the mounting table side of the plate-shaped part along the peripheral edge of the opening, wherein the elastic part elastically contacts the periphery of the lid part in the wafer storage container by moving the mounting table toward the plate-shaped part.
US10340158B2
Provided is a substrate cleaning apparatus including: a cleaning bath configured to accommodate a substrate having a first surface and a second surface; a substrate support configured to support the substrate; first and second nozzle bars provided in the cleaning bath to be rotatable in a plane parallel with the substrate, each of the first and the second nozzle bars including a passage; a plurality of nozzles provided along a longitudinal direction of each of the first and the second nozzle bars and configured to spray the cleaning solution from the passage of each of the first and the second nozzle bars to the substrate; and first and second brushes, the first brush provided on a first side of the substrate and configured to clean the first surface and the second brush provided on a second side of the substrate and configured to clean the second surface of the substrate.
US10340153B2
A fan-out semiconductor package includes a redistribution layer, an interconnection member, a semiconductor chip, and a protective layer. The interconnection member has a through hole disposed on the redistribution layer. The semiconductor chip is disposed on the redistribution layer exposed within the through hole. The protective layer is formed between the redistribution layer and the interconnection member, and coupled to the interconnection member to protect the interconnection member.
US10340148B2
A polymer, an organic layer composition, and a method of forming patterns, the polymer including a structural unit represented by Chemical Formula 1:
US10340142B1
At least one method, apparatus and system disclosed herein involves forming semiconductor devices comprising vertically aligned gates, metal hard masks, and nitride regions. The semiconductor device may contain a semiconductor substrate; a gate disposed on the semiconductor substrate; a metal hard mask vertically aligned with the gate; a nitride region vertically aligned with the gate and the metal hard mask; and source/drain (S/D) regions disposed in proximity to the gate.
US10340141B2
An embodiment method includes defining a first mandrel and a second mandrel over a hard mask layer. The method also includes depositing a spacer layer over and along sidewalls of the first mandrel and the second mandrel, and forming a sacrificial material over the spacer layer between the first mandrel and the second mandrel. The sacrificial material includes an inorganic oxide. The method further includes removing first horizontal portions of the spacer layer to expose the first mandrel and the second mandrel. Remaining portions of the spacer layer provide spacers on sidewalls of the first mandrel and the second mandrel. The method further includes removing the first mandrel and the second mandrel and patterning the hard mask layer using the spacers and the sacrificial material as an etch mask.
US10340138B2
The electronic device comprises a substrate (1), at least one semiconductor wire element (2) formed by a nitride of a group III material and an electroconductive layer (3) interposed between the substrate (1) and said at least one semiconductor wire element (2). Said at least one semiconductor wire element (2) extends from said electroconductive layer (3), and the electroconductive layer (3) comprises a carbide of zirconium or a carbide of hafnium.
US10340136B1
A method for defining thin film layers on a surface of a substrate includes exposing the surface of the substrate to a first precursor via a first plasma to allow the first precursor to be absorbed by the surface of the substrate. A second precursor that is different from the first precursor is applied to the surface of the substrate via a second plasma. The second precursor is a Carbon dioxide precursor that releases sufficient oxygen radicals to react with the first precursor to form an oxide film layer on the surface of the substrate.
US10340135B2
In an embodiment, a method for transferring a pattern constituted by vertical spacers arranged on a template with intervals to the template, includes depositing by plasma-enhanced cyclic deposition a layer as a spacer umbrella layer substantially only on a top surface of each vertical spacer made of silicon or metal oxide, wherein substantially no layer is deposited on sidewalls of the vertical spacers and on an exposed surface of the template, followed by transferring the pattern constituted by the vertical spacers to the template by anisotropic etching using the vertical spacers with the spacer umbrella layers.
US10340132B2
Improvements to a side-on Penning trap include a feedback system for stabilizing the magnetic field. This system includes a magnetic sensor that measures the magnetic field and a solenoid coil that in response to the magnetic field measurements increases or decreases the overall magnetic field. Improvements also include a number of different configurations of the two sets of PCB electrodes used to produce the quadrupole electric field. Dimensions of the PCB electrodes are optimized, an equipotential surface electrode is added, and additional ring electrodes are added to produce a purer quadrupole field. A central disk electrode is segmented to direct charged particles to the trap center to make the trap useful for applications other than mass spectrometry. Finally, outer ring electrodes are segmented to increase the path of charged particles, thereby increasing sensitivity.
US10340129B2
A microchannel plate is provided with a substrate including a front surface, a rear surface, and a side surface, a plurality of channels penetrating from the front surface to the rear surface of the substrate, a first film provided on at least an inner wall surface of the channel, a second film provided on the first film, and electrode layers provided on the front surface and the rear surface of the substrate. The first film is made of Al2O3. The second film is made of SiO2. The first film is thicker than the second film.
US10340125B2
A system and method for providing pulsed excited species from a remote plasma unit to a reaction chamber are disclosed. The system includes a pressure control device to control a pressure at the remote plasma unit as reactive species from the remote plasma unit are pulsed to the reaction chamber.
US10340123B2
A method of etching a substrate is described. The method includes disposing a substrate having a surface exposing a first material and a second material in a processing space of a plasma processing system, and performing a modulated plasma etching process to selectively remove the first material at a rate greater than removing the second material. The modulated plasma etching process includes a power modulation cycle composed of applying a first power modulation sequence to the plasma processing system, and applying a second power modulation sequence to the plasma processing system, the second power modulation sequence being different than the first power modulation sequence.
US10340116B1
A method, computer program product and a system for imaging an area that includes an upper surface and hole. The method may include acquiring, by a charged particle imager, a first image of a first type of electrons of the area while the charged particle imager is at a first configuration; acquiring, by the charged particle imager, a second image of the first type of electrons of the area and a first image of a second type of electrons of the area while the charged particle imager is at a second configuration that differs from the first configuration; and generating a hybrid image of the area based on (i) a first image of the first type of electrons of the upper surface, (ii) an inter-image offset, and (iii) a first image of the second type of electrons of the bottom of the hole.
US10340113B2
A method of using a Charged Particle Microscope, comprising: A specimen holder, for holding a specimen; A source, for producing an irradiating beam of charged particles; An illuminator, for directing said beam so as to irradiate the specimen; A detector, for detecting a flux of emergent radiation emanating from the specimen in response to said irradiation, additionally comprising the following steps: In said illuminator, providing an aperture plate comprising an array of apertures; Using a deflecting device to scan said beam across said array, thereby alternatingly interrupting and transmitting the beam so as to produce a train of beam pulses; Irradiating said specimen with said train of pulses, and using said detector to perform positionally resolved (temporally discriminated) detection of the attendant emergent radiation.
US10340112B1
A manhole base liner (1), in particular for a wastewater manhole, has a base body (2) which comprises a tread surface (3) and at least one pipe connection opening (5). The base body (2) is produced in one piece from flexible material with a wall thickness, with which it can be bent together substantially arbitrarily in at least partial regions.
US10340109B2
An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator and two movable contacts. The switch further including a switching chamber to provide a self-contained environment that may consist of a high-pressure gas or a vacuum and one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
US10340103B2
An electrical switching assembly. The electrical switching assembly includes an integral handle and rotor unit including an integral rotor portion and a handle portion. The rotor portion is configured to receive one or more conductors and is configured to be received in a line base. Assembly methods for electrical switching assemblies are provided, as are other aspects.
US10340101B2
Particular embodiments described herein provide for a keycap. The keycap can include a protective layer and an active element, where the height of protective layer and the active element is less than six (6) millimeters in height. The keycap can also include a front plane layer, a back plane layer, where the front plane layer and the back plane layer comprise the active element, and an electrical connection through the keycap to provide electrical communication with the active element.
US10340099B2
A mouse with a removable button switch includes: a release unit, including a bearer mounted on a circuit board of the mouse; a press-fixing and ejection means provided with a press-fixing part and an ejection part; and a press-fixing means, the press-fixing means and the press-fixing and ejection means being oppositely disposed on both sides of the bearer, and the press-fixing means being provided with the press-fixing part. In the mouse with the removable button switch in the present invention, because the button switch is not fixed on the circuit board of the mouse in a welding manner, when the button switch is faulty or a different hand feeling is required, the button switch can be conveniently replaced without causing damage to the mouse.
US10340097B2
An installation switching device includes: a housing; and at least one contact clamp, which is arranged in the housing, for connecting at least one electrical conductor through a conductor insertion opening that is provided in the housing, the contact clamp including a clamping frame that has a rectangular cross section and a clamping screw that engages in a first narrow end side of the clamping frame and a clamping end of the clamping screw being cooperating with a section of a contact rail that is fixedly mounted in the housing of the installation switching device, the section being located within the clamping frame, so that a second narrow end side that lies opposite the first narrow end side and is connected thereto via two longitudinal sides that lie opposite one another presses an inserted connecting conductor against a surface of the contact rail that is remote from the clamping screw.
US10340093B2
A solar cell system includes a solar cell that includes a first electrode, a second electrode that faces the first electrode, and a light absorbing layer that is located between the first electrode and the second electrode, and converts light into charges; a power supply that applies voltage between the first electrode and the second electrode; and a voltage controller. The light absorbing layer contains a compound having a perovskite crystal structure represented by AMX3 where A represents a monovalent cation, M represents a divalent cation, and X represents a halogen anion. The voltage controller controls the voltage of the power supply so that during a first period of non-power generation, an electric current of 1 μA/cm2 or more and 100 μA/cm2 or less flows in the light absorbing layer in a direction opposite to a direction in which an electric current flows during power generation.
US10340086B2
A multilayer ceramic capacitor may include: three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from one another. When a thickness of an active layer including a plurality of first and second internal electrodes disposed therein is defined as AT, and a gap between a first or second lead part of the first internal electrode and a third lead part of the second internal electrode is defined as LG, the following Equation may be satisfied: 0.00044≤LG*log [1/AT]≤0.00150.
US10340073B2
A coil component includes a body part containing a magnetic material, a coil part disposed in the body part, and an electrode part disposed on the body part. The coil part includes a support member, a first coil layer disposed on at least one surface of the support member, a first insulating layer stacked on at least one surface of the support member and covering the first coil layer, and a second coil layer disposed on the first insulating layer. The first and second coil layers are electrically connected to each other, and the second coil layer has a larger number of coil turns than the first coil layer. Additionally or alternatively, a conductor of the first coil layer has an aspect ratio less than 1. Methods of manufacturing such coil components are also provided.
US10340068B2
A current feed-through has a mounting feature, a member accessible from both sides of the mounting feature and an electrical isolator, connecting the mounting feature and the member in respective positions, to ensure mechanical integrity and electrical isolation between the mounting feature and the member.
US10340059B2
A shielded electrical cable includes conductor sets extending along a length of the cable and spaced apart from each other along a width of the cable. First and second shielding films are disposed on opposite sides of the cable and include cover portions and pinched portions arranged such that, in transverse cross section, the cover portions of the films in combination substantially surround each conductor set. An adhesive layer bonds the shielding films together in the pinched portions of the cable. A transverse bending of the cable at a cable location of no more than 180 degrees over an inner radius of at most 2 mm causes a cable impedance of the selected insulated conductor proximate the cable location to vary by no more than 2 percent from an initial cable impedance measured at the cable location in an unbent configuration.
US10340057B2
In one embodiment, a cable includes a data transmission path disposed about an axial center of the cable and a power transmission path sheathing the data transmission path. The power transmission path includes a power layer and a ground layer, where the power transmission path is characterized by a distributed impedance having at least one frequency dependent impedance characteristic. In some implementations, ground layer shields the data transmission path from electromagnetic interference. In some implementations, the frequency dependent impedance characteristic of the power transmission path is characterized by a capacitance value that satisfies a capacitance criterion at frequencies above a first frequency level. In some implementations, the frequency dependent impedance characteristic of the power transmission path is characterized by an inductance value that satisfies a first inductance criterion at frequencies above a first frequency level.
US10340056B2
A flat cable includes at least one cable portion and at least one rib portion. The at least one cable portion has a plurality of conductor wires arranged in parallel at predetermined intervals on a plane, and a coating portion that collectively covers the plurality of conductor wires arranged in parallel. The coating portion is made of an insulating resin. The at least one rib portion is provided in parallel with the cable portion on the plane. bus bar is to be fixed to the at least one rib portion and the at least one rib portion is made of only the same resin as the coating portion. A body including the at least one cable portion and the at least one rib portion is substantially bilaterally symmetrical in a cross-sectional structure of the body.
US10340048B2
A passive safety system for removing decay heat from a nuclear power system may comprise a shroud structure and a heat generator that is within the shroud structure. A thermoelectric device may be disposed in thermal contact with the heat generator. The thermoelectric device is configured to generate a voltage based on a temperature difference between opposite parts of the thermoelectric device. A fan arrangement is disposed above the heat generator and in electrical connection with the thermoelectric device. The fan arrangement is configured to increase a coolant flow through the coolant passage to the outlet opening based on the voltage from the thermoelectric device.
US10340047B2
Embodiments of the present invention provide methods, computer program products, and a system for determining and providing health risk alerts. Embodiments of the present invention can be used to collect numbers entered by a user, which in turn are used to determine the health risks of the behavior of the user. Embodiments of the present invention can be used to issue alerts to a person of interest based, at least in part, on the number strings entered by the user.
US10340046B2
Described herein is a platform and supported graphical user interface (GUI) decision-making tools for use by medical practitioners and/or their patients, e.g., to aide in the process of making decisions about a course of cancer treatment and/or to track treatment and/or the progress of a disease.
US10340034B2
Structures and protocols are presented for signaling a status or decision (processing or transmitting a medical record or other resource, e.g.) conditionally. Such signaling may be partly based on one or more symptoms, regimen attributes, performance indicia (compliance indications, e.g.), privacy considerations (patient consent, e.g.), contextual considerations (being in or admitted by a care facility, e.g.), sensor data, or other such determinants. In some contexts this may trigger an incentive being manifested (as a dispensation of an item, e.g.), an intercommunication (telephone call, e.g.) beginning, a device being configured (enabled or customized, e.g.), data distillations being presented or tracked, or other such results.
US10340030B2
Techniques for generating therapy biomarker scores and visualizing same. The techniques include determining, using a patient's sequence data and distributions of biomarker values across one or more reference populations, a first set of normalized scores for a first set of biomarkers associated with a first therapy, and a second set of normalized scores for a second set of biomarkers associated with a second therapy, generating a graphical user interface (GUI) including a first portion associated with the first therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the first set of normalized scores; and a second portion associated with a second therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the second set of normalized scores; and displaying the generated GUI.
US10340025B2
The present invention provides a data-storage device. The data-storage device includes a flash memory and a controller. The flash memory has a plurality of blocks and each of the blocks has a plurality of pages. The blocks include a plurality of bad blocks that are labeled as damaged. The controller selects one of the bad blocks as a test block, and reads the pages in the test block to determine whether the pages in the test block are damaged. When all the pages in the test block are undamaged, the controller labels the test block as a spare block.
US10340017B2
An erase-verify method for a three-dimensional (3D) memory and a memory system are provided. The 3D memory includes at least one memory cell string including a plurality of memory cells, and the memory cells include a first group of memory cells and a second group of memory cells. Each of the memory cells is coupled to a word line. The method comprises the following steps. A first erase-verify operation is performed on the first group of memory cells. After performing the first erase-verify operation on the first group of memory cells, a second erase-verify operation is performed on the second group of memory cells in condition that the first group of memory cells are verified as erased successfully.
US10340006B2
Semiconductor memory is provided wherein a memory cell includes a capacitorless transistor having a floating body configured to store data as charge therein when power is applied to the cell. The cell further includes a nonvolatile memory comprising a resistance change element configured to store data stored in the floating body under any one of a plurality of predetermined conditions. A method of operating semiconductor memory to function as volatile memory, while having the ability to retain stored data when power is discontinued to the semiconductor memory is described.
US10340001B2
Methods are provided for mitigating problems caused by sneak-paths current during memory cell access in gateless arrays. Example methods contemplated herein utilize adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer memory system to address this sneak-paths problem. The method of the invention is a method for reading a target memory cell located at an intersection of a target row of a gateless array and a target column of the gateless array, the method comprising: —reading a value of the target memory cell; and—calculating an actual value of the target memory cell based on the read value of the memory cell and a component of the read value caused by sneak path current. Utilizing either an “initial bits” strategy or a “dummy bits” strategy in order to calculate the component of the read value caused by sneak path current, example embodiments significantly reduce the number of memory accesses pixel for an array readout. In addition, these strategies consume an order of magnitude less power in comparison to alternative state-of-the-art readout techniques.
US10339991B2
A semiconductor memory system and an operating method thereof include a memory device; and a memory controller including a sequence generator, a sequence analyzer, and a processor coupled to the memory device and containing instructions executed by the processor, and configured to generate a sequence by the sequence generator, wherein the sequence comprises a sequence of digital data, write the sequence associated with a user data to the memory device, read out a read data including the sequence and the associated user data, analyze the sequence to understand characters of the read data and create analysis result by the sequence analyzer, identify an optimal threshold voltage in accordance with the analysis result, and provide the optimal threshold voltage to an ECC engine.
US10339990B2
A memory controller includes an interface to receive a data strobe signal and corresponding read data. The data strobe signal and the read data correspond to a read command issued by the memory controller, and the read data is received in accordance with the data strobe signal and an enable signal. A circuit in the memory controller is to dynamically adjust a timing offset between the enable signal and the data strobe signal, and control logic is to issue a supplemental read command in accordance with a determination that a time interval since a last read command issued by the memory controller exceeds a predetermined value.
US10339980B2
Apparatuses for controlling defective bit lines in a semiconductor device are described. An example apparatus includes: a first region including a plurality of bit lines, a plurality of word lines and a plurality of memory cells, each memory cell is coupled to an associated bit line and an associated word line; a second region including a plurality of sense amplifiers, each sense amplifier includes a sense node and a column selection switch coupled to the sense node; a third region including a plurality of bleeder circuits, and disposed between the first and second regions; and a plurality of column selection lines. Each bit line from the first region to the second region is coupled to the sense node of an associated one of the plurality of sense amplifiers, and each column selection line from the column selection switch is coupled to an associated bleeder circuit.
US10339963B1
Pseudorandom bit sequences are recorded to a heat-assisted recording medium at a laser power that is stepped while recording the pseudorandom bit sequences. The pseudorandom bit sequences are read from the heat-assisted recording medium to determine timing differences between bits written before and after the laser power is stepped. A thermal gradient of bits written to the heat-assisted recording medium is determined based on the timing differences.
US10339956B2
A method and an apparatus for detecting an audio signal according to frequency domain energy is presented. The method may include receiving an audio signal frame; acquiring frequency domain energy distribution of the audio signal frame; obtaining a maximum value distribution characteristic of a frequency domain energy distribution derivative of the audio signal frame according to the frequency domain energy distribution of the audio signal frame; using the audio signal frame and each frame in a preset neighborhood range of the audio signal frame as a frame set, where the frame set includes a to-be-detected frame; and detecting the to-be-detected frame according to a maximum value distribution characteristic of a frequency domain energy distribution derivative of the frame set. In the various embodiments, detection on an audio signal can be implemented.
US10339954B2
A method includes obtaining, by a processor, an audio echo signal and an audio desired signal from an acoustic echo correction stage of an electronic device, and converting the echo signal and the desired signal to the frequency domain. The method further includes grouping, by the processor, frequency bin results of respective frequency domain converted echo and desired signals into respective echo and desired sub-bands. A sub-band suppressor gain is estimated based on an estimated sub-band energy for the echo and desired sub-bands. The method further includes modulating the frequency domain converted desired signal to compensate for residual echo, the modulating based, at least in part, on the estimated sub-band suppressor gain, and the modulating producing a compensated frequency domain converted echo signal. The method also includes converting the compensated frequency domain converted desired signal into time domain converted audio output signal.
US10339953B2
A howling detection method is provided. A window separation processing is processed on an audio signal to obtain a plurality of analysis windows. A signal energy indicator value of each preset frequency in at least one analysis window is obtained by using a preset perceptual coefficient corresponding to each frequency, to obtain a perceptual energy indicator value of each frequency, the preset perceptual coefficient corresponding to each frequency indicating a sensitivity of a human ear to a sound of each frequency. It is determined whether howling occurs according to the perceptual energy indicator value of each frequency in the at least one analysis window.
US10339951B2
The present invention relates to a method for audio signal processing in a vehicle. In order to allow simple and reliable echo cancellation for voice recognition during simultaneous reproduction of a multichannel audio source signal in a vehicle, a mono audio signal is generated on the basis of a multichannel audio source signal. The mono audio signal is limited to a frequency range between a prescribed lower frequency and a prescribed upper frequency, for example to a range from 100 Hz to 8 kHz. The limited mono audio signal is output via multiple loudspeakers in the vehicle. An influence of the limited mono audio signal that is output via the multiple loudspeakers on a voice audio signal received in the vehicle via a microphone is compensated for by means of the limited mono audio signal in an echo canceller.
US10339950B2
Systems and methods for beamforming audio signals received from a microphone array. One method includes receiving, with an electronic processor communicatively coupled to the microphone array, a plurality of audio signals from the microphone array. The method includes generating a plurality of beams based on the plurality of audio signals. The method includes detecting that an electronic device is in a body-worn position. The method includes, in response to the device being in the body-worn position, determining at least one restricted direction based on the body-worn position. The method includes generating, for each of the plurality of beams, a likelihood statistic. The method includes, for each of the beams, assigning a weight to the likelihood statistic based on the at least one restricted direction to generate a weighted likelihood statistic. The method includes generating an output audio stream from the plurality of beams based on the weighted likelihood statistic.
US10339947B2
A decoder operable to decode audio signals. The decoder operable to receive an encoded bitstream that includes bitstream synchronization command data and program command data and process the encoded bitstream and identify within the bitstream the synchronization command data. The decoder further operable to decode the program command packet and at least one program related channel data using information provided in the synchronization command data and decode program related channel data using information provided in the program command data.
US10339945B2
Embodiments of the present application provide a coding/decoding method, apparatus, and system. According to the coding method, de-emphasis processing is performed on a full band signal by using a de-emphasis parameter determined according to a characteristic factor of an input audio signal, and then the full band signal is coded and sent to a decoder, so that the decoder performs corresponding de-emphasis decoding processing on the full band signal according to the characteristic factor of the input audio signal and restores the input audio signal. This resolves a prior-art problem that an audio signal restored by a decoder is apt to have signal distortion, and implements adaptive de-emphasis processing on the full band signal according to the characteristic factor of the audio signal to enhance coding performance, so that the input audio signal restored by the decoder has relatively high fidelity and is closer to an original signal.
US10339940B2
A stereo sound encoding method and system for encoding left and right channels of a stereo sound signal, down mix the left and right channels of the stereo sound signal to produce primary and secondary channels, encode the primary channel, and encode the secondary channel. Encoding the secondary channel comprises analyzing coherence between coding parameters calculated during the secondary channel encoding and coding parameters calculated during the primary channel encoding to decide if the coding parameters calculated during the primary channel encoding are sufficiently close to the coding parameters calculated during the secondary channel encoding to be re-used during the secondary channel encoding.
US10339938B2
In accordance with an embodiment, a method of decoding an encoded audio bitstream at a decoder includes receiving the audio bitstream, decoding a low band bitstream of the audio bitstream to get low band coefficients in a frequency domain, and copying a plurality of the low band coefficients to a high frequency band location to generate high band coefficients. The method further includes processing the high band coefficients to form processed high band coefficients. Processing includes modifying an energy envelope of the high band coefficients by multiplying modification gains to flatten or smooth the high band coefficients, and applying a received spectral envelope decoded from the received audio bitstream to the high band coefficients. The low band coefficients and the processed high band coefficients are then inverse-transformed to the time domain to obtain a time domain output signal.
US10339929B2
An example method includes receiving, by a computing system, an indication of one or more audible sounds that are detected by a first sensing device, the one or more audible sounds originating from a user; determining, by the computing system and based at least in part on an indication of one or more signals detected by a second sensing device, a distance between the user and the second sensing device; determining, by the computing system and based at least in part on the indication of the one or more audible sounds, one or more acoustic features that are associated with the one or more audible sounds; and determining, by the computing system, and based at least in part on the one or more acoustic features and the distance between the user and the second sensing device, one or more words that correspond to the audible sounds.
US10339928B2
Provided are a control device that prevents performance of a process different from a desired process in response to a voice input, a control method, a program, and an information storage medium. A voice acceptance section accepts voice. An output control section performs control such that voice accepted by the voice acceptance section is output to a program capable of performing a process using the voice. The output control section performs control such that if it is recognized that the voice accepted by the voice acceptance section represents given information, voice accepted by the voice acceptance section thereafter is not output to the program capable of performing the process using the voice.
US10339921B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using neural networks. One of the methods includes receiving, by a neural network in a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal, the first raw audio signal and the second raw audio signal for the same period of time, generating, by a spatial filtering convolutional layer in the neural network, a spatial filtered output the first data and the second data, generating, by a spectral filtering convolutional layer in the neural network, a spectral filtered output using the spatial filtered output, and processing, by one or more additional layers in the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.
US10339908B2
An apparatus for generating an audio output signal is provided. The audio output signal has two or more audio output channels and is generated from an audio input signal having two or more audio input channels. The apparatus includes a provider and a signal processor. The provider is adapted to provide first covariance properties of the audio input signal. The signal processor is adapted to generate the audio output signal by applying a mixing rule on at least two of the two or more audio input channels. The signal processor is configured to determine the mixing rule based on the first covariance properties of the audio input signal and based on second covariance properties of the audio output signal, the second covariance properties being different from the first covariance properties.
US10339906B2
Advanced, but user-friendly composition and editing environments for musical scores may be provided using the types, and in some cases the instances, of computing devices that will in turn consume musical score content so generated. Indeed, by integrating musical composition facilities within synthetic musical instruments that can be widely deployed on hand-held or portable computing devices, a social music network that includes such synthetic musical instruments gains access to a large, and potentially prolific, population of authors, editors and reviewers, as well as to the community-sourced musical scores that they can generate. By curating such content and/or by applying crowd-sourcing or other computational techniques to maintain quality, a social music network may rapidly deploy the new and ever evolving content that its user community desires.
US10339882B2
A fault-tolerant display system includes a TFT panel, a first driver couplet including a first gate driver and a first source driver, and a second driver couplet including a second gate driver and a second source driver. The first gate driver and the second gate driver feed into the LCD panel from opposite directions and the first source driver and the second source driver feed into the LCD panel from opposite directions. The first driver couplet and the second driver couplet each have their own independent power supplies, independent from one another. In this way, individual pixels of the LCD panel are driven simultaneously by two pairs of source drivers and gate drivers, such that if one of the driver pairs fails due to some fault, the other driver pair can continue to drive the LCD panel without loss of information despite the failure of the one driver pair.
US10339861B2
An organic light emitting diode display device according to an embodiment includes pixels each configured with an organic light emitting diode and a driving switch used to control a current flowing through the organic light emitting diode. The organic light emitting diode display device compensates a deterioration property of the organic light emitting diode after properties of the driving switch is compensated. As such, the deterioration property of the organic light emitting diode can be maximally reflected to a sensing data. In accordance therewith, the deterioration property of the organic light emitting diode can be accurately compensated.
US10339851B2
A display apparatus includes a display, a voltage controller, a current driver, and a lighting control circuit. The control by the lighting control circuit is such that one frame is divided into N-pieces of subframes (the N is a natural number equal to or greater than two) which can be displayed at a predetermined frame rate f. In first frame cycle, one frame is divided into M-pieces of virtual subframes (the M is a natural number greater than the N), and N-pieces out of the M-pieces of the virtual subframes are selected as first displayed subframes and displayed on the display. Unselected (M−N) pieces of the virtual subframes are not displayed in the first frame cycle. In second frame cycle subsequent to the first frame cycle, the virtual subframes corresponding to undisplayed virtual subframes in the first frame cycle are selected as second displayed subframes.
US10339849B2
A method for regulating brightness and chromaticity of a display panel includes: obtaining original gray-scale data; regulating gray-scales of green, so that brightness values of pixels match a standard gamma curve; matching color coordinates of red and blue using the gray-scales of green; determining a weight coefficient according to a gradation of the gray-scales of green; and calculating and recording color coordinates of target gray-scales of red and blue using the determined weight coefficient.
US10339847B2
A display apparatus including a display panel and a driver circuit is provided. The display panel includes a display region and a non-display region. The non-display region includes a plurality of dummy pixels connected to one another. The driver circuit provides gate driving voltages and a test data voltage, so as to make the dummy pixels connected to one another generate a charging rate test signal in response to the test data voltage.
US10339844B1
According to one implementation, an image display system includes a computing platform having a central processing unit (CPU), a system memory storing a software code, a display screen, and a motor controlled by the CPU and coupled to a rotor for rotating the display screen. The CPU is configured to execute the software code to spin the display screen about an axis at a predetermined spin rate using the motor and the rotor, and to render each of multiple perspectives of an image on the display screen at a frame rate during each revolution of the display screen about the axis. The predetermined spin rate is determined based on the number of perspectives of the image rendered per revolution of the display screen and the frame rate.
US10339838B2
An article comprising a pop-up card is provided. The article comprises a single sheet of paper including a single crease and separating the sheet of paper into a left panel and a right panel, wherein the sheet is in a closed position when folded along the crease, and wherein the sheet is in the open position when not folded along the crease, a pop-up slice-form element coupled to said sheet, wherein the slice-form includes a first plurality of slice-form elements perpendicular to a second plurality of slice-form elements when in the open position, wherein the slice-form element comprises a first and last slice-form element each with a distal tab, and wherein in the open position the pop-up slice-form element is displayed as a three-dimensional configuration, and in the closed position said pop-up slice-form element folds together into a flat configuration.
US10339832B2
A hybrid keyboard and associated systems and methods. A disclosed hybrid keyboard includes a set of interactive keys, each having an integrated refreshable braille display, wherein each interactive key includes a momentary switch for detecting a keystroke and includes a actuator system for selectively extending pins through a surface of the interactive key; and a keyboard controller that includes a keystroke input handler for receiving and processing signals associated with detected keystrokes and includes a braille display handler that processes received messages and transmits message signals to selected interactive keys to output braille characters.
US10339829B2
A method and system for teaching oneself to learn to play a string instrument and master it by analyzing one's real-time hand/finger movement/technique/form, enabling oneself to progress and correct one's own mistakes simultaneously. In one aspect, a system for learning to play a string instrument is provided that includes a simulation instrument that includes a plurality of strings, wherein at least one of the strings includes at least one-touch sensing sensor thereon in communication with at least one processor to receive a signal from the at least one touch-sensing sensor and determine therefrom when and where on the at least one string a user applies pressure to the at least one string.
US10339821B2
Methods and apparatuses for generating feedback to a human practitioner practicing a skill using a combination of local platform, the internet, and cloud-based analysis engine are disclosed. The local platform is employed to provide physical parameter data pertaining to the human practitioner (or part/parts thereof) and to the object involved in practicing the skill. Cloud-based technology is leveraged to provide analysis to physical parameter data acquired by the local platform and to generate feedback to the human practitioner. Cloud-based technology is also leveraged to provide analysis resources to the cloud-based analysis engine and feedback resources to provide/enhance the feedback to the human practitioner.
US10339817B1
A flight management system includes a display for displaying a user interface and a processor coupled with the display and configured to receive flight plan information regarding a flight plan of an aircraft and aircraft status information from an aircraft monitoring system. The processor generates an alert indicating a deviation from the flight plan based on a comparison of the aircraft status information to the flight plan information, and provides the alert on a portion of the user interface displaying information indicative of the aircraft status information. The alert provides one or more user interface controls configured to enable a pilot to interact with the portion of the user interface displaying the information indicative of the aircraft status information to at least one of view additional information regarding the difference between the status information and the flight plan information and modify the flight plan of the aircraft.
US10339804B2
Disclosed is an identification system to improve safety on roads and allow for the driver or for the vehicle itself, if it is autonomous or semi-autonomous, to have readable and useful information about road signs, roadways, and adjacent roadway information. The disclosed identification system comprises a marker with marker communication information that can be read by a vehicle information system to provide information to the vehicle. Information that the marker communication information may convey would allow the vehicle information system to detect or recognize, or both detect and recognize critical road sign, roadway information, and adjacent roadway information. Then, the vehicle information system could respond to the information received from the marker communication information.
US10339803B2
The invention relates to a method for operating an assistance system of a motor vehicle. An image is detected by means of a camera of the assistance system and a traffic sign is determined within the detected image. An alignment of the determined traffic sign is determined with respect to the motor vehicle, and a signal device of the assistance system is triggered by the alignment.
US10339802B2
A method for managing a parking lot is provided. The method includes: capturing, by a first video camera, an image of a vehicle; determining whether the image satisfies a condition; raising a first barrier when the image satisfies the condition; detecting whether there is only the one vehicle between the first barrier and a second barrier; and raising the second barrier to enable the vehicle to enter or leave the parking lot when detecting that there is only the one vehicle between the first barrier and the second barrier.
US10339792B2
An emergency method, system, and non-transitory computer readable medium include a detection device configured to detect an emergency situation and switch a first device to emergency mode, an emergency mode device configured to gather information regarding the emergency situation while the first device is in emergency mode, and an actuation and discovery device configured to discover a second device in a vicinity of the first device and actuate the second device to perform an action based on the emergency situation detected by the detection device.
US10339789B1
The present disclosure may be embodied as a pillow speaker system. The pillow speaker system includes a nurse call patient station and a patient interface device (PID). The PID is in electronic communication with the nurse call patient station, and includes a wired communication link connected to the nurse call patient station and an energy storage device for providing backup power to the PID. The energy storage device is galvanically isolated from the wired communication link. The PID is configured to receive audio signals from the nurse call patient station by way of the wired communication link. The PID may also include a power port for receiving electrical power from an external source. The power port is galvanically isolated from the wired communication link.
US10339779B2
A monitoring system (1) for monitoring a deployed person. It includes a base station (11) which provides a radio cell (F) in accordance with a first wireless communication standard; and at least one mobile monitoring apparatus (12) which is designed for wireless communication with the base station (11) via the radio cell (F) in accordance with the first wireless communication standard. The mobile monitoring apparatus (12) includes a signaling tag (121) and the base station (11) includes a wireless interface (111) which is designed to automatically read out from the mobile monitoring apparatus (12) participant information (3) required for a registration in the radio cell (F), via the signaling tag (121), wirelessly in accordance with a second wireless communication standard, when the mobile monitoring apparatus (12) is within a minimum distance (A) from the base station (11), which is predetermined by the second wireless communication standard.
US10339767B2
Sensor systems, methods and machine readable medium are provided for a sensor system for analyzing the ripeness of produce items.
US10339761B2
A gaming machine comprises a symbol selector for selecting a plurality of symbols from a set of symbols for display during play of a base game, the set of symbols including a plurality of non-configurable symbols and a plurality of configurable symbols; a random number generator for generating random prize values; a value assigner for assigning a generated random prize value to each selected configurable symbol; and an outcome evaluator for monitoring play of the base game, wherein a feature game is triggered in response to a trigger event, the trigger event comprising a predefined number of the plurality of configurable symbols being selected by the symbol selector for display. During the feature game, the symbol selector is further configured to 1) hold the selected configurable symbols that comprise the trigger event on the display; 2) remove at least one of the selected non-configurable symbols from the display; and 3) replace any removed non-configurable symbol with another symbol selected from the set of symbols.
US10339758B2
A computer device and method for dynamically displaying at least one message to a player of a game are provided. The computer device may be an electronic gaming machine, and comprises a camera which can be used to collect data on the movement of a player of an electronic game. The movements of the player may then be analyzed and used to select message presentation rules based on player movement data. The message presentation rules may govern the presentation of new messages, the removal of old messages, or change the way a given message is presented.
US10339757B2
A wagering game system and its operations are described herein. In some embodiments, the operations can include detecting a request to pair a mobile device with a secondary content controller that is communicatively coupled to a wagering game machine. In some examples the secondary content controller is independent of a primary content controller for the wagering game machine. The operations can further include determining, by the secondary content controller, that primary wagering game content of the wagering game machine is in a state that would permit secondary wagering on the primary wagering game content. Further, the operations can include pairing the mobile device with the secondary content controller after determining that the primary wagering game content is in the state that would permit the secondary wagering.
US10339752B2
An electronic method of gaming in a gaming system comprises receiving a selection of one of a plurality game options; forming, based on the selected game option, a set of symbols to be used in the generation of at least one game outcome generating a game outcome with the game controller by selecting subsets of the symbols of the respective reels of the formed set of symbols for display on a display of the gaming system in a plurality of columns of symbol display positions with which the respective reels are associated; and making an award upon the symbols displayed at the symbol display positions in the game outcome including a winning combination of symbols.
US10339750B1
One or more techniques and/or systems are provided for facilitating the exchange of an item. For example, a containment component is configured to receive one or more items. A locking component is configured to selectively restrict or allow access to the item. A code generation component is configured to generate and provide an unlocking code to a requestor (e.g., based upon payment by the requestor that requests access to the item). A code entry component is configured to receive user input of a code. The code entry component either retains the locking component in a locked state if the code is not validated as the unlocking code or transitions the locking component into an unlocked state if the code is validated as the unlocking code.
US10339746B1
A system for enabling a payment includes a mobile wireless communications device having voice and data functionality and a payments system. The system enables a payment to be made by a user of the mobile wireless communications device to a party with which the user is in voice communication via the wireless communication link over which the voice communication is made. The voice communication link may be a wireless Voice-over-IP (VoIP) communications link.
US10339744B2
A portable cassette holder includes a frame detachably coupled to an outer surface of an automated teller machine having a housing medium entrance, a conveying roller unit and a power supply connection unit. The frame includes a frame medium entrance formed at a position corresponding to the housing medium entrance and configured to mount a cassette thereon. The conveying roller unit is coupled to the frame at a position at which the frame medium entrance is provided, the conveying roller unit configured to convey a medium passing through the frame medium entrance. The power supply connection unit is provided in the frame and configured to be electrically connected to the automated teller machine so as to receive electric power.
US10339743B2
A coin bin. The coin bin has a body defining a chamber to receive coins, the body further defining a receiving area to releasably receive part of a steering handle and being formed of a structurally strong plastic; a lid to close the chamber, the lid being lockable and removable when unlocked; and a plurality of wheels affixed to the body to support the body. The coin bin is suitable for positioning inside an automatic teller machine (ATM).
US10339740B2
A system is provided including a data module, a classification module and a control module. The data module is configured to receive at least one of acceleration data and gravity data from an accelerometer or a mobile network device, where the acceleration data and the gravity data are indicative of accelerations experienced by the mobile network device. The classification module is configured to classify a location of the mobile network device on a person based on the at least one of the acceleration data and the gravity data and generate a location classification output. The control module is configured to perform an operation based on the location classification output.
US10339739B2
A vehicle key programming system and method for chip reading and writing, key and remote programming and remote frequency testing. The system tracks programming usage when not connected to system servers and reports such usage upon connection. Immobilizer algorithms are used to program and such algorithms are optimized with each attempted use.
US10339732B2
A driver history report may include many factors to express performance or quality of driver service. Vehicle event recorders are coupled to systems which form an association between collected data and the vehicle operator in command of the vehicle at the event moment. Systems provide means for long-term storage of data particularly data in a structure which preserves the association between a driver and event records attributed to him. Special recall operations executed against stored data yields operator performance reporting—including a single value performance score indicative of a vehicle operator's performance and safety history. An analyzer system operates to recall data, particularly data from a plurality of events all associated with a single operator but recorded over an extended period of time. Data is arranged such that mathematical analysis may be applied independently to various data elements or data “fields” to produce performance metrics and ratios which reflect performance.
US10339725B2
A road toll system comprises a vehicle-mounted unit having a satellite navigation receiver. A first data processing means determines a route taken based on satellite navigation data provided from the receiver, and the satellite navigation data is associated with a variable identity. A road toll level is derived. A second data processing means receives the road toll level provided by the first data processing means, and the satellite navigation obtains the determined road toll level from the second data processing means using the variable identity. This provides a thin client scenario (the receiver does not implement the map calculations), but with data security corresponding to a thick client solution. Thus, the map matching and trip cost computation steps are delegated by the on-board unit to an external unit, but this delegation is performed anonymously, so that no data sent for external processing compromises the privacy of the data.
US10339723B2
In an augmented reality and/or a virtual reality system, virtual annotation surfaces, or virtual sheets, or virtual whiteboards, may be materialized in response to a detected gesture. A user may annotate, adjust, store, review and revise the virtual annotation surfaces, and allow for collaboration with other users, while in the current virtual environment, and/or within another virtual environment, and/or outside of the virtual environment.
US10339716B1
A system configured to improve the operations associated with generating virtual representations on limited resources of a mobile device. In some cases, the system may utilize viewpoint bundles that include collection of image data with an associated pose in relative physical proximity to each other to render a virtual scene. In other cases, the system may utilize 2.5D manifolds including 2D image data and a weighted depth value to render the 3D environment.
US10339715B2
Operations carried out according to a method and operations carried out by a system including at least one processor and memory configured to store instructions include following operations. Those operations include: obtaining real world image data using one or more image data capturing devices positioned at a real world site; obtaining real world non-image data using one or more sensors positioned at the real world site; creating a scene model based on the obtained real world image data; integrating the obtained real world non-image data with the created scene model; carrying out an object recognition process to identify one or more objects included in the scene model; and rendering the scene model to create a VR scene in which one or more users are immersed using one or more VR playback devices.
US10339714B2
Systems and methods for a markerless approach to displaying an image of a virtual object in an environment are described. A computing device is used to capture an image of a real-world environment; for example including a feature-rich planar surface. One or more virtual objects which do not exist in the real-world environment are displayed in the image, such as by being positioned in a manner that they appear to be resting on the planar surface, based at least on a sensor bias value and scale information obtained by capturing multiple image views of the real-world environment.
US10339708B2
An electronic device generates a summary map of a scene based on data representative of objects having a high utility for identifying the scene when estimating a current pose of the electronic device and localizes the estimated current pose with respect to the summary map. The electronic device identifies scenes based on groups of objects appearing together in consistent configurations over time, and identifies utility weights for objects appearing in scenes, wherein the utility weights indicate a predicted likelihood that the corresponding object will be persistently identifiable by the electronic device in the environment over time and are based at least in part on verification by one or more mobile devices. The electronic device generates a summary map of each scene based on data representative of objects having utility weights above a threshold.
US10339697B2
According to one embodiment, a medical image processing apparatus is configured to capture images of an observation object over time to obtain a three-dimensional image. The observation object includes a first hard tissue and a second hard tissue which are adjacent to each other. The medical image processing apparatus includes a control circuit, a plane acquisition unit, and an image generator. Under the control of the control circuit, the plane acquisition unit extracts the first hard tissue and the second hard tissue based on the three-dimensional image. The image generator generates, as an image for observation, a cross-sectional image of a plane including the first hard tissue and at least part of the second hard tissue or an image projected on a plane parallel to the plane including the first hard tissue and at least part of the second hard tissue based on the three-dimensional image.
US10339695B2
An artificial intelligence agent is machine trained and used to provide physically-based rendering settings. By using deep learning and/or other machine training, settings of multiple rendering parameters may be provided for consistent imaging even in physically-based rendering.