US10334766B2
A shield structure includes a shield bracket, a shield cover, and a shield layer. The shield cover is formed with openings. The shield layer is spliced with the shield cover through a conductive tape layer and covers all openings. The shield cover is formed with openings and a light shield layer is spliced with the shield cover and covers the openings, greatly reducing the weight of the shield cover while ensuring the shielding effect, without compressing space for other elements. The shield layer is thin, capable of lowering down the shield, dissipating heat effectively, reducing the temperature of the whole machine and providing a good environment for the operation of the whole machine, without affecting the shielding effect; and the conductive tape layer is spliced with the shield layer, thus allowing multiple assembling without damaging the whole structure, and facilitating subsequent repair.
US10334760B1
Systems, apparatuses, and methods for realizing more efficient cooling for a set of computing components that may be operating as a part of a server farm in a helical structure of computing components. Arranging a rack of computing components in a helical pattern situated about a central axis member allows for helical and/or vortical air flow throughout the helical stack of racks. The airflow may be enhanced using large fans as part of an exhaust system located above the exhaust vents or situated below each stack of racks of computing components thereby increasing air flow across all computing components and dissipating heat at a faster rate.
US10334755B2
A liquid cooling system for cooling an electronic device comprising a chip or a chip package comprising a chip is described. The liquid cooling system comprises an inlet plenum comprising a coolant feeding channel oriented substantially parallel with the plane of a main surface to be cooled of the chip and a plurality of inlet cooling channels fluidically connected to the coolant feeding channel and arranged vertically for impinging a liquid coolant directly on said main surface of the chip. The vertically oriented inlet cooling channels are substantially parallel to vertically oriented outlet cooling channels and are separated by a thermally isolating material. The liquid cooling system further comprises at least one cavity wherein a plurality of inlet and outlet cooling channels end. The cavity is arranged for allowing interaction between the liquid coolant and the main surface of the chip and thus comprises a heat transfer region.
US10334749B2
A mobility apparatus. The mobility apparatus may include a continuous fixed-length rail attached horizontally to a bottom structural member of the front or the rear of a server rack. The continuous fixed-length rail exceeds a width of the server rack by an equal amount on either side of the server rack. The mobility apparatus also includes a lower rail portion attached to a lower edge of the continuous fixed-length rail; a raised rail portion attached to an extended length of each portion of the continuous fixed-length rail; and at least one wheel attached to an underside of each end of the extended length of the continuous fixed-length rail.
US10334745B2
An electronic device may include a ring-shaped housing member defining an interior volume. The ring-shaped housing member may be configured to receive electronic device components. The ring-shaped housing member may include a first element comprising an angled region, and a second element comprising an angled region. A first intermediate element may be placed between the first and second elements, where the intermediate element is secured to internal surfaces of each of the first and second elements such that the first and second elements do not overlap. The first intermediate element may fasten the first and second elements to one another, and electrically isolate the first and second elements from one another.
US10334740B2
An electronic-component mount substrate includes a substrate having a first principal surface and a second principal surface opposite to the first principal surface; a mount electrode for mounting an electronic component on the first principal surface, the mount electrode having a first slit and sandwiching the first slit; a plane electrode surrounding the mount electrode in a plan view and having a second slit; a connection electrode connecting the mount electrode with the plane electrode; and an outer electrode on the second principal surface. The connection electrode overlaps the outer electrode and an outer edge of the outer electrode surrounds the connection electrode in a perspective plan view.
US10334739B1
A printed electrical device is formed using a flexographic printing system. A flexographic printing plate having a pattern of raised features includes an active region having a plurality of parallel traces separated by a trace spacing of between 5-40 microns that are used to form active micro-traces that provide an electrical function, and an inactive region adjacent to the active region having one or more protective features that are used to form electrically-inactive features. The protective features are separated from an outermost trace of the plurality of traces by a gap distance of between 60% and 250% of the trace spacing. The flexographic printing plate is used to transfer ink from an anilox roller to a substrate to provide a printed pattern corresponding to the pattern of raised features on the flexographic printing plate.
US10334738B2
A method of fabricating a flexible substrate assembly includes forming a first polyimide layer on a rigid support base, wherein the step of forming the first polyimide layer includes incorporating in a polyamic acid solution, an adhesion promoting agent and a release agent for achieving different adhesion strength at two opposite sides of the first polyimide layer, and forming a flexible second polyimide layer on the first polyimide layer, the second polyimide layer being adhered in contact with the first polyimide layer, and a peeling strength between the first and second polyimide layers being less than a peeling strength between the first polyimide layer and the support base so that the second polyimide layer is peelable from the first polyimide layer while the first polyimide layer remains adhered in contact with the support base.
US10334732B2
Connectors that allow system-in-package modules to connect to other circuits in an electronic device in an area-efficient manner.
US10334729B2
A filtering unit includes a housing having outer walls that define a volume and an inner wall that separates the volume into a first chamber and a second chamber. The filtering unit also includes a rigid/flexible circuit board. The circuit board includes a first rigid portion designed to be positioned in the first chamber. The circuit board further includes a second rigid portion designed to be positioned in the second chamber. The circuit board further includes a flexible portion connecting the first rigid portion to the second rigid portion and designed to extend around the inner wall from the first chamber to the second chamber. The filtering unit further includes a bumper designed to be positioned between one of the outer walls and the inner wall to provide waveguide functionality by reducing an amount of electric field that can pass from the first chamber to the second chamber.
US10334724B2
An example stretchable device is described that includes electrical contacts and an interconnect coupling the electrical contacts. The interconnect has a meander-shaped configuration that includes at least one nested serpentine-shaped feature. The interconnect can be conductive or non-conductive. The meander-shaped configuration can be a serpentine structure, providing a serpentine-in-serpentine configuration.
US10334720B1
A printed circuit board (PCB) test coupon for thermal exposure and electrical testing includes a double sided or multi-layer substrate with a plurality of vias formed within the substrate of the test coupon (blind, buried, stacked vias) or extending through the entire substrate (through hole/via) from a first surface on the first side of the plated hole/via to a second surface on the second side of the plated hole/via. Each of a first plurality of trace patterns interconnect a subset of the plurality of plated holes/vias on the first side of the plated holes/vias, and each of a second plurality of trace patterns interconnect a different subset of the plurality of plated holes/vias on the second side of the plated holes/vias. The first and second pluralities of trace patterns have different patterns and connect to connection points in a connector pattern defined in the substrate. One of the second plurality of trace patterns is configured to measure temperature and two of the second plurality of trace patterns are configured to measure calibration/drift by resistance measurements. The test coupon provides test nets that include a single plated hole/via, and optionally includes daisy chain test nets. A resistance measurement of each plated hole/via (or daisy chain) is provided by connecting 2 wires of a 4-wire kelvin bridge measurement system to the first and second sides of the plated hole/via (or daisy chain) using connection points for one of the first plurality of trace patterns and one of the second plurality of trace patterns that connect to each side of the said plated hole/via (or daisy chain).
US10334713B2
An electrical transformer system using helical electrodes applied to a plasma. Systems and methods transform DC voltages and currents to different DC voltages and currents. Instead of using wires and iron cores similar to known transformers, the present DC to DC transformer system exploits plasma, helical electrodes, an axial magnetic field and radial magnetic field coils, with a control system to specify a radial magnetic field at the edge of a specified magnitude. A DC input voltage is applied, and an output is taken from electrodes at opposite the ends of the central apparatus. The system and apparatus contains a radial magnetic field embedded in the helical electrodes; the secondary current is taken from either solid or split (slotted) electrodes. Methods are disclosed for changing the output voltage and current relative to the input values. The system can function as either a stepup or a stepdown transformer.
US10334702B1
This disclosure describes, in part, voice-controlled light dimmers that act as voice-controlled endpoints at which users may provide voice commands. These light dimmers include a front panel module coupled to a power module using a hardware interface. The front panel module may receive input from a user indicating commands for controlling appliances, and send communications to the power module using the hardware interface to control the appliances. In some examples, the communications involve encrypted data sent using an inter-integrated circuit (I2C) protocol using the hardware interface to an electrically isolated power module. The power provided to the appliances may be controlled by the power module of the voice-controlled light dimmer.
US10334700B2
A mechanism for control and configuration of a lighting system from a user interface. For instance, a wall module designed as a user interface for a tenant to control the system may be implemented so as to be used not only to control the lighting system but also to configure it. The lighting system may involve a controller, circuits of lights, relays, motion and ambient detectors, scenes, schedules, and more. An additional user interface such as a wall module may be connected to the lighting system for control and configuration of the system.
US10334694B2
A light emission control circuit includes a drive circuit that generates a first control signal in order to control a first switching element, and a switching control circuit that generates a second control signal in order to control a second switching element. The switching control circuit maintains the second control signal in an inactivation state in a period in which the first control signal is inactivated in a case where an ON duty ratio of the first control signal is equal to or more than a predetermined value, and maintains the second control signal in an activation state in a part of the period in which the first control signal is inactivated in a case where the ON duty ratio of the first control signal is less than the predetermined value.
US10334681B2
An embodiment comprises: a voltage generation unit for providing a direct current signal for driving a light emitting unit; a sensing resistor; and a dimming unit which is connected between the light emitting unit and the sensing resistor and controls a current flowing in the sensing resistor and the light emitting unit, wherein the dimming unit adjusts the level of the direct current signal on the basis of a first sensing voltage as a result of sensing the voltage of a first node where a switch is connected to the light emitting unit, and a second sensing voltage as a result of sensing the voltage of a second node where the switch is connected to the sensing resistor.
US10334668B2
Disclosed is an LED driver adapted to an electronic transformer, where the LED driver can ensure that the electronic transformer meets minimum load current requirements, and operates during an entire AC period by clamping the minimum inductor current. By controlling the LED load current through a current stabilization control circuit, the LED load can operate with relatively high control accuracy and fast response speed. In addition, the LED driver can match various electronic transformers based on traditional circuit structures, and the LED load can operate without flicking.
US10334667B2
A controller for a power converter to convert electrical power at an input voltage into electrical power at an output voltage and a method of operating such controller is presented. The controller for controlling a power converter has an input port to receive a voltage representative of the input voltage; an input voltage measuring unit to sample a measuring voltage and to determine a measurement value that is representative of the input voltage; a switch; and a diode connectable with a storage unit to provide a supply voltage for the controller during operation of the controller. The switch controls the charging of the storage unit from the voltage at the input port.
US10334656B2
The present invention discloses a state transition method, user equipment, and a radio network controller. The user equipment includes: a receiving unit, configured to receive state transition indication information and information about a target RRC state that are sent by a radio network controller (RNC), where the state transition indication information is used for instructing the user equipment to perform enhanced state transition; and a transition unit, configured to enable the user equipment to transit from a current RRC state to the target RRC state according to the state transition indication information.
US10334646B2
There are described methods and apparatuses for monitoring D2D communication, in particular in a wireless communication network. One method comprises receiving of allocation data indicating allocated resources for a first D2D enabled node for D2D communication with a second D2D enabled node of the wireless communication network; and transmitting D2D data utilizing and/or on the indicated allocated resources; and receiving of the D2D data transmitted by the first D2D enabled node.
US10334640B2
A communication system is disclosed in which a base station receives, from a communication device, NAS signalling for establishing a connection via the base station. The base station forwards the NAS signalling to a default MME for setting up the connection to the default MME. The default MME sends, responsive to the base station forwarding the NAS said signalling, a message identifying an MME group to which the NAS signalling should be rerouted. The base station selects an MME based on the message identifying the MME group, and forwards the NAS signalling to the selected MME, and includes information indicating that the NAS signalling shall not be rerouted.
US10334639B2
A data communication method, a communication system, and related devices are configured to establish a transaction identifier (TI) in a user equipment (UE). The data communication method includes the following steps. A mobility management entity (MME) receives a request message and obtains ability information of the UE. If the UE has an ability to access a Universal Terrestrial Radio Access Network/GSM/EDGE Radio Access Network (UTRAN/GERAN), the MME generates the TI. A communication system and related devices are also provided. Thus, the TI is effectively established in the UE, so as to ensure normal processing of the UE.
US10334635B2
A wireless broadcasting device, systems including the device, and methods of programming and using the device are disclosed. The wireless broadcasting device is powered using power over Ethernet and can be used to provide proximity-based capabilities to devices that otherwise do not have such functions.
US10334631B2
System and methods are disclosed in which an uplink frame is configured to accommodate each, some, or all of the following types of access: (1) demand assigned access in which a UE requests resources and is then granted a partition of resources of the uplink frame; (2) free assigned access in which one or more UEs are granted a partition of resources of the uplink frame without UEs requesting the grant of the resources; and (3) random access in which a partition of resources of the frame are used by UEs for random access communication. The frame may be configurable on a semi-static or dynamic basis. In this way, the base station may be able to better accommodate UEs having different traffic characteristics and/or different latency requirements.
US10334629B2
A channel access protocol method to impart bandwidth fairness while maximizing throughput in a class of contention-based-access (CBA) TDMA networks that has no carrier sense capability, and that experiences biased detection at the receiver (base station) by virtue of physical layer detection algorithms is disclosed.
US10334624B2
A wireless device receives radio resource control (RRC) message(s) comprising configuration parameters for cells comprising licensed assisted access (LAA) cells. Uplink grants for the LAA cells are received. An uplink grant in the uplink grants indicates a channel access priority class. The uplink grants are grouped into grouped grants. A first grouped grant in the grouped grants comprises a first plurality of uplink grants each indicating a same first channel access priority class. Radio resources are allocated, indicated by the first grouped grant, to one or more first logical channels. A plurality of transport blocks corresponding to the first plurality of grants are generated and transmitted.
US10334589B2
A method of operation of a scheduler implemented in a network node of a cellular communications system comprises scheduling one or more delay-tolerant transmissions by one or more respective wireless devices in a subframe. Scheduling the one or more delay-tolerant transmissions by the one or more respective wireless devices comprises, for each wireless device: identifying a plurality of available resources in a subframe; for each available resource of the plurality of available resources in the subframe, determining one or more link adaptation parameters for the wireless device for the available resource based on information representing a statistical model of predicted puncturing of delay-tolerant transmissions using the available resource in order to enable transmission of delay-sensitive transmissions; and selecting one of the plurality of available resources in the subframe for the delay-tolerant transmission of the wireless device based on at least one of the one or more link adaptation parameters.
US10334586B2
One problem with current D2D communications is that there is no physical layer feedback (e.g., HARQ feedback) for unicast sidelink communications. That is, the transmitting UE does not know if the receiving UE receives and/or properly decodes the unicast transmission. Instead, current D2D communications require that a transmitting UE send a unicast sidelink communication multiple times to increase the chances that the unicast sidelink communication is received by the receiving UE. By blindly transmitting unicast sidelink communications multiple times, the spectral efficiency and radio resource utilization of the network is decreased. The present disclosure provides a solution to this problem by enabling HARQ feedback for unicast sidelink communications that improves the spectral efficiency and also enables better radio resource utilization for the network.
US10334583B2
The present invention provides a method for sending and receiving control information, an apparatus and a communication system. The method for sending control information includes: setting respective control bits in a downlink control information (DCI) format to generate control information applied by a network side to a terminal, wherein indication information indicating whether to swap a corresponding relationship between a transmission block and a codeword is not carried in a control bit in the DCI format, if a dedicated demodulation reference signal used to demodulate data is preconfigured by the network side for the terminal and respective codewords correspond to the same number of layers; and the indication information is carried in a control bit in the DCI format, if the dedicated demodulation reference signal used to demodulate data is not preconfigured by the network side for the terminal; and sending the generated control information to the terminal.
US10334578B2
According to one embodiment, a wireless communication device includes: controlling circuitry configured to change a value of a first parameter in accordance with a history of uplink multi-user transmission or whether capability of uplink multi-user transmission is in an enabled or disabled state, the first parameter defining an upper limit of duration during which a wireless medium is allowed to be occupied; and a transmitter configured to transmit a first frame.
US10334576B2
A user equipment (UE) for reporting uplink control information (UCI) when one or more Licensed-Assisted Access (LAA) serving cells are configured is described. The UE includes a processor and memory in electronic communication with the processor. Instructions stored in the memory are executable to determine if physical uplink shared channel (PUSCH) transmissions are scheduled on LAA serving cells and licensed cells. The instructions are also executable to determine a type of UCI to be reported. The instructions are further executable to determine a channel and cells to carry different UCI. The instructions are additionally executable to transmit the channel on the cells determined to carry UCI. The instructions are also executable to determine whether a LAA PUSCH is transmitted and UCI is multiplexed. The instructions are further executable to drop LAA PUSCH or transmit LAA PUSCH subject to listen-before-talk (LBT).
US10334572B2
A signal interface unit for interfacing uplink downstream signals from a downstream device with an upstream device includes at least one upstream interface configured to communicate a primary uplink upstream signal and at least one emulated-diversity uplink upstream signal to an upstream device; a downstream interface configured to receive an uplink downstream signal from a downstream device; wherein the signal interface unit is configured to convert the uplink downstream signal into the primary uplink upstream signal; wherein the signal interface unit is further configured to generate the at least one emulated-diversity uplink upstream signal from at least one of the primary uplink upstream signal and the uplink downstream signal.
US10334565B2
The present disclosure discloses a terminal, a base station, a network controller, a system, and a transmission method. The terminal includes: a receiving module, configured to receive configuration information of at least one air interface-specific path sent by a base station, where the air interface-specific path is used to transmit application data corresponding to at least one application; and a sending module, configured to: if the to-be-sent application data is discontinuously transmitted and has a length less than a preset threshold, use the at least one air interface-specific path to send the application data to the base station. According to embodiments of the present disclosure, when a terminal transmits data or signaling that is discontinuous and has a relatively small length, consumption of network signaling resources is reduced, so that a normal network service properly runs.
US10334564B2
Embodiments of the present invention provide an RRC message processing method, user equipment, and a base station. On a UE side, it is determined, according to designated information carried in a received first RRC message and designated information carried in a second RRC message received before the first RRC message is received, whether the first RRC message and the second RRC message are repeated RRC messages, where the designated information includes at least one of the following information: an RRC transaction identifier corresponding to an RRC message carrying the designated information, an RRC message type corresponding to an RRC message carrying the designated information, or a message payload of an RRC message corresponding to an RRC message carrying the designated information; and no response is made to the first RRC message when it is determined that the first RRC message and the second RRC message are repeated RRC messages.
US10334563B2
Provided are a method for realizing device-to-device communication relay selection, a network control node and user equipment. The method includes: a network control node receiving relay-related information sent by user equipment and determining a relay node; and the network control node sending device-to-device communication relay configuration information to the determined relay node. In the technical solution, by sending relay-related information in a network to perform selection or configuration of a relay node, a corresponding solution is provided for a scenario for which relay selection is not provided, and thereby the selection of the relay node is realized.
US10334554B2
According to one embodiment of the present invention, a method by which a terminal receives a reference signal for determining a position in an unlicensed band in a wireless communication system can comprise the steps of: receiving positioning reference signal (PRS)-related configuration information transmitted through the cooperation of one or more unlicensed band cells, wherein the PRS-related configuration information includes information on a plurality of sub-bands in the unlicensed band, in which the PRS is transmitted, and information on a PRS transmission period for each of the plurality of sub-bands; receiving and measuring the PRS by using the PRS-related configuration information; and reporting the PRS measurement result to a serving cell.
US10334553B2
A wireless communications network registration method applied to a dual-card dual-pass terminal including a first modem and a second modem. The method includes reading, by the terminal, a card identifier from a subscriber identity card, and if a quantity of subscriber identity cards in the terminal is one and a service provider identifier of the subscriber identity card is a preset identifier, performing, by the terminal, packet switched (PS) registration for the first modem using the card identifier of the subscriber identity card, and performing, by the terminal, circuit switched (CS) registration for the second modem using the card identifier of the subscriber identity card. An embodiment of the present disclosure further provides a terminal. Hence, a problem that a terminal cannot implement concurrency of a data service and a voice call can be resolved.
US10334550B2
Method and apparatus for signal detection in dynamic channels with high carrier frequency offset are provided. A coherent detector and a non-coherent detector are operated in parallel on a block of samples of an input signal to determine respective time offset candidates of the input signal. The time offset candidate obtained from the non-coherent detector is used to determine a frequency offset candidate of the input signal.
US10334547B2
Embodiments of the present disclosure provide a signal synchronization method and apparatus for high frequency communication, and pertain to the field of wireless communications technologies. The method includes: performing, on a first beam pair, high frequency data communication with user equipment; if it is determined that the user equipment enters a dead zone state, sending a synchronization indication signal to the user equipment, where the synchronization indication signal includes at least quick synchronization indication information and user equipment information, and the user equipment information includes user ID information, beam ID information of a beam pair, and cell ID information; sending, on a specified high frequency resource, a synchronization signal to the user equipment. In the present disclosure, high frequency data communication is implemented by quickly performing re-synchronization in a dead zone state. Therefore, communication service quality is relatively high.
US10334546B2
Techniques for synchronization on a shared communication medium are disclosed. An access point may select, for example, a common sequence, frequency, and time for a first synchronization signal that is coordinated with one or more other access points. The access point may then transmit the first synchronization signal in accordance with the common sequence, frequency, and time. An access terminal may receive, from an access point, a first synchronization signal having a first sequence and a second synchronization signal having a second sequence. The access terminal may then determine an offset in time between the first synchronization signal and the second synchronization signal, and determine a cell identifier group associated with the access point based on the offset.
US10334539B2
A method for executing a network command using synchronized timers. The method includes obtaining, by a first device, a first current time value from a first timer of the first device, determining, by the first device, a time-to-execute value based on the first current time value, sending, from the first device to a second device, a first network command message including the network command and the time-to-execute value, repetitively obtaining, by the second device, a second current time value from a second timer of the second device, comparing, by the second device and in response to receiving the first network command message, the second current time value to the time-to-execute value extracted from the first network command message, and executing, by the second device and in response to the second current time value matching the time-to-execute value, the network command, wherein the first timer and the second timer are synchronized.
US10334536B2
In the context of a dynamic adaptation of a transmission data rate of a terminal device in a wireless communication network, predefined transmission profiles that correspond to respective data rates are associated respectively with reception sensitivities. A server performs an optimization of said transmission data rate in successive stages, and decides to switch to a new stage according to a frame delivery rate with respect to a predefined threshold. The server selects the transmission profile to be applied by the terminal device while keeping at least a predefined margin, dependent on the stage at which the operation is performed, between received signal strength indication and reception sensitivity corresponding to said transmission profile.
US10334531B1
As the variety and number of wireless client devices have increased, often there may be multiple client devices in close proximity of each other. In addition to the connectivity to the wireless wide area network (WWAN), the client devices may have short range link to directly connect with each other. Two or more client devices in a given area may be camped on the same cell of the same WWAN, and the client devices may be decoding the paging information from the same cell. A method and apparatus are disclosed such that a client device may decode the paging information from the WWAN and relay the WWAN paging information to other client devices over the short range link. This may enable other client devices to avoid having to decode the paging information directly from the WWAN which may reduce their power consumption.
US10334527B2
Disclosed are devices and processes for processing portions of a downlink signal using multiple receive chains. In one implementation, while message traffic is received at two or more receive chains of a receiver device, an inactivity timing may be initiated following a most recent activity event at the receiver device. Responsive to a request to acquire a portion of a downlink signal at the receiver device following initiation of the inactivity timer, at least one of the two or more receive chains may be scheduled to acquire the portion of the downlink signal. Other, unscheduled receive chains may be transitioned to a lower power state upon expiration of the inactivity timer.
US10334521B2
An information processing device includes a wireless communication unit, a main system, and a subsystem. The information processing device is enabled to selectively execute a ready mode in which at least the main system in its entirety is activated, and a sleep mode in which at least a portion of the main system is not activated. When the information processing device transitions from the ready mode to the sleep mode, if the main system determines that the main system is connected to the wireless network and that peer-to-peer networking is ineffective, the main system carries out configuring of the subsystem to enable the subsystem to respond to the external device via the wireless communication unit during the sleep mode, and the main system transitions to, as the sleep mode, a first sleep mode in which the subsystem is activated without the main system in its entirety being activated.
US10334510B2
Radio network technology and display thereof can be managed when multiple services and radio network technologies are available to a multi-technology mobile device. Management relies at least in part on a subscriber profile that comprises a network selection profile constructed through market policy, subscriber policy, and application policy for radio technology utilization. Network preference(s) profile is generated on per subscriber, or per subscriber type, basis and is conveyed to a subscriber station over the air. Initial subscriber profile can be delivered at a time of provisioning a multi-technology mobile device, and updated based at least upon subscriber demand, a schedule established by a network operator or service provider, or an event related to coverage area relocation or contracted services. Radio technology preferences and display of associated technologies available to a multi-technology mobile device can be controlled dynamically on a per-call and/or per-application basis.
US10334507B2
Opportunistic use of spectrum is disclosed that allows a device access to a wireless local area network (WLAN) when necessary on a restricted frequency band and provides efficient scanning and switching of device communications to an unrestricted frequency band when channels become available in the unrestricted frequency band. A device operating in the network on the restricted frequency band may receive information on a channel set over a channel in the restricted frequency band. The channel set may be a subset of channels in the network and indicate network channels available for potential use in the unrestricted frequency band. The device may then only scan the subset of channels in the channel set to search for available channels in the unrestricted band. The channel set may be determined by the network based on the operation of the device in the coverage of the restricted frequency band.
US10334504B2
Techniques described herein may allow for the selective enabling and/or disabling of shared access points (“SAPs”). The selective enabling and/or disabling may occur based on the analysis of key performance indicators (“KPIs”) associated with the SAPs. The selective enabling and/or disabling may cause the SAPs to cease (or continue) broadcasting their availability for User Equipment (“UEs”) of a particular wireless provider, decline (or accept) bearer requests for UEs of the particular wireless provider, or terminate existing connections with UEs of the particular wireless provider. The selective enabling and/or disabling may be performed for certain applications or Quality of Service (“QoS”) levels. The selective enabling and/or disabling may be performed proactively (e.g., without necessarily determining that the performance for a given SAP has not met a threshold performance), based on historical trends.
US10334501B2
In a first subframe determined from a first number of hops up to a concentrator and being among a plurality of subframes included in a first frame period, a first wireless communication apparatus transmits first data, a second wireless communication apparatus transmits second data, and a third wireless communication apparatus receives the second data. In a second subframe determined from a second number of hops different from the first number of hops up to the concentrator and not corresponding to the first subframe among a plurality of subframes included in a second frame period following after the first frame period, the third wireless communication apparatus transmits the second data, and the third wireless communication apparatus does not transmit the second data in the first frame period.
US10334500B2
An apparatus and method for wireless communication. The apparatus includes processing circuitry: configured to receive a relay establishment request from a source communication device; configured to acquire historical energy information and current energy information about a candidate communication device as a relay candidate, and to determine one or more relay communication devices to be used as a relay based on the acquired information; and configured to send information about the relay establishment to the one or more relay communication devices, the source communication device, and a destination communication device.
US10334499B2
The present disclosure is a novel utility of a software defined radio (SDR) based Distributed Antenna System (DAS) that is field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. The present invention enables a high degree of flexibility to manage, control, enhance, facilitate the usage and performance of a distributed wireless network such as Flexible Simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, frequency carrier placement, traffic monitoring, traffic tagging, pilot beacon, etc. As a result, a DAS in accordance with the present invention can increase the efficiency and traffic capacity of the operators' wireless network.
US10334491B2
The embodiments of the present invention disclose a message transmission method, user equipment, a base station, and a communications system. The message transmission method in embodiments of the present invention includes: receiving, by first user equipment, information about a contention resource from a cellular network base station, where the contention resource is a transmission resource obtained in an autonomous contention manner; and contending, by the first user equipment, for a transmission resource in a time window corresponding to the contention resource, and if the transmission resource is obtained, transmitting a message to second user equipment by using the obtained transmission resource.
US10334478B2
A method is proposed of arranging, in a mobile communication network, transmission of data between user equipment and at least one base station including a central unit and at least one remote unit associated therewith. The method includes at a transmitting side including the remote unit or the central unit, quantizing the data according to a quantization bit number, and transmitting, over a fronthaul link between the transmitting side and a receiving side including the central unit or the remote unit, respectively, the quantized data to the receiving side. The method further includes, at the central unit: determining the quantization bit number, wherein the determining including varying in time the quantization bit number according to network information available at the central unit, and communicating to the at least one remote unit the determined quantization bit number.
US10334475B2
Mechanisms may be used for aggregating acknowledgement (ACK), block ACK (BA) and/or short packets transmissions for multi-user (MU) wireless communication systems. Aggregation mechanisms may be used for uplink (UL) and/or downlink (DL) orthogonal frequency division multiple access (OFDMA), and/or UL/DL multiple-user multiple input multiple output (MU-MIMO) transmissions, for example. Multi-user short packets may be aggregated and/or simultaneously transmitted for DL, UL, or peer-to-peer (P2P) transmissions.
US10334468B2
In an example, there is disclosed a computing apparatus, having: a processor; a memory; a network interface to communicatively couple to a mobile data network; and an interconnection and routing function (IRF) server engine to: receive an incoming Control plane message from a source network function (NF) via the network interface; examine a header of the incoming Control plane message to determine a destination NF of the Control plane message; and route the Control plane message to the destination NF.
US10334466B2
A network device includes: a transceiving module, configured to: send control information to a target terminal to instruct the target terminal to measure a first spectrum, where the first spectrum is an unlicensed spectrum for the network device; and receive feedback information that is reported by the target terminal and obtained by measuring the first spectrum; and a processing module, configured to determine, according to the feedback information received by the transceiving module, whether the first spectrum is free.
US10334452B2
An apparatus and a method for optimizing a parameter of an antenna based on radio frequency (RF) environment information in a wireless communication system are provided. The electronic device includes a reception unit configured to receive first network information and second network information, and a transmission unit configured to transmit a first signal to adjust a parameter of an antenna when a difference between a first indicator value included in the first network information and a second indicator value included in the second network information is greater than or equal to a first threshold.
US10334445B2
A computer-implemented method is provided for a management entity to detect where a rogue access point is connected to the network infrastructure. The management entity receives from a wireless network controller an indication of an unauthorized frame wirelessly intercepted by an authorized access point. The unauthorized frame carries data between a rogue access point and a wireless client device. The rogue access point is connected to a compromised network element in a managed network at a compromised port of the compromised network element. The management entity extracts a client network address and a gateway network address from the indication of the unauthorized frame. The management entity traces a path through the managed network from a gateway network element associated with the gateway network address to the compromised network element. The management entity determines the compromised port in the compromised network element at which the rogue access point is connected.
US10334439B2
The present disclosure relates to a sensor network, machine type communication (MTC), machine-to-machine (M2M) communication, and technology for Internet of things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an authenticating system for authenticating users in an IoT environment are provided. The method includes receiving an access request to at least one device present in the IoT environment, identifying a type of questions based on at least one of a user interface (UI) type of the at least one device, or an authentication level of the at least one device, generating at least one question corresponding to the type of questions based on at least one of user data of a user associated with the access request, or device data of one or more devices associated with the user, presenting the at least one question to at least one of the user and the one or more devices, and authenticating the user to access the at least one device based on a response for the at least one question received from the at least one of the user and the one or more devices.
US10334438B2
A system includes user device, first and second communication devices, and a server. The user device transmits a first device identifier associated to the server. The server generates and stores a first wireless network identifier and a first password corresponding to the first device identifier. The server transmits the first wireless network identifier and first password to the first communication device. The first communication device creates a wireless network, which is accessed by the user device using the first wireless network identifier and first password. Further, the user device transmits the first device identifier to the server. The second communication device receives the first wireless network identifier and first password from the server. The second communication device creates the wireless network, which is automatically accessed by the user device.
US10334435B2
A user equipment (UE) may be configured to transmit a registration message to a network to establish a secure connection for non-access stratum (NAS) messages between the network and a UE, the secure connection based at least in part on a UE identifier and security capabilities of the UE included in the registration message. The UE may then exchange NAS methods with the network over the secure connection. The UE may also establish, in response to the registration message, an authentication protocol with the network and encrypt subsequent NAS messages based in part on the authentication protocol.
US10334433B2
A communication system is provided in which multiple terminal devices form a group and at least one base station device assigns a channel to each group, so that communication from a terminal device included in a group assigned a channel to the other terminal devices included in the group is performed. In the communication system, a transmitting unit transmits information about authentication to a base station device before communication is started. A receiving unit receives, from a base station device, information about authentication status of at least another terminal device within the group.
US10334417B2
A configured mode of operation of a wireless sensor network can be established through a dynamic remote configuration process. The plug-and-play universal sensor interface enables the monitoring capabilities of the wireless sensor network to scale seamlessly with the dynamic nature of changing sensor application objectives. A system status module enables a user to view the sensor service to confirm the current configuration of the wireless sensor network.
US10334415B2
A voice user interface (VUI) may be deployed for controlling network components and devices of a telecommunications network. A voice command received at a voice interface device connected to a telecommunications network may be converted into a persistent data representation via a speech interpretation engine. The persistent data representation is sent to an intent mapping service that maps persistent data representations to intermediate command representations. In turn, a command interpreter of the telecommunications network may receive the intermediate command representation from the intent mapping service. The command interpreter may translate the intermediate command representation into an action command for performing a task with respect to network components or devices of the telecommunications network. The action command may be executed via a controller interface of the telecommunications network with respect to the network components or the devices of the telecommunication network.
US10334413B2
Disclosed are techniques for managing mobile devices, such as cellular telephones, tablets, and laptop computers, deployed on different operator networks, such as cellular networks, permissioned Wi-Fi networks, LANs, and WANs. The techniques include receiving, at an interface module, a request identifying a mobile device and one of a plurality of operator networks associated with the device. The request manages the mobile device by initiating a change in a configuration state of the device on the associated operator network. The techniques further include selecting one of a plurality of adapter modules each configured to communicate with a particular one of the plurality of operator networks based on the request. The techniques also include bridging, using the selected adapter module, communication between the interface module and the operator network associated with the mobile device, such as transmitting the request to the network and subsequently receiving a response from the network.
US10334405B2
The disclosure includes embodiments for identifying a geographic location for a stationary micro-vehicular cloud. In some embodiments, a method includes receiving, by an onboard unit of a connected vehicle, a wireless beacon including a unique identifier of an infrastructure element which broadcasted the wireless beacon. The method includes identifying, based on the unique identifier, a geographic location for a stationary micro-vehicular cloud. In this way the geographic location of the stationary micro-vehicular cloud is identified without the use of global positioning system (“GPS”) data.
US10334394B2
An illustrative system includes a processor configured to receive a boundary defining a geo-fence and a vehicle identifier. The processor is also configured to associate a plurality of existing dedicated short range communication (DSRC) transceivers with the boundary and send the vehicle identifier to each of the associated DSRC transceivers.
US10334393B2
Embodiments of the present disclosure provide a floor positioning method and system, and a device, and relate to the communications field. The method includes: receiving a reference signal sent by at least one access point in an indoor environment in which UE is located; determining measurement information based on a polarization direction of the at least one received reference signal, where the measurement information includes at least one access point identifier and a proportion-related value of a vertical polarization direction relative to the polarization direction of the reference signal corresponding to the at least one access point identifier; sending the measurement information to a positioning server; and receiving location information of the UE sent by the positioning server, where the location information of the UE includes a floor location of the UE, and the floor location of the UE is determined based on the measurement information.
US10334392B2
An enhanced 3GPP network architecture can enables a SCEF to interact with SCS/AS via APIs that provide location based context; GMLC to get the UE's location, available RATs, and congestion levels; HSS to get the UE's location, available RATs, and congestion levels; PCEF (via PCRF) to obtain the congestion level at the P-GW; RCAF (via PCRF) to obtain the user plane congestion levels at the E-UTRAN, UTRAN, and WLAN; and serving nodes (MME, SGSN, 3GPP AAA Server) to get the available RATs and congestion levels.
US10334384B2
A method for processing audio data, the method comprising: receiving audio data corresponding to a plurality of instances of audio, including at least one of: (a) audio data from multiple endpoints, recorded separately or (b) audio data from a single endpoint corresponding to multiple talkers and including spatial information for each of the multiple talkers; rendering the audio data in a virtual acoustic space such that each of the instances of audio has a respective different virtual position in the virtual acoustic space; and scheduling the instances of audio to be played back with a playback overlap between at least two of the instances of audio, wherein the scheduling is performed, at least in part, according to a set of perceptually-motivated rules.
US10334380B2
A transmitting device comprises a binaural circuit (601) which provides a plurality of binaural rendering data sets, each binaural rendering data set comprising data representing parameters for a virtual position binaural rendering. Specifically, head related binaural transfer function data may be included in the data sets. A representation circuit (603) provides a representation indication for each of the data sets. The representation indication for a data set is indicative of the representation used by the data set. An output circuit (605) generates a bitstream comprising the data sets and the representation indications. The bitstream is received by a receiver (701) in a receiving device. A selector (703) selects a selected binaural rendering data set based on the representation indications and a capability of the apparatus, and an audio processor (707) processes the audio signal in response to data of the selected binaural rendering data set.
US10334378B2
The application describes MEMS transducers comprising a flexible membrane layer supported in a fixed relation relative to a substrate along at least one supporting edge, wherein a plurality of slits are provided through the membrane layer. The slits define a plurality of beams. Each beam defines a path between first and second endpoints of the beam, the path comprising at least one change in direction. Also described are transducers wherein the membrane layer is supported in a fixed relation relative to the substrate along a plurality of supporting edges which define a membrane region that is substantially bounded by the supporting edges.
US10334375B2
A standard attachment for a standard earpiece insertable into an ear canal in a direction of insertion, by which, compared to customary attachments, an improved adaptation of the corresponding standard earpiece to an ear canal is achieved, and therefore improved audio perception, and also improved wearing comfort of the respective hearing aid is ensured. The standard attachment contains a headpiece at one end and, adjoining the latter, a wing portion. The outer contour of the headpiece is configured to allow the headpiece to bear on the wall of the ear canal at several points or on several lines.
US10334374B2
A prosthesis including an abutment, an operationally removable component including a coupling apparatus, and an adapter, wherein the abutment is connected to the adapter and the coupling apparatus of the operationally removable component is releasably coupled to the adapter.
US10334371B2
A method and an apparatus reduce feedback in a hearing aid device. The method includes the step of acquiring a first feedback transfer function at a first point in time on a feedback path from a signal processing device via an electro-acoustic transducer, an acoustic signal path from the electro-acoustic transducer to an acousto-electric transducer and via the acousto-electric transducer back to the signal processing device. In a further step, a weighted mean value function is determined in a manner dependent on amplitude absolute values of the first feedback transfer function. A second feedback transfer function is estimated by an adaptive filter, wherein coefficients of the adaptive filter are determined in a manner dependent on the weighted mean value function. The adaptive filter is applied to a signal which is derived from an acoustic input signal of the acousto-electric transducer.
US10334369B2
A signal processor for a hearing device with an implantable stimulator having two or more electrodes for emitting electric charge pulses to neural-fibers of an individual. The processor has a signal path comprising an input circuit adapted to receive an acoustic-signal from the surroundings and provide at least one corresponding input audio-signal; a filter bank adapted to provide at least one band-limited audio-signal in dependence on the at least one input audio-signal; and a noise filter adapted to attenuate undesired signal components in the at least one band-limited audio-signal and to provide at least one corresponding noise-filtered signal. The processor is characterized in that the portion of the signal path preceding the noise filter neither causes an effective level compression nor an effective level expansion of the at least one noise-filtered signal when the at least one noise-filtered signal is derived from an acoustic signal having a level within the comfortable acoustic range.
US10334359B2
Optical microphone, laser-based microphone, and laser microphone having reduced-noise components of low-noise components. A laser microphone comprises a laser-diode associated with a low-noise laser driver TX; and a photo-diode associated with a low-noise photo-diode receiver RX. The low-noise laser driver TX supplies a drive current which is a combination of a Direct Current component having a first bandwidth, and an attenuated version of an Alternating Current component having a second, different, bandwidth. Additionally or alternatively, the low-noise photo-diode receiver RX utilizes hardware-based demodulation of the analog signal, and operates to remove a Direct Current component of its output signal prior to digitization.
US10334346B2
A system, method and personal area network for communicating utilizing a wireless earpiece. Sensor measurements of a user are performed utilizing sensors of the wireless earpieces. The sensor measurements are analyzed. A determination is made whether the sensor measurements exceed two or more thresholds. An alert is communicated to the user in response to the two or more thresholds being exceeded.
US10334342B2
The present invention relates to a neckband-type wireless sound transducer, and more particularly, to a neckband-type wireless sound transducer that prevents sound from being transferred to the surroundings of the wearer. The neckband-type wireless sound transducer according to the present invention, includes: a main body part configured to be seated on a human body; a main speaker part mounted on the main body part and configured to emit sound to the inside of the main body part; an auxiliary speaker part mounted on the main body part and configured to emit sound for leakage reduction to offset the sound emitted by the main speaker part and leaked to the outside of the main body part; and a controller configured to apply an electric signal for sound emission to the main speaker part and an electric signal for leakage reduction to the auxiliary speaker part.
US10334336B2
Provided is a method of controlling a digital photographing apparatus recording moving image data being input to a recording medium in a moving image photographing mode. The method includes creating a moving image file in the recording medium and storing the moving image data being input in the moving image file when a first signal is generated by a first button of the digital photographing apparatus pressed by a user, stopping storing of the moving image data being input when the first signal is generated by a second button of the digital photographing apparatus pressed by the user, continuing to store the moving image data being input in the moving image file when a second signal is generated by the second button pressed by the user, and stopping storing of the moving image data being input and completing the moving image file when the second signal is generated by the first button pressed by the user.
US10334321B2
A display apparatus includes an input interface that receives a user input for selecting a channel, a tuner that receives a broadcast signal corresponding to the channel, a display that displays a content included in the broadcast signal, a storage configured to store channel information obtained from the broadcast signal, a communicator configured to communicate with an external apparatus, and a controller that selects a channel based on the user input, displays content corresponding to the changed channel on the display, acquires a channel number, a source ID and a channel name with respect to the channel, and transmits the channel number, the source ID and the channel name to a server.
US10334320B2
A digital media player and sales platform, system and method, enabled for use on the open web as well as in closed applications configured to provide end users an immersive interactive experience wherein the end users have the ability to engage with video content items, including the ability to purchase items, as and when they choose, all within the confines of the player and entirely within the viewing experience, all functionality fully enabled from the moment the media is loaded for play not tied to any media timeline or media player push to engage.
US10334317B2
The invention provides a method for monitoring a digital media receiver (including receivers for television or other type of digital media) to determine whether it is necessary for a receiver to re-connect in order to continue receiving a predetermined channel or stream. This invention is useful in digital media monitoring systems and in situations with many receivers connected to the same signal source and predetermined channels defined to be output by each receiver. One embodiment of the invention uses an auditing receiver that constantly scans the upstream channel-map, guide data, service information or system information to determine if the connection parameters required for receiving each predetermined stream have changed. Some examples of connection parameters include packet identifiers (PIDs), radio frequency (RF) channel and uniform resource locator (URL), depending on the type of broadcast and stream. When the auditing receiver gathers the latest connection parameters, a monitoring system compares the recently checked connection parameters to the connection parameters currently in use on each other receiver to determine if each receiver needs to be re-connected to continue receiving the predetermined stream defined for that receiver.
US10334313B2
A system that incorporates teachings of the present disclosure may include, for example, a centralized broadband gateway for a wireless communication system, including a router/gateway module which receives encoded compressed audio/video (A/V) streams and distributes the encoded compressed audio/video A/V streams; multiple audio/video decoders which receive the encoded compressed A/V streams from the a router/gateway module, decode the encoded compressed A/V streams, and output uncompressed A/V streams; and an integrated Wireless High Definition Multimedia Interface (WHDMI) which receives the uncompressed A/V streams from the multiple audio/video decoders and transmits the uncompressed A/V streams wirelessly to media devices, without deploying individual media processors at each media device. Other embodiments are disclosed.
US10334309B2
A bullet screen display method and apparatus are provided. The method includes loading a web page that satisfies the Hypertext Markup Language 5 (HTML5) Protocol, the web page including a video tag and a text track tag, and loading and displaying an online video, based on the video tag. The method further includes loading a web video text tracks (WebVTT) file, based on the text track tag, and displaying bullet screen information on the online video, based on the WebVTT file.
US10334307B2
A method of adjusting visual content. The method comprises selecting, on a client terminal, visual content, extracting visual content data pertaining to the visual content, forwarding a request which includes the visual content data to a network node via a network, receiving, in response to the request, a list of a plurality of visual content editing functions from the network node, presenting, on the client terminal, the plurality of visual content editing functions to a user, receiving a selection of at least one member of the list from the user, adjusting the visual content using the at least one member, and outputting the adjusted visual content.
US10334304B2
A computer-implemented method for integration of a set top box and an automation system is described. In one configuration, subscriber program content is provided. An aspect of a premises is monitored via one or more sensors. A monitor channel may be provided to display the monitored aspect of the premises. The monitor channel may be displayed in a channel guide among channels of the subscriber program content.
US10334292B1
A unified system of programming communication. The system encompasses the prior art (television, radio, broadcast hardcopy, computer communications, etc.) and new user specific mass media. Within the unified system, parallel processing computer systems, each having an input (e.g., 77) controlling a plurality of computers (e.g., 205), generate and output user information at receiver stations. Under broadcast control, local computers (73, 205), combine user information selectively into prior art communications to exhibit personalized mass media programming at video monitors (202), speakers (263), printers (221), etc. At intermediate transmission stations (e.g., cable television stations), signals in network broadcasts and from local inputs (74, 77, 97, 98) cause control processors (71) and computers (73) to selectively automate connection and operation of receivers (53), recorder/players (76), computers (73), generators (82), strippers (81), etc. At receiver stations, signals in received transmissions and from local inputs (225, 218, 22) cause control processors (200) and computers (205) to automate connection and operation of converters (201), tuners (215), decryptors (224), recorder/players (217), computers (205), furnaces (206), etc. Processors (71, 200) meter and monitor availability and usage of programming.
US10334291B2
In a method for detecting leakage in a digital cable system, at least one first signal is inserted on the cable system. The at least one first signal has an amplitude multiple tens of dB below the digital channel power of the digital channels carried on the cable system. A second signal containing the first signal is received. The second signal is converted to an intermediate frequency (IF) signal. The IF signal is digitized and samples of the digitized IF signal are obtained. Digitized samples of a third signal at the nominal frequency of the first signal at maximum amplitude converted to the IF are provided. The digitized IF signal and the digitized samples of a third signal at the nominal frequency of the first signal at maximum amplitude converted to the IF are correlated. The presence of the inserted first signal is detected based upon the result of the correlation. In another method, a pair of first signals are inserted on the cable system. The pair of first signals are spaced apart a fixed frequency and with amplitudes multiple tens of dB below the digital channel power of the digital channels carried on the cable system. A second signal containing the first signal is received and converted to an intermediate frequency (IF) signal. The IF signal is digitized, samples of the digitized IF signal are obtained, and a large scale Fast Fourier Transform (FFT) is applied to the samples to generate an FFT output. The FFT output is examined for generally equally sized signals separated from each other by the fixed frequency in the FFT output. If generally equally sized signals separated from each other by the fixed frequency are detected in the FFT output, a decision is made that the second signal represents detected leakage from the digital cable system.
US10334290B2
A method for decoding a service guide associated with a video bitstream comprising: receiving a fragment within said service guide; receiving content advisory ratings element; said content advisory ratings element includes at least one of a region identifier, a rating description, a rated dimensions, a rating dimensions value, a rating dimension and a rating value; and decoding said service guide.
US10334289B2
Improved systems and methods of performing multimedia communications over multimedia communications networks, in which video data senders can maintain high video quality of experience (QoE) levels with increased reliability despite changes in available bandwidths of video data receivers. In the disclosed systems and methods, video encoding parameters employed by the video data senders, including at least the video frame size and/or the video frame rate, can be dynamically adapted to the available bandwidths of the video data receivers, taking into account possible effects of spatial scaling and/or temporal scaling of video frames on the resulting video QoE.
US10334286B2
A method, system, or device to determine when media content has been displayed. The method can include receiving a unique identifier (UID) and fingerprint for a media segment. The method can also include determining a media segment ID for the media segment, generating and submitting a query for the media segment ID in a record database, determining that the media segment ID is not stored in the record database, and identifying an overlay content segment ID. The method can include generating and submitting for the overlay content segment ID in the record database, determining it is not stored in an entry, sending the overlay content segment to the electronic device, and receiving a notification from the electronic device.
US10334284B2
A method includes receiving, at a server from a first content source, a media content stream. The media content stream includes native video content and native audio content. The method includes receiving, at the server from a second content source distinct from the first content source, an audio content stream associated with media content of the media content stream. The method includes generating, at the server, a composite stream that includes first packets and second packets. The first packets include first data corresponding to the native video content, and the second packets include second data corresponding to audio content from the audio content stream. The composite stream does not include the native audio content. The method also includes initiating, from the server, a transmission of the composite stream to a media device responsive to a request for the media content with the audio content.
US10334270B2
A method and device for processing LDR images of a video sequence to improve image quality. The method comprises temporally decomposing successive HDR frames of a video sequence and the corresponding LDR frames and performing a comparison between the HDR and LDR frequency sub-bands. A current LDR image can then be modified on the basis of a comparison between the frequency sub-bands.
US10334268B2
An image coding method includes: selecting a first picture from plural pictures; setting a first temporal motion vector prediction flag which is associated with the first picture and is a temporal motion vector prediction flag indicating whether or not temporal motion vector prediction is to be used, to indicate that the temporal motion vector prediction is not to be used, and coding the first temporal motion vector prediction flag; coding the first picture without using the temporal motion vector prediction; and coding a second picture which follows the first picture in coding order, with referring to a motion vector of a picture preceding the first picture in coding order being prohibited.
US10334263B2
An interlayer video decoding method comprises reconstructing a first layer image based on encoding information acquired from a first layer bitstream; reconstructing a second layer current block determined as a predetermined partition mode and a prediction mode by using interlayer prediction information acquired from a second layer bitstream and a first layer reference block corresponding to a current block of a first layer reconstruction image that is to be reconstructed in a second layer; determining whether to perform luminance compensation on the second layer current block in a partition mode in which the second layer current block is not split; and compensating for luminance of the second layer current block according to whether luminance compensation is performed and reconstructing a second layer image including the second layer current block of which luminance is compensated for.
US10334261B2
An example method includes receiving a video bitstream with a high fidelity input format and side information related to the video bitstream. The side information includes a video bitstream representing the original video source with a low fidelity input format, coding parameters optimized based on knowledge of the original video source, transform coefficients, indicative of a residual between the original video source and a decoded version of the high fidelity format. The method further includes decoding the side information to generate transcoding guiding information, estimating a representation of video bitstream with a low fidelity output format, based on the received bit stream and the generated transcoding guiding information, improving the estimated low-fidelity representation by adding the transform coefficients of the side information to transform coefficients generated from the estimated low-fidelity representation, and encoding the improved estimated representation of the low-fidelity bitstream.
US10334243B2
A testing method and a testing apparatus for splicing screens (1, 2, 3, 4) are provided. The method includes: outputting an image signal to a display screen, wherein the display screen includes a plurality of splicing screens (1, 2, 3, 4), the image signal includes a plurality of testing sub pictures, the testing sub pictures are arranged correspondingly to the splicing screens (1, 2, 3, 4) so as to enable the splicing screens (1, 2, 3, 4) to display the corresponding testing sub pictures, and the testing sub pictures include testing contents (5, 6, 7, 8, 9, 10, 11, 12); and testing the splicing screens (1, 2, 3, 4) through the testing contents (5, 6, 7, 8, 9, 10, 11, 12). Testing on the splicing screens (1, 2, 3, 4) is achieved, and a testing result can be used for regulating the splicing screens (1, 2, 3, 4), so that defects generated in the displaying process of the splicing screens (1, 2, 3, 4) are reduced.
US10334239B2
A positional calibration is enabled between an imaging device and a stage structure including X and Y stages that move independently of each other. An image processing apparatus performs the positional calibration of a camera coordinate system for an imaging device with a stage coordinate system using a reference position in a first image coordinate space indicating a position of a mark in an image captured when an X-stage is at a reference position, a displaced position in the first image coordinate space indicating a position of the mark in an image captured when the X-stage is at a first displaced position to which the X-stage moves in X-direction from the first reference position, and a virtual position in the first image coordinate space indicating a position of the mark in an image calculated using the characteristic value of a Y-stage.
US10334238B2
A method and a system for rendering VR video are disclosed. In the method, a base video model and an enhancement video model are built respectively, with UV coordinates being initialized. base video segments and enhancement video segments are obtained according to a user's viewport. A base video texture is generated according to pixel information of the base video segments and the UV coordinates of the base video model. An enhancement video texture is generated according to pixel information of the enhancement video segments and the UV coordinates of the enhancement video model. Pixel information is reconstructed by adding the base video texture and the enhancement video texture with each other according to alignment coordinates. An image is drawn according to the reconstructed pixel information. The method reduces data transmission and improves rendering efficiency without affecting the user's viewing experience.
US10334235B2
A binocular see-through AR head-mounted display device is disclosed. Based on that the mapping relationships fc→s and fd→i are pre-stored in the head-mounted device, the position of the target object in the camera image is obtained through an image tracking method, and is mapped to the screen coordinate system of the head-mounted device for calculating the left/right image display position. Through a monocular distance finding method, the distance between the target object and the camera is real-time calculated referring to the imaging scale of the camera, so as to calculate a left-right image distance, thereby calculating the right or the right image display position. Correspondingly, the present invention also provides an information display method for a binocular see-through AR head-mounted display device and an augmented reality information display system. The present invention is highly reliable with low cost.
US10334233B2
The present specification relates to a portable device that controls a photography mode, and a control method therefor. A control method of a portable device that controls a photography mode according to an embodiment may comprise the steps of: detecting a first marker at a first distance from the portable device and a second marker at a second distance using at least one of a first camera unit and a second camera unit; and executing a photography mode that captures an image. A 2D photography mode is executed if the first distance of the detected first marker and the second distance of the detected second marker are effectively the same; and a 3D photography mode is executed if the first distance of the detected first marker and the second distance of the detected second marker are different, wherein the 3D photography mode may be a mode that generates a 3D image using binocular disparity of the first camera unit and the second camera unit.
US10334232B2
A depth-sensing device and its method are provided. The depth-sensing device includes a projection device, an image capture device, and an image processing device. The projection device projects a first projection pattern to a field at a first time and projects a second projection pattern to the same field at a second time. The density of the first projection pattern is lower than the density of the second projection pattern. The image capture device captures the first projection pattern projected to the field at the first time to obtain a first image and captures the second projection pattern projected to the field at the second time to obtain a second image. The image processing device processes the first and second images to obtain two depth maps and at least merges the depth maps to generate a final depth map of the field.
US10334228B2
An in-flight 3D inspector includes a sample input funnel, a sample chute, a trigger, a plurality of cameras, a light source and storage device. A sample is placed in the sample input funnel and is caused to travel down the sample chute. The trigger is located on the sample chute and detects when the sample passes the trigger. In response to detecting the passing of the sample, the trigger outputs a trigger signal that indicates when the sample will pass through a focal plane on which all the plurality of cameras are focused. In response to the trigger signal, the sample is illuminated by the light source and the plurality of cameras capture an image of the sample as the sample passes through the focal plane. The captured images are stored on the storage device and used to generate a 3D image of the sample.
US10334224B2
Systems and methods of processing and streaming a virtual reality video using a graphics processing unit (GPU) are provided. A video server is configured to cause a processor to read, from a video data source, source video data including multiple spherical image frame data and store the source video data in a first memory. The video server is further configured to cause the GPU to convert, in response to storing first spherical image frame data in a first frame buffer of a second memory, the first spherical image frame data to first equirectangular image frame data that correspond to a portion of spherical image represented by the first spherical image frame data, encode the converted first equirectangular image frame data and store the encoded first equirectangular image frame data in an encoded frame buffer of the second memory.
US10334216B2
An imaging system includes an optical unit that captures, from a scene, first images indifferent wavelength ranges when the scene is illuminated with not-structured light and second images of different wavelength ranges when the scene is illuminated with structured light. Thereby an imaging lens unit with longitudinal chromatic aberration is arranged between the scene and an imaging sensor unit. A depth processing unit may generate depth information on the basis of the second images by using optical triangulation. A sharpness processing unit uses the depth information to generate an output image by combining the first images. The optical unit of the imaging, system may be implemented in an endoscope.
US10334212B2
At least one embodiment of the present disclosure provides a memory auxiliary device and a memory auxiliary method, a spectacle frame and a pair of spectacles. The memory auxiliary device includes a first capturing module, a second capturing module and a processing module; wherein, the first capturing module is configured to capture an eye state, the processing module is configured to determine blink information according to the first image information of the eye state, and control an operating mode of the second capturing module according to the blink information, and the second capturing module is configured to capture a object in the operating mode controlled by the processing module, and send second image information of the captured object to the processing module for storage.
US10334202B1
Techniques are disclosed for generating audio based on visual information. In some examples, an audio generation system is trained using supervised learning using a training set generated from videos. The trained audio generation system is able to infer audio for provided silent video based on the visual contents of the silent video, and generate raw waveform samples that represent the inferred audio.
US10334200B2
A first wireless device that supports a Wi-Fi direct service includes: a display unit configured to display an entire image of content being displayed by a second wireless device; a communication unit configured to perform a connection setup with the second wireless device; and a processor configured to control the display unit and the communication unit. The processor receives a zoom-in request signal for zooming in a partial image included in the entire image and receives data of the entire image and data of a zoomed-in partial image corresponding to the partial image from the second wireless device based on the zoom-in request signal.
US10334197B2
An amplification circuit includes a first amplification block suitable for primarily amplifying a voltage difference between a first voltage and a second voltage corresponding to a first input current and a second input current, respectively, and a second amplification block suitable for secondarily amplifying the voltage difference between the first and second voltages to generate an amplification signal.
US10334195B2
An A/D conversion device includes a phase-difference clock generation unit configured to use a plurality of phase interpolators to generate multi-phase clock signals, of which phases are shifted with respect to an input clock signal, from the input clock signal and a signal obtained by delaying the input clock signal; and an A/D conversion unit configured to perform A/D conversion on an input analog signal using the multi-phase clock signals generated by the phase-difference clock generation unit.
US10334187B2
Method and apparatus are disclosed for adjustable stacked filter arrays for vehicle cameras. An example vehicle includes a camera including a lens, and image sensors. The camera also includes LCD pass filter pixels and optical filter pixels stacked between the lens and the image sensors. The example vehicle also includes a filter controller to identify a first set of the optical filter pixels that form a filter setting and de-energize a first set of the LCD pass filter pixels to expose the first set of the optical filter pixels to form the filter setting.
US10334183B2
A multipoint audio processing method for processing audio streams originating from a plurality of audio clients is executed in a multipoint audio processing node. The method includes the steps of receiving control information on how to preselect audio streams from received audio streams, receiving audio streams from audio clients connected to the distributed multipoint audio processing node and generating evaluated audio streams by analyzing packets of the received audio streams in terms of at least one audio communication characteristic, and attaching an analysis result information of said analysis to said packets, in each audio stream. Audio streams are selected by deciding on whether or not any evaluated audio stream is to be transmitted further, based on the received control information and/or the analysis result information contained in said evaluated audio streams. Then selected audio streams are transmitted further while discarding evaluated audio streams decided not to be to be transmitted further, without mixing any transmitted audio streams. Corresponding steps may be executed by a central audio processing node. A system of audio clients distributed nodes and a central node and a software product are also disclosed.
US10334180B1
In aspects of digital image capture with a polarizer at different rotation angles, a device includes a polarizer that filters light at different polarizations and captures digital images using the polarizer. Each of the digital images are captured at one of different rotation angles of the polarizer. The device implements an imaging algorithm to determine a common region in each of the digital images, the common region having a variable brightness in each of the digital images and the common region in a respective digital image being determined based on a standard deviation of brightness for each pixel in the respective digital image. The imaging algorithm can then determine pixel brightness values of the pixels in the common region for each of the digital images, and select one of the captured digital images with a lowest pixel brightness value in the common region as an output image.
US10334177B2
A method is provided that includes obtaining a first image by image capture with a first exposure time, and obtaining a second image, including a plurality of bright lines, by capturing a subject changing in luminance with a second exposure. The method also includes obtaining information by demodulating data specified by a pattern of the plurality of bright lines included in the obtained second image, and sending the information to a server. The method further includes obtaining augmented reality information related to the information from the server, and displaying the first image of the display a second time, instead of displaying the second image, when the image sensor receives the first image followed by the second image, wherein the augmented reality information is superposed in both (i) the first image that is displayed at a first time, and (ii) the first image that is displayed at a second time.
US10334176B2
An imaging apparatus according to the present invention includes an imaging unit configured to capture an image of an arbitrary object and output a plurality of image signals with different exposures and a focus detection signal, and a composition unit configured to compose the plurality of image signals with different exposures output from the imaging unit and output the composed image signal. In a case of time-sequentially capturing images in succession, the imaging unit outputs the focus detection signal instead of the plurality of image signals at a predetermined timing. The composition unit composes image signals by using image signals in a time-sequentially adjacent different timing instead of image signals missing at the predetermined timing.
US10334175B1
A system and method for pointing an imaging sensor. In one embodiment, the method includes forming a correlation surface; calculating, from the correlation surface, a first estimated target offset, the first estimated target offset being an estimate of an offset between a view of a target in the first subimage and a view of the target in the second subimage; and adjusting a pointing angle of the imaging sensor according to the first estimated target offset.
US10334168B2
A method determines a movement of an apparatus between capturing first and second images. The method includes testing model hypotheses of the movement by for example a RANSAC algorithm, operating on a set of first points in the first image and assumed corresponding second points in the second image to deliver the best model hypothesis. The testing includes, for each first point, calculating a corresponding estimated point using the tested model hypothesis, determining the back-projection error between the estimated point and the second point in the second image, and comparing each back projection error with a threshold. The testing comprises for each first point, determining a correction term based on an estimation of the depth of the first point in the first image and an estimation of the movement between the first and second images, and determining the threshold associated with the first point by using said correction term.
US10334163B2
A multi-camera hemispherical very wide field of view imaging apparatus with omnidirectional illumination capability comprises a cylindrical body (4, 4.a, 4.b), a hemispherical mechanical frame (2) arranged on one end of the cylindrical body (4, 4.a, 4.b), a plurality of imaging channels (3), each imaging channel (3) comprising at least an image sensor and related optics with a fixed focus appropriate for endoscopic imaging, the plurality of imaging channels (3) being distributed over the hemispherical mechanical frame (2), a light source arranged center-down at a back part of the plurality of imaging channels (3) and inside or at the end of the cylindrical body (4, 4.a, 4.b). Each imaging channel (3) comprises a plurality of lightning channels (1) around their center, each of the plurality of lightning channels (1) comprising at least one microfiber light guide having a determined angle of curvature arranged to transmit the light from the light source. The imaging apparatus further comprises a control and processing circuit (5) comprising a camera control unit (6), an illumination control unit (7), an illumination unit (8), a sample and capture unit (9), an image processing unit (10) and an output interface (11) to a PC. The camera control unit (6) is configured to power each of the plurality of imaging channels (3) and make automatic gain compensation for each imaging channel (3), the illumination control unit (7) is configured for automatic intensity dimming, the sample and capture unit (9) is an interface circuit for correct sampling, extraction and capturing frames of individual imaging channels (3), the image processing unit (10) is configured for constructing a spherical panoramic image by applying a determined algorithm, and the output interface (11) is arranged to output the spherical panoramic image to a system configured to visualize it.
US10334162B2
A video processing apparatus is provided. The video processing apparatus includes: a storage configured to store a video captured by a camera; and a controller configured to separate a target object from a background image in each of a plurality of key frames contained in the video, stitch separated background images to generate a panoramic background image, synthesize the target object with the panoramic background image to acquire a plurality of panoramic images corresponding to the plurality of key frames, and combine the panoramic images in a time axis to generate a panoramic video.
US10334161B2
An image processing apparatus includes a system controlling unit including a processor and a memory, the system controlling unit being configured to load and to execute an operation control program stored in the memory. The system controlling unit and the memory are configured to acquire light field data, including a plurality of divided image data, to perform an image processing including color correction processing to each of the plurality of divided image data, and to form image data by combining pixel signals of the plurality of the divided image data. Depths of field of the plurality of divided image data are deeper than those of the formed image data. The system controlling unit controls operation to perform the image processing and to form the image using the processed plurality of divided image data.
US10334159B2
A correcting and verifying method and a correcting and verifying device cause a processor to display a specific frame image as a frame image to be confirmed based on a tracking result of a moving body in each of a plurality of frame images which configure a video, and to correct a position of the moving body in the frame image to be confirmed in a case where a correction instruction of a user is received.
US10334154B2
A portable electronic device with image capturing capabilities automatically or semi-automatically adjusts one or more image capturing parameters based on an input attribute of user engagement with a single-action haptic input mechanism. For example, the duration for which a single-action control button carried on a frame of the device is pressed automatically determines an image stabilization mode for on-board processing of captured image data. In one example, an above-threshold press duration automatically activates a less rigorous image stabilization mode, while button release before expiry of the threshold automatically activates a more rigorous photo stabilization mode.
US10334149B2
Example techniques are described for low power mode operation for multi-camera devices. A camera device includes processing circuitry configured to determine what information from the first camera is needed to process image content captured by the second camera or to operate the second camera, and adjust an operation mode of one of the first camera or camera circuitry coupled to the first camera from a first operation mode to a second operation mode based on the determination. An amount of power consumed by the first camera or the camera circuitry coupled to the first camera in the second operation mode is different than an amount of power consumed by the first camera or the camera circuitry in the first operation mode.
US10334146B2
A camera module includes: a housing; a reflecting module; and a lens module disposed behind the reflecting module, wherein the moving holder is disposed to be movable in one axial direction, approximately perpendicular to the optical axial direction and the one axial direction with respect to the housing, the lens module includes a carrier supported by the housing to be linearly movable in approximately the optical axial direction, the lens module includes two or more lens barrels of which some are fixed, and the others are supported by the housing to be linearly movable in approximately the optical axial direction, and lenses are distributed and provided into the at least two lens barrels.
US10334138B2
An image forming apparatus includes (a) a plurality of image forming unit arranged along a transfer medium, each of which is arranged movable between a lower position and an upper position; (b) an estrangement controller to move each of the image forming units between these positions; (c) a print mode management part to determine a designated print mode; (d) an image forming part to select one or more of the image forming units corresponding to the designated print mode, and to form an image to be transferred to the transfer medium by using the selected image forming units; and (e) a correction process part that performs a correction process. Wherein (f) the correction process part regularly judges whether or not a correction process execution condition is satisfied, and performs a regular correction process when the correction process execution condition is satisfied, and (g) the print mode management part judges whether or not another print process in the designated print mode has been performed after a previous regular correction process, and sets a print mode based on a judgment result by the print mode management part.
US10334136B2
Methods and apparatus are described for receiving a fax transmission at a mobile phone. In one embodiment, the mobile phone receives an incoming call and answers the incoming call, upon receiving a command from a user of the mobile phone to answer the incoming call. A program on the mobile phone then detects that the incoming call is a fax transmission, and then places an outgoing call to a fax server. The program on the mobile phone then conferences the incoming call with the outgoing call to the fax server, such that the fax server receives the fax transmission. Other embodiments are also described and claimed.
US10334126B2
A display apparatus has a camera portion which shoots an operation panel, a display portion which displays information while allowing a user to see the operation panel, and a control portion which recognizes the position of the operation panel in the display area of the display portion and the currently displayed screen currently being displayed by the operation panel and which makes the display portion display, in such a way as not to overlap the operation panel, item information indicating the item description of an item button arranged on a screen to which a shift is possible from the currently displayed screen.
US10334120B2
A technique that guarantees update of a program of a finisher unit while preventing a malfunction thereof from being caused by erroneous attachment thereof to a printing apparatus. Hardware identification information is acquired from the finisher unit. When it is determined based on the acquired hardware identification information that the finisher unit is compatible with a program of the apparatus, program identification information is acquired from the optional unit, for determining based thereon whether a program of the finisher unit program is associated with the program of the printing apparatus. If the programs are associated with each other, the versions there are compared. If the versions are not compatible, the program of the finisher unit is updated to a version compatible with the version of the program of the printing apparatus.
US10334119B2
Methods and apparatus are described for transparently processing a fax transmission by a fax software program in a mobile device. In one embodiment, the fax software program identifies an incoming call at the mobile device. Upon the identification, the program prevents a display screen of the mobile device from outputting an incoming call ringing alert. The program answers the incoming call and analyzes the call to detect whether the answered call is a voice call. Upon detecting that the answered incoming call is a voice call, the program outputs the incoming call ringing alert via the display screen. Otherwise, if the answered incoming call is a fax transmission, the program merges the call with a fax server, such that the fax server receives the fax transmission. Other embodiments are also described and claimed.
US10334118B2
A method and system for providing a video multimedia ringtone include setting, by a processor, a silent video separated from a multimedia file, as a media file that is a video file of a ringtone, setting, by the processor, a selected sound source as a bell file that is a sound file of the ringtone, and simultaneously playing back, by the processor, the media file and the bell file that are set as the ringtone, in response to an incoming call signal.
US10334116B2
A system described herein may provide an interface between a Session Management Function (“SMF”) and a charging system in a wireless telecommunications system. The charging system may generate triggers which cause the SMF to monitor traffic associated with user equipment (“UE”) and alert the charging system when certain trigger conditions have been satisfied. The triggers may be modified during a communication session between the UE and the wireless telecommunications system. The triggers may be configured on a per-subscriber or a per-price plan level basis. The SMF may also cache a number of satisfied trigger conditions before notifying the charging system, which may result in an efficient use of networking and/or processing resources. The unification of “offline” and “online” charging events, by virtue of the interface, may also result in an efficient use of networking and/or processing resources.
US10334115B2
A multiple dwelling house interphone system includes a centralized collective entrance machine for a visitor to call a dweller of any building, a dwelling unit master device provided to each dwelling unit for a dweller to respond to a call, and a centralized controller which controls communication between the centralized collective entrance machine and each dwelling unit master device. Each dwelling unit master device has an ID storage section storing its own ID. When the ID of the dwelling unit master device is inputted for calling the dweller, a centralized collective entrance machine control section of the centralized collective entrance machine first transmits an ID confirmation request signal to all the dwelling unit master devices and waits for a reply from the corresponding dwelling unit master device, and next, transmits a call signal to the dwelling unit master device that has returned a reply signal.
US10334105B1
A first call from a caller to a called party is forwarded to an agent at an answering service. A notification is received from the agent that a level of seriousness of the first call has become dire, and a second call is established between the agent and a crisis service having a crisis counselor that can provide assistance to the caller. The agent is connected into the second call only when the crisis counselor has acknowledged being available, and the second call is joined with the first call. The crisis counselor and the caller are allowed to speak directly by way of the joined calls, so that the crisis counselor can address the caller and attempt to convince same to avoid any activity that would be harmful thereto.
US10334099B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for sending a forked media stream of an electronic communication between a customer and an agent to an analysis system for a duration. Receiving analysis results obtained from one or more analytics performed on the forked media stream. Then, determining whether to perform one or more operations in response to the analysis results.
US10334094B1
Systems for and methods of delivering telephone calls using the combination of a data channel and a voice channel are disclosed. A data channel connection with the telephone handset may provide pre-call information used to set up incoming and outgoing calls which are ultimately connected using a voice channel. Use of the pre-call information may permit the same handset to be associated with multiple secondary telephone numbers from which calls appear to have been made and to which calls appear to have been placed.
US10334092B2
A mobile phone body for enclosing one or more mobile phone components is disclosed. The mobile phone body may include a face, a back side, and two lateral sides. The face may include a screen. The screen may be a touch screen. The back side may be contoured.
US10334081B2
An apparatus is provided. The apparatus comprises a processing system comprising: an ARINC 429 converter system; an Internet protocol (IP) suite; and an Ethernet driver; wherein the processing system is configured to be coupled to a communications management system and at least one IP radio; wherein the processing system converts data, from the communications management system, from an ARINC 429 protocol into a transport layer protocol, an IP and a Ethernet protocol; and wherein the processing system converts data, from the IP radio, from the Ethernet protocol, IP, and transport layer protocol to the ARINC 429 protocol.
US10334076B2
In a system for pairing a first device and a second device in a virtual reality environment, the first device may be a sending device, and the second device may be a receiving device. The sending device may transmit an electromagnetic signal that is received by the receiving device. The receiving device may process the electromagnetic signal to verify physical proximity of the receiving device and the transmitting device, and extract identification information related to the sending device for pairing. The receiving device may display one or more virtual pairing indicators to be manipulated to verify the user's intention to pair the first and second devices.
US10334070B2
The invention refers to a system for real-time resource consumption control in a distributed environment and a corresponding method, the system comprising: a multitude of server instances (Sx) having access to shared resources, whereby each request for a shared resource issued by a client application (CA) is handled by one of the server instances (Sx); a global resource consumption counter (G), representing the overall resource consumption of the multitude of server instances (Sx) at a given time; and a multitude of proxy servers (Lx), each proxy server comprising —a receiver module (R) for receiving resource consumption requests issued from a client application (CA), —a resource consumption decision module (Dm) for accepting or rejecting a resource consumption request, —a queue (Q) for collecting resource consumption requests that have been locally accepted by the respective proxy server (Lx), —a local resource consumption counter (L), representing the global resource consumption as seen by the respective proxy server (Lx), said local resource consumption counter (L) being updated every time a resource consumption request is accepted by the decision module (Dm), the updated value being provided in turn as an input to the decision module (Dm), and —a synchronization module (S) for synchronizing the global resource consumption counter (G) by interfacing with all other server instances (Sx).
US10334069B2
The disclosed embodiments relate to techniques for managing a local cache on a computing device that stores content items for an online content-management system. These techniques generally operate by gathering information that is available on the computing device (such as information about user actions, information about which applications are executing, and information about the location of the computing device) and using this information to identify relevant content items that are likely to be accessed in the near future. This enables the system to perform cache-management operations at the local cache to facilitate rapidly accessing the relevant content items through the local cache.
US10334068B2
A cloud-based computer system and architecture for managing and migrating through web-based content data and content applications from multiple content data sources or service providers in real time is disclosed. The cloud-based computing system and architecture of the present invention includes a log-in or master server that acts as a single point access and supports a single user interface. The single user interface is preferably an icon-based master web-page with a slide tool that allows a user to scroll or page through the content data and/or content applications from the multiple content data sources or service providers in real time from a logged in remote computer device.
US10334067B2
A computer implemented method of improving server coverage of a publish-subscribe cluster comprising using one or more hardware processors to execute one or more shared subscriptions hubs each adapted to retrieve shared subscriptions information from a cluster comprising multiple servers executing multiple messaging engines of a publish-subscribe service for forwarding messages to a plurality of subscribing clients, each message is associated with one or more of a plurality of topics, receive shared subscriptions requests for subscribing for one or more of the topics from distributed subscriptions client(s) applying shared subscriptions for the topic(s) through subscription group(s) comprising a subset of the subscribing clients, connect to preferred messaging engine(s) selected to improve server coverage of the subscription group(s) according to the shared subscriptions information to serve each of the plurality of shared subscriptions requests and forward messages associated with the topic(s) received from the selected messaging engine(s) to the subscription group(s).
US10334064B2
In one embodiment, a method includes receiving, from a client system of a first user of an online social network, a request for a user-list including one or more second users of the online social network. The method includes calculating, for each of the second users, a contact-score between the first user and the second user based on social interactions and non-social interactions between the users. The social interactions are interactions on the online social network visible to the first user based on privacy settings associated with the second user and the respective social interaction. The non-social interactions are interactions on a third-party application accessed by the online social network, shared based on a privacy setting associated with the third-party application. The method includes generating the user-list with references to second users having a contact-score above a threshold contact-score. The method includes providing instructions for displaying the user-list.
US10334061B2
In one embodiment, a method includes storing one or more content postings, where each content posting is associated with one or more first users and each content posting is associated with one or more geographic locations corresponding to accessing of the content posting. The method also includes selectively sending one or more of the content postings for display on an access device based on a past or present geographic location of the access device, where the access device is associated with a second user, and for each content posting selectively sent for display on the access device, one or more of the geographic locations associated with the accessing of the content posting being within a predefined proximity of the past or present geographic location of the access device is requisite to the content posting being sent for display on the access device.
US10334060B1
A system to determine a difference in a time zone of a user's computer accessing the Internet through an Internet Service Provider (“ISP”) server and the time zone of the ISP server including capturing from a clock of the user's computer the user's time zone, capturing the location of the ISP server, calculating a difference in the time zone of the user's computer and a time zone of the ISP server to determine a delta time zone number; and reporting the delta time zone number.
US10334053B2
An online social networking system receives user interactions with a content item from client devices of users of the social networking system. A public user interface displaying at least some of the received user interactions with the content item is provided for display on each of the client devices. A request to initiate a private session associated with the content item is received from a client device of a first user. The request identifies a subset of the users including the first user. User interactions with the content item from client devices of the subset of the users are received within the private session. A private user interface for interacting with the content item is provided for display on each of the client devices of the subset of the users. The private user interface displays the user interactions received within the private session.
US10334052B2
A computer-implemented method for negotiating the communication of groups of parameters between a server and a client includes sending a first request for a parameter negotiating session from the client to the server using HTTP, specifying the client's desired session timeout for the session in the first request, receiving at the client an XML-formatted message sent from the server via HTTP specifying whether the server is able to support the requested session, and sending from the client a second request with an XML-formatted message via HTTP for a group of parameters desired from the server, wherein the second message includes the client's desired destination address, the client's desired update period for receiving updated parameter data, identification of a UDP port of the client for receipt of updated parameter data from the server in a UDP datagram, and identifiers of parameters desired by the client.
US10334049B2
Methods for providing a highly assisted driving (HAD) service include: (a) transmitting telematics sensor data from a vehicle to a remote first server; (b) transmitting at least a portion of the telematics sensor data from the remote first server to a remote second server, wherein the remote second server is configured to execute a HAD application using received telematics sensor data, and wherein the HAD application is configured to output a HAD service result; and (c) transmitting the HAD service result from the remote second server to a client. Apparatuses for providing a HAD service are described.
US10334047B2
The present disclosure provides systems and methods for remote direct memory access (RDMA) with reduced latency. RDMA allows information to be transferred directly between memory buffers in networked devices without the need for substantial processing. While RDMA requires registration/deregistration for buffers that are not already preregistered, RDMA with reduced latency transfers information to intermediate buffers during registration/deregistration, utilizing time that would have ordinarily been wasted waiting for these processes to complete, and reducing the amount of information to transfer while the source buffer is registered. In this way the RDMA transaction may be completed more quickly. RDMA with reduced latency may be employed to expedite various information transactions. For example, RMDA with reduced latency may be utilized to stream information within a device, or may be used to transfer information for an information source external to the device directly to an application buffer.
US10334041B2
A network interface device (NID) interfaced with a host machine communicates with a local link of the host machine to obtain transaction-specific data relied upon by the host machine to be delivered to a destination by the NID according to a reliable message delivery protocol. The NID conducts communications over a network in response to obtaining of the transaction-specific data, with the network communications including execution of the reliable message delivery protocol independent of any operability of the host machine.
US10334040B2
In a non-transitory computer-readable storage medium having instructions embodied therein that when executed cause a computer system to perform a method of sharing information between pre-configured hyper-converged computing devices over a wide area network via a distributed peer-to-peer protocol. The method includes automatically discovering pre-configured hyper-converged computing devices in a local area network, and sharing information between pre-configured hyper-converged computing devices over a wide area network via a distributed peer-to-peer protocol such that there is no single point of failure for the sharing information between the pre-configured hyper-converged computing devices over the wide area network.
US10334035B2
A method for load balancing is provided based on a user behavior pattern. The user behavior pattern is generated from historical user data to predict next operations a user would perform. Further, the user behavior pattern is bound to resource consumption, and a user and resource type is linked by a weighted value. Load balancing strategies are employed according to the weighted value of the user other than using connection count.
US10334024B2
An electronic device includes: a processor; and a memory coupled to the processor, wherein the memory stores instructions that, when executed by the processor, cause the processor to: transmit a request, from a first module to a first external cloud, to receive data regarding a first electronic device in communication with the first external cloud; receive the data regarding the first electronic device from the first external cloud; store, in the memory, the data regarding the first electronic device as part of a representation of the first electronic device; receive data regarding a second electronic device from a second external cloud; and transmit a signal to the first external cloud in response to receiving the data regarding the second electronic device for controlling an operation of the first electronic device.
US10334015B2
A method for enhancing computer security is provided. The method may include receiving a first dataset including a first plurality of web sites and a second dataset including a second plurality of web sites. The second plurality of web sites may comprise whitelisted websites. The method may include executing a first set of instructions, the first set of instructions including accessing each of the first plurality of websites and, based on the accessing, assigning a confidence score to each of the websites. The method may also include executing a second set of instructions. The second set of instructions may include creating a third dataset including a third list of web sites having a URL that includes a predetermined term. The second set of instructions may also include removing from the third dataset the second plurality of websites to create a modified third dataset.
US10334012B2
Method and apparatus for managing an application display mode of an electronic device are disclosed. In one embodiment of the system for managing an application display mode of an electronic device, the system first detects user input of a display mode that designates a layout of a page. The system then transmits a request for the page and the display mode to the server. Upon receiving the page from the server, the system displays the page received from the server such that the page is displayed in accordance with the layout designated in the display mode.
US10334002B2
A device is provided. The device includes a processor, a screen, and a memory including an application configured to record, transmit, receive, play, display, and group visual messages. Visual messages include a video, a snapshot, a reference to the video or snapshot, a drawing, audio content, a reference to the drawing or audio content, and a timestamp, a time reference within the video, a Global Positioning System coordinate, a user ID, a participant ID, or a reference to the timestamp, GPS coordinate, user ID, and participant ID. The application displays and maintains drawings on the screen for an amount of time not related to a duration of a video. The video and snapshot are recorded as part of an original video or snapshot visual message, and the drawing and audio content are not embedded in the video or the snapshot and are recorded as part of the visual message.
US10333995B2
A method, computer program product, and computer system for monitoring, at a computing device, at least a portion of a collaboration session provided by one or more participants of the collaboration session. At least the portion of the collaboration session is analyzed to determine a recommendation associated with at least the portion of the collaboration session. A source for information associated with the recommendation is searched based upon, at least in part, analyzing at least the portion of the collaboration session. At least one participant of the one or more participants is presented the recommendation and the information associated with the recommendation.
US10333994B2
In one embodiment, a method includes: determining a plurality of candidate paths for a plurality of media streams, where each of the candidate paths is characterized by a first set of performance attributes and each of the plurality of media streams is characterized by a set of stream parameters; jointly determining a respective path from among the plurality of candidate paths that satisfies the set of stream parameters for each of the plurality of the media streams; and coordinating transmission of the plurality of media streams via the jointly determined respective path for each of the plurality of media streams. According to some implementations, the method is performed by a device with one or more processors and non-transitory memory.
US10333984B2
A specification of a target network environment including target devices is received. The specification includes an identity of each of the target devices and a compression feature requirement, a deduplication feature requirement, and an encryption feature requirement of the target network environment. A performance parameter corresponding to each of the requirements is computed based on the specification. Possible combinations of the target devices and enabled features in the target devices are determined to meet the specification. Each possible combination is compared to a knowledge base to determine a performance reduction for each of the enabled features based upon the performance parameters. A desired combination of the enabled features is determined from the possible combinations for each target device based upon the comparison. The desired combination includes a combination having a performance reduction that does not exceed a threshold value for data reduction in one or more enabled features.
US10333980B2
Established user habits in carrying multiple wirelessly detectable devices are used to provide or substantiate authentication. In some embodiments, simply detecting that expected devices are co-located within a limited spatial region is sufficient to establish that the devices are being carried by a single individual. In other embodiments, particularly where the potential for spoofing by multiple individuals is a concern, single-user possession of the devices may be confirmed by various corroborative techniques. This approach affords convenience to users, who may be working at a device that lacks the necessary modality (e.g., a fingerprint or vein reader) for strong authentication.
US10333979B1
A method of validating data in a multi-tenant network of a service provider may include storing a page in a network storage, where the page is associated with a tenant of the service provider. In response to a page request, the page may be served from the network storage to a computing device communicatively coupled to the multi-tenant network. The page in the network storage may be independently addressable using a uniform resource locator (URL). Data entered in at least one data field within the served page may be received. The received data may be validated by a validation service of the service provider, using a plurality of validation rules associated with the tenant. At least a portion of the plurality of validation rules may be based on the page stored in the network storage. Upon successful validation, the received data may be stored within the multi-tenant network.
US10333969B2
Embodiments provide system and methods for a DDoS service using a mix of mitigation systems (also called scrubbing centers) and non-mitigation systems. The non-mitigation systems are less expensive and thus can be placed at or near a customer's network resource (e.g., a computer, cluster of computers, or entire network). Under normal conditions, traffic for a customer's resource can go through a mitigation system or a non-mitigation system. When an attack is detected, traffic that would have otherwise gone through a non-mitigation system is re-routed to a mitigation system. Thus, the non-mitigation systems can be used to reduce latency and provide more efficient access to the customer's network resource during normal conditions. Since the non-mitigation servers are not equipped to respond to an attack, the non-mitigation systems are not used during an attack, thereby still providing protection to the customer network resource using the mitigation systems.
US10333968B2
A publish-subscribe network includes a network infrastructure configured to support the exchange of data. An intrusion detection system is coupled to the network infrastructure and configured to process signals received from that infrastructure in order to detect malicious attacks on the network infrastructure. The intrusion detection system includes an evaluator that generates a set of indicators based on the received signals. The evaluator models these indicators as stochastic processes, and then predicts an attack probability for each indicator based on a predicted future state of each such indicator. The evaluator combines the various attack probabilities and determines an overall attack level for the network infrastructure. Based on the attack level, the intrusion detection system dispatches a specific handler to prevent or mitigate attacks.
US10333964B1
A method involves receiving account registrations and identifying a group of account registrations where each account registration in the group of account registrations shares attributes. The method further involves identifying features of the group of account registrations, and based on the features, determining whether to block a set of accounts that is associated with the group of account registrations.
US10333963B2
A first vulnerability that is associated with one or more nodes of a network graph that represent one or more assets of a network infrastructure may be identified. Furthermore, a second vulnerability that is associated with one or more nodes of the network graph may be identified. A determination may be made as to whether the first vulnerability or the second vulnerability contributes more to a probability of a security breach associated with the network infrastructure. A notification may be provided to mitigate the vulnerability that contributes more to the probability of the security breach associated with the network infrastructure.
US10333962B1
Customers of a computing resource service provider may operate one or more computing resources provided by the computing resource service provider. In addition, the customers may implement security applications and/or devices using the one or more computing resources provided by the computing resource service provider. Operational information from customer operated computing resources may be correlated with operational information from computing resources operated by the computing resource service provider or other entities and correlated threat information may be generated. Anomalous activity may be detected based at least in part on the correlated threat information.
US10333961B2
Systems and methods may be used to prevent attacks on a malware detection system. A method may include modeling a time series of directed graphs using incoming binary files during training of a machine learning system and detecting, during a time-window of the dine series, an anomaly based on a directed graph of the time series of directed graphs. The method may include providing an alert that the anomaly has corrupted the machine learning system. The method may include preventing or remedying corruption of the machine learning system.
US10333948B2
Techniques for alerting and tagging using a malware analysis platform for threat intelligence made actionable are disclosed. In some embodiments, a system, process, and/or computer program product for alerting and tagging using a malware analysis platform for threat intelligence made actionable includes receiving a plurality of samples for performing automated malware analysis to generate log files based on the automated malware analysis; processing the log files to extract artifacts associated with the log files; determining whether a tag matches any of the plurality of samples based on the artifacts; and performing an action based on whether the tag matches any of the plurality of samples.
US10333937B2
A resource owner or administrator submits a request to a permissions management service to create a permissions grant which may include a listing of actions a user may perform on a resource. Accordingly, the permissions management service may create the permissions grant and use a private cryptographic key to digitally sign the created permissions grant. The permissions management service may transmit this digitally signed permissions grant, as well as a digital certificate comprising a public cryptographic key for validating the permissions grant, to a target resource. The target resource may use the public cryptographic key to validate the digital signature of the permissions grant and determine whether a user is authorized to perform one or more actions based at least in part on a request from the user to perform these one or more actions on the resource.
US10333936B2
Techniques are described for separating subdomains as part of a secure login process. For example the subdomains can correspond to an enterprise user or personal user accounts, or both. The login process involves responding to a login request with an assertion, such as for example a redirect based assertion, that includes an encrypted data structure with account and user information necessary for identification of the corresponding subdomain. The encrypted data structure includes browser-, IP address, and user-specific information to thwart a cross-site request forgery (CSRF) security vulnerability, among other things.
US10333933B2
To allow a third party system to more particularly identify sets of users for distributing content, an online system receives data from a third party system identifying users of the online system who have authorized communication with the third party system and stores information authorizing communication between the third party system and the users in user profiles associated with the user. The online system receives a request from the third party system to transmit a notification to online system users satisfying criteria specified by the request. User profiles including information authorizing communication between the third party system and online system users are identified by the online system, which selects a set of the identified user profiles associated with information satisfying the criteria specified by the request. The online system transmits the notification to client devices associated with users associated with the set of the identified user profiles.
US10333925B2
The disclosed embodiments include systems and methods for providing security tokens to cloud-based assets on demand. Operations performed in the disclosed embodiments include receiving a prompt from a cloud-based asset indicating that the cloud-based asset is seeking to communicate with an access-controlled resource, wherein the cloud-based asset lacks authorization to communicate with the access-controlled resource. Additionally, the operations include extracting information associated with the cloud-based asset by accessing a trusted cloud platform resource storing data associated with verified cloud-based assets, where the trusted cloud platform resource is separate from the cloud-based asset, and authenticating the cloud-based asset based on the extracted information. The operations also include generating a security token for the cloud-based asset, making a first portion of the security token available to be injected into the cloud-based asset, and responding to the prompt with a second portion of the security token.
US10333921B2
This disclosure includes utilizing a token cryptogram with a browser to facilitate a transaction. A webpage of a website is configured to accept a token cryptogram in fields of the webpage. The webpage of the website may indicate that it is token-aware and is configured to accept the token cryptograms.
US10333920B2
Example implementations involve cloud queue synchronization. An example implementation may involve a cloud server system receiving a request for a window of media items from a cloud queue of media items that is maintained by the cloud server system and sending, to a playback device, the requested window of media items from the cloud queue of media items. The playback device receives the requested window of media items from the cloud queue of media items and populates a local queue with the media items from the window. The playback device also receives, from a mobile device, a request to modify the local queue, and in response to the request to modify the local queue, modifies the local queue according to the request to modify the local queue.
US10333918B2
A device may authenticate a user for access to a plurality of target systems. The device may provide information identifying the plurality of target systems. The device may receive information associated with a request for access to one or more target systems of the plurality of target systems. The device may determine whether the request for access complies with one or more policies associated with the one or more target systems. The device may deny the request for access. Denying the request for access may include foregoing providing access to the one or more target systems. The device may receive information associated with an escalation of the request for access based on denying the request for access. The device may provide access to the one or more target systems based on the information associated with the escalation of the request for access.
US10333915B2
In one embodiment, a user identifier associated with a user account is received. Indications of a plurality of authentication mechanisms available for authentication are provided for display via the client device. Input indicating a number of authentication mechanisms to be used for authentication in association with the user account is received from the client device, wherein the input includes a selection of one or more of the plurality of authentication mechanisms. Information is stored in association with the user account, where the information indicates the number of authentication mechanisms to be used for authentication in association with the user account and indicates the selected authentication mechanisms. At least a subset of the selected authentication mechanisms are used for authentication in association with the user account.
US10333911B2
A system, method, and computer program product for booting a device are provided herein. The method includes the steps of synchronizing the device based on a downstream signal from a second device, receiving a software from the second device for booting on a reserved downstream channel of the second device, and storing the received first software in a volatile memory. The device does not pre-store the software in a non-volatile memory.
US10333906B2
A decoding device that includes a decoding engine implemented by a processor connected to a memory. The decoding engine is configured to receive an encoded signal. The encoding engine is further configured to determine an encoded signal byte value at an encoded signal byte location in the encoded signal. The encoded signal byte location is mapped to a key map byte location in a key map. The decoding engine is further configured to determine a key map byte value at the key map byte location in the key map. The decoding engine is further configured to set a decoded signal byte value with the encoded signal byte value at the decoded signal byte location in a decoded signal. The decoding engine is further configured to output the decoded signal.
US10333902B1
The example embodiments are directed to a system and method for managing blockchain transaction processing. In an example, the method includes one or more of receiving a message transmitted from a client device, the message including a predefined structural format for processing by a service providing computing system, determining a type of the message and detecting one or more sensitive fields within the message based on the determined type of the message, anonymizing values of the one or more sensitive fields within the message while leaving the predefined structural format intact, and transmitting the anonymized message including the one or more anonymized values with the predefined structural format remaining intact to the service providing computing system. The system can anonymize data from a private network before it is transmitted to a public service.
US10333893B2
Disclosed herein is an access point name (APN) access method including: (a) checking whether an APN server is accessible via a wireless network connected to a telematics device that is powered on when an amount of time during which an APN change alarm message can be received has elapsed; (b) checking whether an APN update is necessary using an administration APN pre-stored in the telematics device when the APN server is not accessed, and acquiring APN update data from the APN server when the APN server is accessed; and (c) transmitting and receiving data between the telematics device and a data server using the acquired APN update data.
US10333892B2
A network-traversal method includes: receiving an address information of a network device from a link server; generating a port number sequence composed of port values according to an external port number of the address information; and sending a link packet to an external network address of the address information in an order of the port values in the port number sequence until receiving an acknowledgement packet from the network device. At least one of the port values is related to the external port number. A part of the rest port values is/are generated gradually based on the external port number, and the others of the rest port values is/are generated randomly.
US10333891B2
In general, in one aspect, the disclosure describes a Universal Plug and Play (UPnP) Remote Access Server (RAS) to provide a communication channel between UPnP Remote Access Clients (RACs) connected thereto. The UPnP RAS maintains local discovery information for UPnP devices connected to a local network and remote discovery information for remote UPnP devices communicating therewith. The UPnP RAS provides the remote UPnP devices communicating therewith with the local discovery information and the remote discovery information. The remote discovery information is utilized by a first remote UPnP device to discover a second UPnP device and vice versa. After discovery, a first remote UPnP device can communicate with a second UPnP device and vice versa.
US10333888B2
A method of automatically assigning IP in a ship ad-hoc network includes (A) receiving a non-duplicate IP block from a terrestrial station by transmitting/receiving an IP request signal and an IP request response signal generated from a data link layer by one-hop ship stations able to perform direct transmission/reception with the terrestrial station; (B) allowing the one-hop ship stations receiving IP blocks to determine IPs thereof and to allocate IP blocks, as IP providers, to multi-hop ship stations able to perform indirect transmission/reception with the terrestrial station through ad-hoc communication when the multi-hop ship stations request the IP blocks; and (C) determining one of the IP providers to transmit an IP request signal such that the determined IP provider transmits an IP request response signal when multi-hop ship stations, to which the IP blocks are not allocated, receive MAC frames of plural IP providers in a channel allocation.
US10333882B2
Methods, apparatus, systems and articles of manufacture are disclosed to estimate demographics of users employing social media. An example method disclosed herein includes (1) identifying a social media message regarding an asset, the social media message associated with a user identifier associated with the user, (2) determining demographics associated with a group of people exposed to the asset, (3) associating the user identifier with the asset, and (4) repeating (1) to (3). The example method also includes (5) combining demographics associated with two or more different groups of people with which the user identifier is associated to estimate a demographic profile for the user.
US10333880B2
An approach for new recipient inclusion to e-mail chains. The approach determines inclusion authorizations for one or more include participants in a current e-mail chain distribution. Responsive to a determination that the one or more authorization results are passed, the approach creates one or more authorized include participants. The approach creates one or more participant notifications based, at least in part, on the one or more authorized include participants. The approach outputs an e-mail chain to the one or more authorized include participants, wherein outputting the email chain includes outputting the one or more participant notifications based, at least in part, on predetermined participant preferences of one or more current participants in the current email chain distribution. The approach creates a next e-mail chain distribution based, at least in part, on combining the one or more authorized include participants and the one or more current participants.
US10333871B1
Implementations disclose logged-out conversation invitations. A method includes receiving an indication of a content item to be shared by a sharing user with one or more recipient users, wherein the sharing user is not logged-in to a content sharing platform maintaining the content item, generating a token to represent a combination of the content item, information corresponding to a user device of the sharing user, information corresponding to one or more user devices of the one or more recipient users, and a conversation associated with the content item, and sending a link comprising the token to the one or more user devices of the one or more recipient users, the link providing access to the shared content item and an invitation to join the conversation by signing-in to the content sharing platform.
US10333870B2
Disclosed herein are system, method, and computer program product embodiments for providing presence-based communications in a controlled environment. In an embodiment, a presence management system monitors communication status information related to communication devices within a controlled facility as well as communication device external to the controlled facility. Communication statuses indicate the availability of users to receive certain types of communications, such as, for example, video conferencing, audio calls, and/or textual messages. In an embodiment, an inmate of the controlled environment can view communication statuses of external individuals. The presence management system informs the inmate of the availability of the external individuals and facilitates communications between the inmates and external individuals.
US10333865B2
An example method for transformation of Peripheral Component Interconnect Express (PCIe) compliant virtual devices in a server in a network environment is provided and includes receiving, during runtime of the server, a request to change a first configuration of a PCIe compliant virtual device to a different second configuration, identifying a bridge on a PCIe topology below which the virtual device is located, issuing a simulated secondary bus reset to the bridge, the virtual device being reconfigured according to the change in configuration after the simulated secondary bus reset is issued, re-enumerating below the bridge after the change in configuration completes without rebooting the server, and updating the PCI topology with the virtual device in the second configuration. A virtual interface card adapter traps the simulated secondary bus reset, removes the virtual device from the PCI topology, and reconfigures the virtual device from the first configuration to the second configuration.
US10333864B2
Embodiments of the present invention provide methods, computer program products, and systems for fulfilling a service chain request. Embodiments of the present invention can be used to collect network data of a plurality of instances of services and connections between the plurality of instances of services and redefine service chains to direct flow to an alternative instance of a service responsive to determining that an instance of a service in a service chain has become inaccessible. Embodiments of the present invention can be used to fulfill a service chain request and avoid one or more instances of services (and/or connections there between) that could cause a delay between transmitting data packets through the service chain.
US10333853B1
A system can provide a unified quality-of-service for multi-path label switching (MPLS) traffic. A single network device can be configured as an ingress label switch router, an egress label switch router or a label switching router for different label switching paths. The network device can support uniform deployment model, pipe deployment model or short-pipe deployment model in any configuration. A configurable scheduler priority map can be selected from multiple scheduler priority maps to generate a scheduler priority class which can be used to assign priority and resources for the packet.
US10333844B2
Embodiments of the present invention provide a routing method, a near field communication controller, a device host, and a terminal, where the method is used in a first terminal, the first terminal includes a device host DH, a near field communication controller NFCC, and at least one near field communication execution environment NFCEE. The method includes receiving, by the NFCC, a data frame sent by a second terminal and determining, by the NFCC, whether a default-NFCEE-based routing manner is used to search for a matched routing entry for the data frame. The method also includes if yes, determining, by the NFCC, a target NFCEE according to the default-NFCEE-based routing manner, so that the NFCC routes the data frame to the target NFCEE.
US10333838B2
The present disclosure relates to a frame transmission method and a frame transmission device. The data frame includes an arbitration field and a data field. The arbitration field includes a frame mode indication sub-field indicating a frame mode of the data frame, and the data field includes an instruction sub-field indicating instruction messages carried the data frame. A great deal of information may be obtained by the configuration of the present disclosure, and thus the transmission efficiency may be enhanced.
US10333836B2
Methods for assisting data forwarding during convergence in a multi-homed network are disclosed. In one aspect, a first leaf node is configured to detect when a second leaf node advertises a set of Ethernet segments which are local to the first leaf and advertise reachability information for the second leaf, indicating itself as a backup for the second leaf during convergence. A spine node that receives advertisement messages from such first and second leaf nodes programs its routing table to indicate the direct route to the second leaf as the primary path and the route to the second leaf via the first leaf as a backup path to forward encapsulated packets destined to the second leaf. Upon failure of the second leaf, when the spine node receives data packets destined to the second leaf, the spine node sends the packets to the first leaf instead of the second leaf.
US10333833B2
Systems, methods, and computer-readable media for providing network assurance. In some embodiments, a method can include receiving input used to identify an endpoint. At least one logical object associated with the endpoint of logical objects in a network environment is identified based on the input. A health of the at least one logical object associated with the endpoint is determined. Additionally, a health of the network environment with respect to the endpoint operating to provide services through the network environment is determined based on the determined health of the at least one logical object associated with the endpoint.
US10333815B2
A computer-implemented method for real-time detecting of abnormal network connections is presented. The computer-implemented method includes collecting network connection events from at least one agent connected to a network, recording, via a topology graph, normal states of network connections among hosts in the network, and recording, via a port graph, relationships established between host and destination ports of all network connections.
US10333813B1
A timer scheduler is used to track timeout values for network connections. A single hardware timer generates timeout values that can be tracked per connection in a linked list that is processed at set time intervals. All tracked connections can have a future timeout scheduled. Future timeout values can be stored in both a linked list and a connection state table that cross-reference each other. The linked list is traversed at predetermined intervals to determine which entries have timed out. For each entry that timed out, a second check is made against a timeout value in the connection state table. If timeout value within the connection state table indicates that a timeout occurred, then the network connection is terminated.
US10333812B2
Disclosed example methods for scheduling a computer-executable job include determining valid combinations of nodes and links from a network of nodes interconnected by links, the valid combinations of nodes and links having capability and capacity to complete the computer-executable job; determining, from the valid combinations of nodes and links, first combinations of nodes and links based on a total cost associated with execution of the computer-executable job on corresponding ones of the valid combinations of nodes and links; selecting one of the first combinations of nodes and links based on a load balancing status between the first combinations of nodes and links; and scheduling the computer-executable job to be executed by the one of the first combinations of nodes and links.
US10333801B2
Disclosed are various embodiments for an inventory application. Machine instances execute a monitoring service to determine the process names of applications executed in the machine instance. An inventory application identifies the applications executed on the machine instances as a function of data obtained from the monitoring services. Analytics reports can be generated from data embodying the identified applications.
US10333796B2
An optical network including a plurality of gateway nodes interconnected with a plurality of intermediate nodes with segments of fiber. The network includes a plurality of devices, such as reconfigurable optical add drop multiplexers, optimally placed at various nodes throughout the network. The device placement is optimized with an integer linear programming analysis considering span definition such that any given span involves some number of segments not exceeding a number of segments that would require wavelength regeneration, cost of placement of a device at a given node, cost of wavelength regeneration, and various parameters and constraints.
US10333795B2
The present invention dynamically optimizes computing resources allocated to a simulation task while it is running. It satisfies application-imposed constraints and enables the simulation application performing the simulation task to resolve inter-instance (including inter-server) dependencies inherent in executing the simulation task in a parallel processing or other HPC environment. An intermediary server platform, between the user of the simulation task and the hardware providers on which the simulation task is executed, includes a cluster service that provisions computing resources on hardware provider platforms, an application service that configures the simulation application in accordance with application-imposed constraints, an application monitoring service that monitors execution of the simulation task for computing resource change indicators (including computing resource utilization and application-specific information extracted from output files generated by the simulation application) as well as restart files, and a computing resource evaluation engine that determines when a change in computing resources is warranted.
US10333793B2
An apparatus controls discovery of nodes for a network fabric and accommodates communication among the nodes. The apparatus may be a controller operating as a first node on a network and having a processor connected to memory. The controller is communicatively connected to a second node that has a native network protocol. The memory stores computer readable software instructions that, when implemented by the processor, cause the controller to send a discovery data packet to the second node in the second node's native network protocol. The discovery data packet advertises controller status information to the second node for use in establishing a communications link between the controller and the second node in the network fabric.
US10333789B1
Methods and apparatus for client-directed placement of remotely configured service instances are described. One or more placement target options are selected for a client of a network-accessible service based on criteria such as service characteristics of the placement targets. The selected options, including a particular placement target that includes instance hosts configurable from remote control servers, are indicated programmatically to the client. A determination is made that a service instance is to be configured at the particular placement target on behalf of the client. A remote control server is configured to issue administrative commands to an instance host at the particular placement target to configure the service instance.
US10333787B2
Disclosed are systems, methods, and computer-readable media for assuring tenant forwarding in a network environment. Network assurance can be determined in layer 1, layer 2 and layer 3 of the networked environment including, internal-internal (e.g., inter-fabric) forwarding and internal-external (e.g., outside the fabric) forwarding in the networked environment. The network assurance can be performed using logical configurations, software configurations and/or hardware configurations.
US10333783B2
A data processing apparatus communicates with an external apparatus, using any of a plurality of communication manners including a first connection manner via a network and a second connection manner that is different from the first connection manner, searches for an external apparatus capable of executing a predetermined function, selects an external apparatus found in the search as a connection-target device, and controls such that, in a case where the selected external apparatus has been connected to previously and content data has been transmitted to the external apparatus previously, communication is performed with the external apparatus using the first connection manner, and controls such that, in a case where content data has not been transmitted to the external apparatus previously, communication is performed with the external apparatus using the second connection manner.
US10333780B2
A load balancing system that utilizes a dynamic method for updating a load balancer's pool of targets (e.g., a dynamic method for adding newly available targets to the pool of targets and/or removing from the pool of targets a target that is no longer accepting new connections). Advantageously, this dynamic method does not require periodic monitoring of each of the targets in the pool of targets.
US10333778B2
Disclosed are various embodiments for staging client devices that allow for multiple user access. A computing device retrieves a current version of the list of user profiles associated with the client device. The computing device determines that the current list of user profiles differs from a previous version of the list of user profiles associated with the client device. The computing device identifies a list of policies to be sent to a management component executing on the client device based at least in part on a determination that the current list of user profiles differs from the previous version, wherein the list of policies comprises at least one policy that is associated with at least one user profile included in the current list of user profiles that is absent from the previous version of the list of user profiles. The computing device then sends the list of policies to the management component executing on the client device.
US10333774B2
Provided is a method of controlling an image forming apparatus, the method including: periodically making an inquiry about an instruction to a management server; determining whether or not to display a notification indicating that a message has arrived, based on information about a registered time of the message acquired by the management server as a result of the inquiry, and information about a time when the message is displayed on the image forming apparatus; and controlling the notification indicating that a message has arrived to be displayed in a predetermined display area in accordance with at least a determination, in the determining, that the notification indicating that the message has arrived is displayed, and controlling not to display the notification indicating that the message has arrived in accordance with at least a determination, in the determining, that the notification indicating that the message has arrived is not displayed.
US10333772B2
Technologies for remote keyboard-video-mouse sessions can include failover mechanisms. In some embodiments, a system can establish a first remote keyboard-video-mouse session between a console application on the system and a first server application executed by a controller on a server. The first remote keyboard-video-mouse session can be established via a first network connection between the system and the controller. Next, the system can detect an error associated with the first remote keyboard-video-mouse session. In response to the error, the system can establish a second remote keyboard-video-mouse session between the console application and a second server application executed by an operating or a basic input/output program on the server. The second remote keyboard-video-mouse session can be established via a second network connection between the system and the second server application.
US10333767B2
Methods, systems, and media for media transmission and management are provided. In some implementations, a method for media content management is provided, the method comprising: receiving a portion of a media data stream from a first computing device prior to the first computing device processing the portion of the media data stream; processing the portion of the media data stream to identify an object of interest within the media data stream; determining an entity associated with the object of interest; associating a content item with the object of interest based on the determined entity; generating a first representation of the portion of the media data stream, wherein the first representation is associated with the content item; receiving a second representation of the media data stream from a second computing device; determining whether the second representation matches the first representation; and transmitting the content item associated with the first representation to the second computing device for placement within the media data stream in response to determining that the second representation matches the first representation.
US10333765B2
Methods and systems for I/Q mismatch calibration and compensation for wideband communication receivers may comprise receiving a plurality of radio frequency (RF) channels, downconverting the received plurality of received RF channels to baseband frequencies, determining and removing average in-phase (I) and quadrature (Q) gain and phase mismatch of the downconverted channels, determining a phase and amplitude tilt of the downconverted channels with removed average I and Q gain and phase mismatch, and compensating for said phase and amplitude tilt I and Q gain and phase mismatch of the downconverted channels. The determined phase tilt may be compensated utilizing a phase tilt correction filter, which may comprise one or more all-pass filters. The average I and Q gain and phase mismatch may be determined utilizing a blind source separation (BSS) estimation algorithm.
US10333764B1
A transmitter is provided to address transmitter non-idealities. The transmitter uses a series of envelope detectors to detect imbalances between an I branch and a Q branch of an I/Q modulator that is implemented as part of the transmitter's front end, and these detected imbalances may be compensated by pre-distorting digital baseband signals fed to the I branch and the Q branch. The transmitter may also use a series of envelope detectors to detect nonlinearities in one or more of the transmitter's amplification stages, and these detected nonlinearities may be compensated by modifying the baseband signals via a digital linearization pre-compensator. The transmitter may also support both implementations in either a time-switched or simultaneous manner, allowing for I/Q imbalances and nonlinearities to be addressed using a single transmitter design.
US10333759B2
A receiver for receiving data in a broadcast system comprises a broadcast receiver that receives via said broadcast system a receiver input data stream comprising a plurality of channel symbols represented by constellation points in a constellation diagram, a demodulator that demodulates said channel symbols into codewords, and a decoder that decodes said codewords into output data words. A redundancy calculator determines a required amount of redundancy data required for correct demodulation and decoding by use of the originally received channel symbol and additional redundancy data. A broadband request unit requests, if demodulation of a channel symbol and/or decoding of a codeword is erroneous or likely to fail, a required amount of redundancy data via a broadband system, that is received by a broadband receiver via said broadband system. Said demodulator and/or said decoder is configured to use said redundancy data for demodulation and decoding, respectively.
US10333741B2
Methods and systems are described for receiving signal elements corresponding to a first group of symbols of a vector signaling codeword over a first densely-routed wire group of a multi-wire bus at a first set of multi-input comparators (MICs), receiving signal elements corresponding to a second group of symbols of the vector signaling codeword over a second densely-routed wire group of the multi-wire bus at a second set of MICs, and receiving signal elements corresponding to the first and the second groups of symbols of the vector signaling codeword at a global MIC.
US10333724B2
The present disclosure provides a method, non-transitory computer-readable storage medium, and computer system that implement a latency monitoring and reporting service configured to collect and report latency of service transactions. In one embodiment, a chronicler object is generated and transmitted to a charging engine, where the chronicler object is configured to collect a set of time points as the chronicler object travels through one or more components of the charging engine. Upon return of the chronicler object, the set of time points is extracted from the chronicler object and added to one of a plurality of accumulator objects. Each accumulator object includes a plurality of sets of time points from a plurality of chronicler objects that are received during a reporting window. The plurality of sets of times points of each accumulator object is used to calculate the latency of service transactions.
US10333718B2
A device includes digital signature generation circuitry. The digital signature generation circuitry, in operation, generates a digital signature of a digital message by computing a first public curve point as a scalar product of a first secret integer key and a base point of an elliptic curve and applying a transform to data of the received digital message. The applying the transform to the data of the received digital message includes generating a second secret curve point as a scalar product of a second secret integer key and the base point of the elliptic curve, generating a modified secret integer nonce as a modular multiplication of the second secret integer and a secret integer nonce, generating a third curve point as a scalar product of the secret integer nonce and the second secret curve point and generating a signature component as a function of at least the modified secret nonce, the third curve point, and a hash value generated by applying a hash function to at least the data of the received digital message. The digital signature is generated based on the signature component.
US10333716B2
Systems and methods of the present invention provide for one or more server computers communicatively coupled to a network and configured to: identify, within a data store: a web page including a script tag; and a URL in the script tag referencing a location for a second server hosting a script file. The server computer(s) execute a request that accesses the script file and a signature file generated by a private key, associated with the script file, and stored on the second server computer. If the signature file contains a signature that cannot be authenticated using the public key associated with the private key, execution of the script tag is disabled, and a notification is generated.
US10333714B2
A face recognition based key generation apparatus controls a key generation model that is formed of a CNN and an RNN to be learned to generate a desired key having a consistent value by using sample facial images of a key owner and a PIN of the key owner as inputs, and the key generation model receives a facial image of the key owner and the PIN of the key owner, as inputs at a desired key generation time, and generates a key.
US10333712B2
A method for activating a mobile terminal token, comprising: a cloud authentication server generates a seed generation factor according to an activation request, and acquires a server seed secret key and saves the same according to the seed generation factor, and generates an activation code according to the seed generation factor, and generates an activation verification code and transmits the same to a mobile terminal, and encrypts the activation code using the activation verification code to acquire an encrypted activation code, and a cloud authentication management platform generates a two-dimensional code image according to the received encrypted activation code and transmits the same to a client for displaying, and the mobile terminal token acquires the encrypted activation code according to the acquired two-dimensional code image, and decrypts the encrypted activation code using the acquired activation verification code to obtain an activation code, and acquires the seed generation factor from the activation code, and acquires a token seed secret key according to the seed generation factor and saves the same. The present invention can activate the token when the mobile terminal is without network, ensuring the accuracy of the seed, thus improving the token security.
US10333706B2
A method and system of providing verification of information of a user relating to an attestation transaction is provided, and includes sending a request for information of the user, wherein the information has been previously attested to in an attestation transaction stored within a centralized or distributed ledger at an attestation address; receiving at a processor associated with a verifier the information of the user; sending a cryptographic challenge nonce; receiving at the processor associated with the verifier the cryptographic challenge nonce signed by the user's private key; verifying user identity with the cryptographic challenge nonce signed by the user's private key; deriving a public attest key by using the information of the user; deriving an attestation address using the public attest key; and verifying the existence of the attestation transaction at the attestation address in the centralized or distributed ledger.
US10333705B2
Methods and apparatus for providing authentication of information of a user are described. Upon validation of this information, a first hash function is applied to the user's information to create a hash. A public attest key is generated by combining the hash of the user's information with one or more public keys. An attestation address is generated based on the public attest key. A signed transaction which includes the attest key is communicated for storage in a centralized or distributed ledger at the attestation address.
US10333694B1
Systems and methods related to processing transaction verification operations in decentralized applications via a fixed pipeline hardware architecture are described herein. The fixed pipeline architecture may be included within a decoupled system architecture comprising a computer system configured to execute smart contracts and a physically separate hardware device configured to perform transaction verification operations. The computer system may be configured to maintain a read-only copy of a ledger shared by a plurality of nodes on a peer-to-peer network, and the hardware device may be configured to perform transaction verification operations. As such, the decoupled system architecture provides added security and privacy for the system and the ledger by preventing malicious smart contracts from accessing and/or updating the modifiable copy of the verified ledger.
US10333690B1
Methods, apparatus, and systems for calibration and correction of data communications over a multi-wire, multi-phase interface are disclosed. In particular, calibration is provided for data communication devices coupled to a 3-line interface. The calibration includes generating and transmitting a calibration pattern on the 3-line interface, where the generation of the pattern includes toggling two of three interface lines from one voltage level to another voltage level over a predetermined time interval. Furthermore, the generation of the pattern includes maintaining a remaining third interface line at a common mode voltage level over the predetermined time interval, wherein only a single transition occurs for the predetermined time interval. Calibration data may then be derived in a receiver device using the transmitted calibration pattern.
US10333684B2
The present invention provides a resource management method and system thereof. The resource management method includes: judging whether the variation degree of work state of a communication system will result in the change of resource management information of the communication system or not, if so, then the resource management information is re-collected, wherein the resource management information includes the state, the interference state among links and service stream information relating to each node in the communication system; and determining the resource allocation strategy of the communication system according to the resource management information.
US10333680B2
A method of measuring and then reporting Channel State Information (CSI) in a wireless communication system supporting an unlicensed band and an apparatus supporting the same are disclosed. A method of reporting CSI by a UE includes receiving transmission burst sequence information regarding each subframe from a BS, measuring CSI using one or more resources among a Common Reference Signal (CRS), CSI Reference Signal (CSI-RS), and CSI Interference Measurement (CSI-IM) resources in one or more consecutive subframes having the same transmission burst sequence information, and reporting the measured CSI.
US10333678B2
A time division duplex (TDD) scheduling interval communicating transmissions in a first direction may include one or more regions for communicating in a second direction, where the first direction is a transmit direction and the second direction is a receive direction, or vice versa. A radio frame may include TDD scheduling intervals with such regions and/or TDD scheduling intervals without such regions for wireless communication, and these TDD scheduling intervals may further be configured in accordance with different frame structure configurations, such as different scheduling interval lengths, subcarrier spacings or symbol durations.
US10333672B2
Aspects of the present disclosure relate to wireless communications and, more particularly, to semi-persistent configuration of reference signals (RSs), such as measurement reference signals (MRSs) for beam refinement. An example method generally includes transmitting, to a user equipment (UE), a reference symbol (RS) configuration, wherein transmitting the RS configuration is independent of activating RS training for the UE, transmitting, to the UE, a message indicating an activation of RS training subsequent to transmitting the RS configuration, transmitting RSs to the UE periodically based on the RS configuration, and receiving, from the UE, measurement reports based on the transmitted RS.
US10333668B2
Methods, systems, and devices are described for a system that supports wireless communication with a first set of devices using a first OFDM symbol duration associated with a first tone spacing (i.e., a first physical layer (PHY) configuration) and second set of devices using a PHY configuration associated with a second tone spacing. A base station may transmit a set of discovery reference signals (DRS) in a narrowband region of a primary channel of a carrier. The DRS may have the first PHY configuration and a secondary channel of the carrier may support communications using the second PHY configuration. The base station may transmit a first system information (SI) message for one set of devices using the first PHY configuration, and it may transmit a second SI message for another set of devices using the second PHY configuration.
US10333664B1
Systems and methods are described for selecting User Equipment(s) (UEs) for pairing in a cellular network. A channel orthogonality of one or more UEs may be determined at an Access Node (AN) for a condition. The one or more UEs may be inspected for a criteria. At least one of the one or more UEs whose data content meets the criteria may be scheduled with at least one other UE for Uplink (UL) Multi-User Multiple-Input-Multiple-Output (MU-MIMO) pairing.
US10333663B2
When a terminal aggregates three downlink carriers by using the carrier aggregation (CA) of the LTE-A technology and transmits an uplink signal on two uplink carriers while aggregating two uplink carriers, a harmonic component and an intermodulation distortion (IMD) component are generated, thereby influencing a downlink band of the terminal itself. Therefore, the present specification presents a scheme therefor.
US10333661B2
A base station receives from a wireless device channel state information (CSI) fields of a secondary cell via a first cell of a plurality of cells. The base station transmits in a first subframe a message. The message comprises one or more configuration parameters indicating that CSI transmission resources for the secondary cell is via a second cell different from the first cell. The base station stops, in a second subframe occurring a first quantity of subframes after the first subframe, reception of CSI fields of the secondary cell via the first cell from the wireless device. The base station starts, in a third subframe occurring a second quantity of subframes after the first subframe, reception of CSI fields of the secondary cell via the second cell from the wireless device, wherein the second quantity is greater than the first quantity.
US10333658B2
Hybrid Automatic Repeat Request (HARQ) operation in an asymmetric multicarrier communication network environment is performed, in one embodiment, by receiving resource allocation information from a base station, transmitting the HARQ packet to the base station in a transmit time interval (TTI) corresponding a first or second partition of an uplink allocation interval on a second carrier, and receiving HARQ feedback information corresponding to a previous HARQ packet transmission. A TTI in a subsequent uplink allocation interval is determined based on the partition of the uplink allocation interval in which the HARQ packet is transmitted if the HARQ feedback information indicates negative acknowledgement. The HARQ packet is transmitted to the base station in the determined transmit time interval of the subsequent uplink allocation interval on the second carrier.
US10333654B2
The present invention relates to 5G or pre-5G communication system for supporting a higher data transmission rate after 4G communication system such as LTE. The present invention provides a method and a device for executing a hybrid automatic repeat request (HARQ) through a channel in an unlicensed frequency band. More particularly, a method for executing a HARQ through a channel in an unlicensed frequency band in a terminal of a communication system comprises the procedures of: requesting uplink scheduling; if a first uplink (UL) grant with respect to the scheduling request is received, sensing whether or not a channel is clear; transmitting first uplink data on the basis of whether or not the channel is clear; if negative acknowledge (NACK) with respect to the first uplink grant and a second uplink grant are received, sensing whether or not the channel is clear; and transmitting second uplink data and an indicator, which indicates whether or not the second uplink data transmission is a retransmission, on the basis of whether or not the channel is clear, wherein the indicator, which indicates for retransmission, is determined on the basis of a reference signal (RS) detection failure indicator, of a base station, which is transmitted from the base station together with the second uplink grant.
US10333648B1
A method is provided in one example embodiment that includes measuring a delay between a transmitter and a receiver in a network environment, where the receiver is associated with a buffer. A minimum absorption buffer size for lossless transmission to a queue may be determined based on the delay and a transmission bandwidth, and buffer units for the queue can be allocated based on the minimum absorption buffer size. The transmitter may also be rate-limited if the minimum absorption buffer size exceeds available storage of the buffer. In other embodiments, buffer units can be reclaimed if the available buffer storage exceeds the minimum absorption buffer size.
US10333641B2
A receiver node for use in a digital broadcast system, comprising a receiver configured to receive a signal containing a service encoded with an error correcting code for decoding and wherein said receiver is further configured to ignore the signal during an ignore period, the node configured to use said error correcting code and the encoded service received outside the ignore period to reconstruct the part of the service ignored by the receiver.
US10333637B2
A method for stably operating an FDR mode by a terminal in a wireless communication system supporting the full-duplex radio (FDR) mode comprises the steps of: if a residual self-interference signal is changed to a predetermined threshold or higher in a terminal, transmitting information about the changed residual self-interference signal to a base station; and receiving from the base station a downlink signal on the basis of a modulation and coding scheme (MCS) level that corresponds to the information about the changed residual self-interference signal.
US10333631B2
The present invention provides to a test arrangement and a test method for testing a device under test. In particular, a test arrangement is provided com-prising a device for vectorial analysis of measurement signals and at least one further device for analyzing only the power of radio frequency signals related to the de-vice under test. By simultaneously operating the device for vectorial analysis and the device for analyzing the power, an efficient testing can be achieved.
US10333630B2
An apparatus for reducing a magnetic coupling between a first electronic circuit and a second electronic circuit is provided. The apparatus includes a conductor loop enclosing the first electronic circuit or the second electronic circuit, and a tuning element coupled to the conductor loop. The conductor loop and the tuning element form a resonant circuit, wherein the tuning element is configured to adjust a resonance frequency of the resonant circuit to a frequency related to a frequency of a signal processed by the second electronic circuit.
US10333629B2
An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
US10333623B1
An optical transceiver including a photonic integrated circuit component, an electric integrated circuit component and an insulating encapsulant is provided. The photonic integrated circuit component includes at least one optical input/output portion configured to transmit and receive optical signal. The electric integrated circuit component is disposed on and electrically connected to the photonic integrated circuit component. The insulating encapsulant covers the at least one optical input/output portion of the photonic integrated circuit component. The insulating encapsulant laterally encapsulates the electric integrated circuit component. The insulating encapsulant is optically transparent to the optical signal.
US10333621B2
We disclose an optical transport system configured to reduce nonlinear signal distortions using an electronic phase rotation, the phase value of which is determined using pre-filtering, e.g., via a low-pass filter, of the digital samples representing an optical communication signal prior to applying a squaring operation to the digital samples. In some embodiments, the phase value used in the electronic phase rotation can be determined using double filtering of the digital samples that, in addition to the pre-filtering, employs post-filtering, e.g., via another low-pass filter, of the digital samples generated by the squaring operation. The electronic phase rotation can be implemented as part of a backward-propagation algorithm that, in addition to reducing the nonlinear signal distortions, provides at least partial dispersion compensation. In various embodiments, the corresponding backward-propagation module can be incorporated into the transmitter's digital signal processor (DSP) or the receiver's DSP.
US10333613B2
The present disclosure relates to health monitoring and maintenance of mobile platforms such as aircraft. In particular, onboard apparatus and methods and also ground-based apparatus and methods that cooperate in assisting with the maintenance of mobile platforms by facilitating diagnosis of events detected onboard mobile platforms while such mobile platforms are in operation (e.g., transit, flight) are disclosed. In various aspects, the present disclosure discloses apparatus and methods for handling and reporting the detection of events onboard mobile platforms, reporting predefined additional information associated with the event upon request from a ground facility, identifying one or more potential causes for the detected event and determining the occurrence probability for each potential cause identified.
US10333600B2
An antenna port mapping method and apparatus, where the method includes performing first weighted processing and second weighted processing separately on first multichannel signal to be sent in a first polarization direction, and forming two beams in the first polarization direction after an antenna array radiates the processed first multichannel signal; and performing third weighted processing and fourth weighted processing separately on second multichannel signal to be sent in a second polarization direction, and forming two beams in the second polarization direction after the antenna array radiates the processed second multichannel signal. The method implements mapping of the antenna array to four antenna ports, thereby extending an application scenario of antenna port mapping.
US10333594B2
A radio link setup method performed by a first communication node constituting a wireless communication network may comprise transmitting a first master discovery signal including a first sector identifier and a first beam index of the first communication node to a second communication node by using a master sector among a plurality of sectors of the first communication node; receiving a first slave discovery signal including a second sector identifier and a second beam index of the second communication node receiving the first master discovery signal; in response to the first slave discovery signal, transmitting a feedback message including the second sector identifier and the second beam index to the second communication node; and determining a beam for transmission and reception with the second communication node based on the first sector identifier, the first beam index, the second sector identifier, and the second beam index.
US10333593B2
Methods and apparatuses are described for communicating primary signals over a high-speed primary channel, the primary signals having a beam pattern having a full lobe at a center of an axis of propagation and communicating auxiliary signals over a low-speed auxiliary channel, the auxiliary signals having a decoupled beam pattern having a null at the center of axis of propagation, the high-speed primary channel and low-speed auxiliary channel operating in full duplex.
US10333581B2
A method for a FDR scheme-using communication device transmitting reference signals for estimating a channel of a non-linear self-interference signal comprises the step of transmitting, on a specific symbol of a corresponding subframe, reference signals for estimating the channel of the non-linear self-interference signal, wherein a sequence mapped to the reference signals is a sequence generated in a frequency domain by being discrete Fourier transform (DFT)-converted, and the generated sequence may be mapped, on the frequency domain, to a RE for the reference signals.
US10333578B2
A device includes a switching unit including N input ports and M output ports, wherein N≥M≥2. The switching unit is configured to selectively interconnect each of the M output ports with a different one of the N input ports. The device further includes M attenuators, wherein each of the M attenuators is electrically coupled to a different one of the M output ports of the switching unit.
US10333571B1
A signal receiving apparatus includes a clock and data recovery (CDR) circuit, a first sampler, and at least one deskew circuit. The CDR circuit receives a first signal through a first lane of the signal receiving apparatus and decodes the first signal to extract a first clock signal from the first signal. The CDR circuit provides the first clock signal to the first sampler and the least one deskew circuit. The first sampler receives the first signal through the first lane of the signal receiving apparatus. The first sampler samples the first signal based on the first clock signal to generate a first output signal. The at least one deskew circuit receives a second signal through at least one second lane of the signal receiving apparatus and adjusts a phase skew between the first clock signal and the second signal so as to generate a second output signal.
US10333561B2
A method includes: generating a trellis; generating one or more predicted symbols using a first non-linear model; computing and saving two or more branch metrics using a priori log-likelihood ratio (LLR) information, a channel observation, and the one or more predicted symbols; if alpha forward recursion has not yet completed, generating alpha forward recursion state metrics using a second non-linear model; if beta backward recursion has not yet completed, generating beta backward recursion state metrics using a third non-linear model; if sigma forward recursion has not yet completed, generating sigma forward recursion state metrics using the branch metrics, the alpha state metrics, and the beta backward recursion state metrics; generating extrinsic information comprising a difference of a posteriori LLR information and the a priori LLR information; computing and feeding back the a priori LLR information; and calculating the a posteriori LLR information.
US10333559B2
A hybrid decoding method and a gigabit Ethernet receiver using the same are provided. The hybrid decoding method and the gigabit Ethernet receiver detect and determine error propagation due to burst interference in a currently used main P-tap parallel decision feedback decoder, decode an Ethernet data stream using a trellis coded modulation (TCM) decoder, and determine a follow-up main decoding algorithm according to the decoded results of the two decoders in the same time interval to effectively prevent error propagation due to burst interference.
US10333541B1
A novel non-uniform sampling technique for a burst type signal. The analog signal is digitized with high sampling rate to maintain harmonics at higher frequencies and consequently the integrity of the analog signal. Then by using non-uniform sampling technique the most significant samples are selected for further processing which results in overall cost and power consumption reduction.
US10333540B2
An oscilloscope comprises a first channel that includes a first channel physical input adapted to receive a first input signal, and a first channel digitizer connectable to the first channel physical input. The oscilloscope comprises a second channel that includes a second channel physical input adapted to receive a second input signal, and a second channel digitizer connected to the second channel physical input. The oscilloscope comprises a switch to change the first channel digitizer from connecting to the first channel physical input, to connecting to the second channel physical input. The oscilloscope includes a combiner to combine an output of the first channel digitizer and an output of the second channel digitizer, when a high bandwidth mode is activated, to generate an output that has a bandwidth of frequency content that exceeds a bandwidth of the first digitizer and exceeds a bandwidth of the second channel digitizer.
US10333535B1
An integrated circuit includes a signal network and a phase detector circuit. The signal network includes an adjustable delay circuit. The adjustable delay circuit is coupled at an intersection in the signal network between branches of the signal network. The signal network generates a first signal at a first leaf node of the signal network in response to a second signal. The signal network generates a third signal at a second leaf node of the signal network in response to the second signal. The phase detector circuit compares phases of the first and third signals to generate a phase detection signal. The adjustable delay circuit adjusts a delay provided to the first signal relative to the second signal to reduce a skew between the first and third signals based on the phase detection signal indicating that the first and third signals have the skew.
US10333534B1
Apparatuses and methods for providing frequency divided clocks are described. An example apparatus includes a first circuit configured to provide a first intermediate clock responsive, at least in part, to a first input clock, the first intermediate clock being lower in frequency than the first input clock and further includes a second circuit configured to provide a second intermediate clock and a third intermediate clock responsive, at least in part, to a second input clock, the second intermediate clock being complementary to the third intermediate clock and lower in frequency than the second input clock. The apparatus further includes a third circuit configured to select and provide as an output clock one of the second and third intermediate clocks responsive, at least in part, to the first and second intermediate clocks.
US10333524B1
Devices and methods are presented for supplying logic gate signals with a data-independent delay. The method provides a logic gate comprising a pull-up network connected to a pull-down network. The method supplies binary level digital data input signals to the pull-up network and pull-down network, which may be either single-ended or complementary. The pull-up network and pull-down network regulate current through the logic gate with a delay and impedance independent of the data signals. As a result, the logic gate supplies binary level digital logic output signals in response to the data input signals, with a uniform delay. For example, the logic gates may be one of the following: NOR gate, NAND gate, AND gate, or OR gate.
US10333517B2
The invention relates to an optoelectronic sensor for monitoring a monitored zone. The sensor comprises a main light transmitter for transmitting sensing light signals that propagate through a protective screen into the monitored zone; a main light receiver for receiving light that emanates from the monitored zone; and a control unit for controlling the sensor. The sensor is configured in this respect to carry out a contamination recognition in which the degree of contamination of the protective screen is determined by means of a measured contamination value. The sensor in accordance with the invention is characterized in that the control unit is adapted to recognize the approach of a hand and/or of a finger toward the protective screen with reference to the contamination recognition and to output an action signal on the recognition of the hand and/or of the finger.
US10333512B2
Relays can be used in a variety of applications that use a smaller signal to control a higher power load. Some example loads include motors, stadium lighting and the like. Mechanical relays consist of a coil controlling a magnet that moves electrical contacts. Solid state relays can offer advantages such as lower power consumption and higher reliability than mechanical relays. However, using a solid state relay in a system designed for a mechanical relay can require some significant changes to the system. This disclosure presents a device, a system and technique to operate a solid state relay (SSR) in applications that use mechanical relays while minimizing the need for potentially costly modifications.
US10333511B2
An integrated circuit (IC) including a first power-on reset (POR) circuit and a second POR circuit is disclosed. The first POR circuit is configured to enable the second POR circuit when a supply voltage initially exceeds a first threshold voltage as the supply voltage is being applied to the IC. The second POR circuit is configured to activate a first section of circuitry when the second POR circuit is enabled by the first POR circuit and the supply voltage initially exceeds a second threshold voltage as the supply voltage is being applied to the IC. Since a POR threshold voltage can affect current drain and/or operational functions of an IC, having the first POR circuit configured to enable the second POR circuit and having the second POR circuit configured to activate the first section of the main circuitry allows the IC to operate properly while reducing current drain.
US10333505B2
A circuit in a physical unit (PHY) is disclosed, the circuit comprising two trios and a combo wire therebetween, wherein each of said trios includes three wires, and wherein said combo wire is configurable as a signal, floating, or any dc voltage, furthermore, a Quad-IO block is designed for transmit data in two D-PHY lanes with the combo wire configured as a signal wire or a C-PHY trio with the combo wire configured as a shielding wire, such that the same Quad-IO block can be instantiated multiple times in a physical unit for meeting different bandwidth requirements as well as for placing pads along a same direction for preventing performance difference between D-PHY lanes or C-PHY trios.
US10333500B1
A circuit includes a latch configured to update a stored state of the latch in response to an input data signal and a pulsed clock signal. The circuit includes a pulse generator configured to generate the pulsed clock signal based on an input clock signal, the input data signal, and a feedback signal indicative of a stored state of the latch. The pulse generator may be configured to generate a pulse enable signal based on the input data signal, the input clock signal, and the feedback signal. The pulsed clock signal may be based on the pulse enable signal and the input clock signal. The pulse generator may generate the pulsed clock signal to have a pulse of a first signal level in response to an indication that the stored state of the latch needs to change and generates the pulsed clock signal to have a second signal level, otherwise.
US10333496B2
There is provided a method, including obtaining information indicating at least one reference characteristic; obtaining input data, the input data relating to the output of the tunable filter; determining, based on the input data, at least one characteristic of the tunable filter; upon detecting that the at least one determined characteristic does not match with the at least one reference characteristic, determining tuning instructions for the tunable filter; and applying the tuning instructions in adjusting the tunable filter.
US10333492B2
A delay compensation apparatus is provided, where a surface acoustic wave component is used as a main delay component for delay compensation. A size of the surface acoustic wave component is relatively small. Therefore, the delay compensation apparatus provided in embodiments of the present invention features a relatively small size and a relatively high device integration level.
US10333491B2
An oscillator includes a package having a first side, a second side, a third side, and a fourth side, a resonator and an oscillation circuit disposed in the package, an output terminal arranged along the first side of the package, and outputting a clock signal generated by the oscillation circuit, and a control terminal arranged along the second side of the package, and supplied with a digital control signal adapted to update an operation state of the oscillation circuit.
US10333489B2
A crystal unit includes an AT-cut crystal element and a container. The AT-cut crystal element has an approximately rectangular planar shape. The AT-cut crystal element includes a first inclined portion, second inclined portions, and a first secured portion. The first inclined portion is inclined such that the crystal element decreases in thickness from a proximity of the first side to the first side. The second inclined portions are disposed on respective both ends of the first side, the second inclined portions being formed integrally with the first inclined portion. The second inclined portions are inclined gentler than the first inclined portion. The first secured portion and a second secured portion are formed integrally with the second inclined portion. The first secured portion and the second secured portion each project out from the first side to outside the crystal element to be used for securing with the securing members.
US10333481B2
According to one mode of the inventive concept, an amplification device includes a first amplifier configured to amplify an input multi-band signal to a first level, a separating unit configured to separate the multi-band signal having the first level into a first band signal and a second band signal, and a second amplifier configured to amplify the second band signal to a second level.
US10333473B1
Systems and methods are provided for improved stability of audio amplifiers that incorporate external speaker connectivity. In one example, a system includes an audio amplifier circuit comprising two or more amplifier stages and a stability resistor and configured to receive an audio input signal, the audio amplifier circuit configured for at least two modes of operation, a first mode having a high input transconductance and the stability resistor is coupled to an output of the audio amplifier circuit, and a second mode having a lower input transconductance and the stability resistor is decoupled from the output of the audio amplifier circuit. The system further includes an amplitude detection circuit configured to provide a signal mode detection signal, an amplifier switching circuit configured to adjust a variable input transconductance of at least one of the amplifier stages, and a load switching circuit configured to couple and decouple the stability resistor at the output of the audio amplifier circuit.
US10333472B2
A receiver has a differential transimpedance amplifier (4) with two inputs and two outputs. The differential transimpedance amplifier (4) provides a differential output and this is peak-detected (15, 16) to provide amplitude reference signals. The differential transimpedance amplifier output and the amplitude reference signals are fed to a differential summing amplifier (10), which provides a fully differential signal to a comparator, or to an automatic gain control circuit (5) to regulate the differential transimpedance amplifier gain. The differential summing amplifier (10) output is a fully differential signal, thereby having lower distortion for DC and burst mode receiver applications.
US10333466B2
A multi-order wave voltage controlled oscillator (VCO) includes a power impedance matching unit, a signal transmitting unit, a harmonic wave eliminating unit and an oscillation frequency adjusting unit. The power impedance matching unit includes an input end, an output end and a first transmission line between the input end and the output end. The first transmission line is a ¼-wavelength transmission line based on a wavelength of an output harmonic wave. The signal transmitting unit includes multiple upper inductor electrically connected to the output end and multiple lower inductors electrically connected to a ground end. The harmonic wave eliminating unit includes multiple transistors electrically connected to the signal transmitting unit and each having a drain electrically connected to a gate of the adjacent transistor to form a multi-order ring loop. The oscillation frequency adjusting unit includes multiple varactors.
US10333464B2
There is disclosed herein integrated circuitry comprising a clock path for carrying a clock signal from a clock source to a circuit block, the circuit block being operable based on the clock signal. Clock buffer circuitry is provided along the clock path for buffering the clock signal. A tuneable inductance is connected to the clock path. A capacitor is connected to the clock path so as to form an AC coupling capacitor connected in series along the path, and is implemented between metal layers of the integrated circuitry.
US10333460B2
An automated solar panel cleaning system includes a pressure driven motor secured to a body. The motor includes cleaning means, guide members, driving means and a torque transfer member which mechanically communicates with the motor, the driving means and the cleaning means. When pressurized fluid flows through the motor inlet, the motor is configured to drive the torque transfer member, which is configured to drive the driving means the cleaning means.
US10333452B2
The present disclosure provides a control apparatus for sensing overcurrent of a DC motor of a vehicle. The control apparatus may include: a microcomputer configured to convert a pulse width modulation (PWM) signal into a digital signal for controlling the DC motor; a half-bridge driver configured to control switching of the DC motor; a regulator configured to supply power; and a noise removal filter. The microcomputer is configured to measure a voltage at an input of the half-bridge driver, compare a difference between on-voltage and off-voltage during each of PWM period with a predetermined threshold, and stop the DC motor when the difference exceeds the predetermined threshold a predetermined number of times.
US10333450B2
Systems and methods for controlling the operating speed and the torque of an electric motor using an operational model are described. An operational model for the electric motor, including a plot of engine performance parameters, is used for reference, and a most efficient output path, which may pass through an optimal operation region in the operational model, is selected. The most efficient output path may be determined, for example, according to locations of a current output state and a to-be-reached target state in the operational model, enabling the operating state of the motor to reach the target state from the current operating state. By selecting a more efficient output path, the operating efficiency of the motor may be optimized, the life of a battery improved and/or the operating mileage of the vehicle may be increased, without significantly reducing the driving experience.
US10333448B2
An electric motor control system of a vehicle includes a current command module configured to, based on a motor torque request for an electric motor of the vehicle, generate a first d-axis current command for the electric motor and a first q-axis current command for the electric motor. An adjustment module is configured to, based on a speed of a rotor of the electric motor and the motor torque request, selectively determine at least one of a d-axis current adjustment and a q-axis current adjustment based on a temperature of the rotor of the electric motor. An adjusting module is configured to produce a second d-axis current command for the electric motor by adjusting the first d-axis current command based on the d-axis current adjustment and to produce a second q-axis current command for the electric motor by adjusting the first q-axis current command based on the q-axis current adjustment.
US10333441B2
A method for regulating a speed of an electric motor of a power tool, the speed of the electric motor being established as a function of an actuation of a control device, the control device being actuated in such a way that a speed is requested which is less than a maximum speed, the speed being set in such a way that, in a first speed range upon an increase of the torque output by the electric motor, the speed decreases with a first negative slope, the speed being set in a second speed range in such a way that the speed proceeds with a second slope upon an increase of the output torque, the second slope being greater than the first slope when considered mathematically.
US10333439B2
At least one example embodiment discloses a method of estimating a position of a rotor in a motor. The method includes obtaining a current regulation quality index based on a current command and a measured current, determining an estimated position of the rotor based on the current regulation quality index and position estimation data and controlling the motor based on the estimated position of the rotor.
US10333435B2
A motor control module provides control of a plurality of different motor types, such as a 1-phase DC Brush motor, a 3-phase brushless DC motor, and a 2-phase step motor. The module includes a digital amplifier that is configurable to drive the plurality of different motor types. A motor control unit, coupled to the digital amplifier, controls a motor type driven by the digital amplifier via a command signal to the digital amplifier. The motor control unit also monitors status information about the motor control module, including status information about the digital amplifier. A motor coil interface is coupled to the digital amplifier and configured to connect with the plurality of different motor types.
US10333430B2
A generator for converting mechanical energy or hydropower or wind energy into electrical energy is disclosed. The generator includes a first member and a second member in contact with the first member to generate triboelectric charges. The second member rolls against the first member to generate a flow of electrons between two electrodes. Another embodiment of the generator includes two electrodes, and a member in contact with the two electrodes to generate triboelectric charges. The member rolls against the electrodes to generate a flow of electrons between the two electrodes.
US10333411B2
There is disclosed a controller configured to control a synchronous rectification MOSFET having a drain, a source and a gate; the controller comprising a regulator configured to regulate a voltage between the drain and the source to a first regulation voltage, and a gate charger operable during a turn-on phase of the synchronous rectification MOSFET operation and configured to regulate a voltage between the drain and the source to a second regulation voltage having a larger absolute value than the absolute value of the first regulation voltage, wherein the gate charger is further configured to, when in operation, disable the regulator. Also disclosed is a switched mode power converter comprising such a synchronous rectification MOSFET, and a method for controlling such a synchronous rectification MOSFET.
US10333406B2
An electric power converter includes a chopper circuit, a DC-DC converter coupled to an output of the chopper circuit, a first transformer including a first primary coil and a first secondary coil, a second transformer including a second primary coil and a second secondary coil, a first capacitor coupled between an output of the DC-DC converter and the first primary coil, a second capacitor coupled between the output of the DC-DC converter and the second primary coil, a first rectifier circuit coupled to the first secondary coil, and a second rectifier circuit coupled to the second secondary coil. A first output voltage of the first rectifier circuit is adjusted by adjusting an output voltage of the chopper circuit, and a second output voltage of the second rectifier circuit is adjusted by adjusting a powering time during one switching period of the DC-DC converter.
US10333397B2
A charge pump includes boosting circuits cascade coupled between first and second nodes, wherein each boosting circuit is operable in both a positive voltage boosting mode to positively boost voltage and a negative voltage boosting mode to negatively boost voltage. A first switching circuit selectively applies a first voltage to one of the cascaded boosting circuits in response to a first logic state of a periodic enable signal, with the cascaded boosting circuits operating in the positive voltage boosting mode to produce a high positive voltage at the second node. A second switching circuit selectively applies a second voltage to another of the cascaded boosting circuits in response to a second logic state of the periodic enable signal, with the cascaded boosting circuits operating in the negative voltage boosting mode to produce a high negative voltage at the first node. Simultaneous output of the positive and negative voltages is made.
US10333385B2
The present invention concerns a method for controlling the operation of a multi-die power module composed of at least two dies connected in parallel. The method comprises the steps of: —obtaining the current flowing in the multi-die power module, —obtaining a loss profile that is related to the dies of the multi-die power module, —estimating from the measured current flowing in the multi-die power module, the losses of one die when no die is passivated, when the die is passivated, and when at least one other die is passivated, —determining if and which die has to be passivated from the estimated losses and from the loss profile—passivating the die which has to be passivated if a die has to be passivated.
US10333380B2
An electronic device is provided. The electronic device includes a plurality of expansion connector modules, a power supply path switch circuit, a system load and a controller. The power supply path switch circuit includes a plurality of input ends connected to output ends of expansion connector modules respectively. The system load is coupled to the power supply path switch circuit. The controller is coupled to the expansion connector module and the power supply path switch circuit. The controller determines whether a first power supply source is coupled to one of the expansion connector modules through the expansion connector modules. When the first power supply source is connected to the one of the expansion connector modules, the controller detects the power of the first power supply source via the expansion connector module connected to the first power supply source. Then, the controller adjusts a power supply direction between the expansion connector module connected to the first power supply source and the system load according to the power of the first power supply source.
US10333379B2
Some embodiments include apparatuses and methods using the apparatuses. One of the apparatuses includes a first power supply node, a second power supply node, transistors coupled in parallel between the first and second power supply nodes, and a controller to provide a first voltage, a second voltage, and a third voltage to gates of the transistors based on digital information. The first, second, and third voltages have different values based on values of the digital information.
US10333375B2
To provide an electric motor enabling easy and high-precision balance correction, and a machine toll including this electric motor. An electric motor (1) includes: a cylindrical stator (2); a rotor (3) having a rotary shaft part (31) inserted inside of the stator (2); a housing (4) installed to both ends in an axial direction of the stator (2); an opening (51a) provided in at least one outer peripheral lateral face of the housing (4), and disposed to be separated from an internal space (S) of the stator and a ventilation passage (9) formed in the stator (2); and a balance correction component (6, 61) that is installed to the rotary shaft part (31), and corrects balance of the rotor (3), in which the balance correction component (61) is exposed to outside from the opening (51a); and a machine tool (10) includes this electric motor (1).
US10333368B2
A cooling unit of a drive motor includes: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different flow cross sections and are connected to each other.
US10333367B2
A planar energy conversion device with a plurality of micro-conversion units is provided and includes a carrier. The carrier includes a plurality of cavities arranged horizontally. The cavities correspond in position to the micro-conversion units, respectively. Each micro-conversion unit includes: a magnetic rotor disposed in the corresponding cavity; and at least one ring-shaped stator surrounding the magnetic rotor, the magnetic rotor being integrated into the carrier and including a magnet component and a winding unit. The magnet component has multiple protruding portions horizontally arranged along the edge of the corresponding cavity. The winding unit has multiple winding elements corresponding in position to the protruding portions, respectively.
US10333357B1
Systems and methods for transmitting, receiving, and controlling wireless power are disclosed. The systems include one or more transmitters, one or more receivers, one or more sensors, one or more surrounding mapping devices, one or more controllers and control methods, and/or one or several arrangements. In one embodiment, a system and controller automatically adjusts the wireless power amount/level and/or type/source based on the mapped surroundings in order maintain safety, maintain health, optimize efficiency, and/or improve wireless energy transmission and receiving. In another embodiment, a system and controller controls and adjust several types and forms wireless energy transmission and receiving such as radiative electromagnetic energy, non-radiative electromagnetic energy, sound waves energy, ultrasound energy, light energy, radio frequency energy, and/or inductively coupled energy. In another embodiment, the system parts such as transmitters and wireless energy/power receiving derives communicate information such as the type and amount of wireless energy being transmitted and received.
US10333346B2
A computer-implemented method for controlling voltage fluctuations of a microgrid including a plurality of distributed generators (DGs) is presented. The computer-implemented method includes collecting, by a resiliency controller including at least a voltage control module, measurement data from the microgrid, using, by a reactive power estimator, reactive power estimations to calculate an amount of reactive power for each of the DGs, and using a dynamic droop control unit to distribute the reactive power to each of the DGs of the microgrid.
US10333340B2
The present invention relates to a power supply device and a power supply system including the same. The power supply device includes a first connector to receive an input alternating current (AC) voltage, a second connector to output a first output AC voltage to a grid, a third connector connectable with a plug of an external electronic device, a voltage conversion unit to convert a first direct current (DC) voltage stored in a battery into an AC voltage, and a controller configured to control the first output AC voltage based on the input AC voltage not to be supplied to the grid when grid power outage occurs while the first AC voltage is output to the grid, and control the input AC voltage to be output to the third connector as a second output AC voltage, or control the input AC voltage to be converted into the first DC voltage and the first DC voltage to be supplied to the battery. Thereby, the input AC voltage generated by the solar module may be utilized when grid power outage occurs.
US10333339B2
A charger for an aerosol delivery device is provided. The charger comprises a housing, a connected coupled to the housing, and a power supply. The connector may be coupled to the housing and configured to engage a control body coupled or coupleable with a cartridge to form the aerosol delivery device. The power supply may comprise a supercapacitor within the housing, connected with the power source when the connector is engaged with the control body, and configured to provide power to recharge the power source. The power source may also comprise a photovoltaic cell coupled to the housing, and connected to and from which the supercapacitor is chargeable.
US10333338B2
An exemplary charging method includes charging a storage battery of a mule vehicle as a tow vehicle tows the mule vehicle to a stranded vehicle. The storage battery configured to be electrically coupled to a traction battery of an electrified vehicle to charge the traction battery. An exemplary charging assembly includes a mule vehicle. A storage battery of the mule vehicle charges as the mule vehicle is towed to a stranded vehicle. The storage battery is configured to be electrically coupled to a traction battery of the electrified vehicle to charge the traction battery.
US10333336B2
A method for operating a charging device for a battery of a motor vehicle. The charging device converts electric power obtained from a motor vehicle-external, three-phase energy system supplying other consumers in an infrastructure unit, in particular a house, by a converter device into an electric current that is suitable for charging the battery, and supplies electric energy of the battery by the converter device into the energy system. The charging device receives in an operating phase phase-resolved power data, which is fed to the energy system and measured by a measuring device, and determines phase-specified target power while using phase-related power data outputs for each phase. The target power that is determined for each phase is retrieved from each phase.
US10333333B2
A wireless charging table comprising a table top having an upper surface upon which one or more electronic devices can be placed, a wireless charging transmitter positioned under the upper surface of the table top, the wireless charging transmitter comprising a plurality of transmitter coils that define a charging region at the upper surface of the table top, and a power distribution system operatively coupled to the wireless charging transmitter, the power distribution system configured to receive power from an alternating current (AC) power source and distribute power to the wireless charging transmitter. The plurality of transmitter coils include at least a first transmitter coil comprising: a first loop portion; a second loop portion; and a crossing portion comprising overlapping conductive paths that electrically couple the first loop portion.
US10333330B2
A method of controlling an electrically heated aerosol-generating system is provided, the system including a charging device including a first rechargeable power supply, and an electrically heated aerosol-generating device configured to receive an aerosol-generating substrate and including a second rechargeable power supply, and at least one electrical heating element; and the method including monitoring an ambient temperature adjacent the charging device, determining a charging current, for charging the rechargeable power supply of the charging device, in dependence on the ambient temperature, and charging the rechargeable power supply of the charging device at the determined charging current. There is also provided a system and device for performing the method.
US10333329B2
A method includes activating electrochemical cells of a cell assembly to output electrical energy in accordance with a superordinate clock signal in order to have an activation and/or switch-off time points of the respective cells on the basis of the superordinate clock signal not all occur at the same time. To reduce the complexity of smoothing the total battery voltage, the switching time points according to the disclosure are shifted on the basis of the superordinate clock signal for the first cell in accordance with a first switching specification by a cell-specific first clock shift signal.
US10333323B2
A battery charger with an internal power storage device may be used to facilitate fast charging of a battery by using a high C-rate. A battery charger with an internal power storage device may include a control circuit that receives operating mode instructions to operate in a base charging mode or a fast charging mode. In the base charging mode, the battery charger may be configured to concurrently charge a battery and an internal power storage device at a base C-rate using current supplied from an external power source. In the fast charging mode, the battery charger may be configured to charge the battery at a high C-rate, which is substantially higher than the base C-rate, by using the internal power storage device. The battery charger may include an optical reader used to identify battery-specific characteristics and enable the fast charging mode.
US10333320B2
A standing hanging-apparatus comprising a standing means for supporting the apparatus on a surface such as the ground, a hanging means for hanging an accessory from the apparatus, a storage means for storing a plurality of electronic devices, and a charging means for charging at least one of the plurality of electronic devices stored in the storage means. The standing means, hanging means, storage means, and charging means can be coupled to an elongated body defining a cavity, and the storage means is coupled such that it is centered over a center of gravity of the apparatus.
US10333316B2
The use of wireless power distribution equipment can be used to distribute power across various regions. Power from a power plant can be distributed to sub-transmission stations. For example, a transmission probe can be configured to launch a transmission frequency guided surface wave for power transmission over a transmission region. A sub-transmission station can receive the transmission frequency guided surface wave. A sub-transmission probe can be configured to launch a sub-transmission frequency guided surface wave to transmit power over a sub-transmission region to transmit power. A distribution station can receive the power from the sub-transmission frequency guided surface wave.
US10333309B2
An arrangement includes at least one series circuit having at least two series-connected submodules and an inductor. At least one of the submodules in one or a plurality of the series circuits has a step-up/step-down converter and a storage module. A protective module with at least one actuator is electrically connected between the step-up/step-down converter and the storage module. A method for operating the arrangement is also provided.
US10333308B2
A computer-implemented method for controlling voltage fluctuations of a microgrid including a plurality of distributed generators (DGs) is presented. The computer-implemented method includes collecting, by a resiliency controller, measurement data from the microgrid, using a model predictive control (MPC) module to distribute reactive power to each of the DGs of the microgrid, and using a droop based controller to guide operation of each of the DGs of the microgrid.
US10333298B2
Electrical energy produced by an energy harvester is stored on a temporary basis in an interim energy storage module before transferring it to a load. The current fed to the load is controlled so that a voltage limit of, for example, a capacitor in the interim storage module is not reached. By at least partially synchronizing the current consumed with the power produced, the capacity of the interim energy storage can be minimized, while still beneficially reducing fluctuations in the current. Current consumed may be determined by the use of a voltage to current look-up table, so that minimal communication overhead between the load and the power source is needed.
US10333296B1
A proximal end portion of a robotic surgical arm is to be coupled to an adapter of a surgical robotic platform, for use during a surgical session at the platform, and then decoupled from the adapter for storage until being re-coupled for use during another surgical session at the platform. A resonant-mode transformer-coupled power converter is provided that has a secondary side and a primary side. The secondary side is in the arm and has a transformer secondary coil in the proximal end portion of the arm. The primary side has a transformer primary coil in the adapter. The primary and secondary coils are held at positions and orientations that enable mutual inductive coupling between them for operation of the power converter when the arm is coupled to the adapter. Other embodiments are also described and claimed.
US10333295B2
An electrostatic protection circuit includes a first transistor connected to an external terminal, a second transistor that is connected in series to the first transistor and that is in a normally OFF state. The electrostatic protection circuit includes a third transistor that is connected between a power source line and a gate of the first transistor, and a fourth transistor that is connected between the power source line and the gate of the first transistor in the opposite direction to the third transistor.
US10333289B2
A sensor for measuring current of the Rogowski-torus type including a carrier made of a magnetic materials and a secondary winding wound on the carrier in order to deliver an electrical signal representative of a current flowing in a conductor passing through the interior of the torus. The carrier is made essentially of a moulded rigid plastic material and includes at least one exterior recess distributed over the length of the body of the carrier. The recess includes at least two grooves that are separated by a partition. The protecting and measuring device and the electric circuit breaker include such a current sensor.
US10333286B2
A slide rail assembly includes a first rail, a second rail movable with respect to the first rail, and a cable management device. The cable management device includes a first set of arms and a second set of arms connected to the first set of arms. The first set of arms include two arms that are movable with respect to each other. The second set of arms also include two arms that are movable with respect to each other. The cable management device has a portion connected to the first rail and is switched from a first state to a second state in response to the second rail moving with respect to the first rail from a first position to a second position.
US10333285B2
A protector-equipped wire harness includes: an electrical wire; a protector that includes a pair of side walls that protrude from a bottom, a slide supporting portion that is formed so as to extend in a first direction X, and a receiver that is provided on a bottom side of the slide supporting portion, and in which the electrical wire can be disposed in a groove that is defined by the bottom and the pair of side walls; and an attachment member that includes a band that can be wound around the electrical wire, and a band lock portion that includes a slidable portion that is supported by the slide supporting portion so as to be slidable in the first direction, the band lock portion keeping the band in a state of being wound around the electrical wire.
US10333273B2
A phosphor module for a laser light source includes a heat dissipation body, and a reflective layer disposed on the heat dissipation body including metal or an alloy. The phosphor module also includes a phosphor layer disposed on the reflective layer. The phosphor layer includes a glass frit and a phosphor and is configured to: absorb a first light emitted from the laser light source and incident on a first surface of the phosphor layer facing away from the reflective layer; and emit, from a second surface of the phosphor layer opposite the first surface and facing towards the reflective layer, a second light having a second wavelength different from a first wavelength of the first light. The phosphor module also includes a light-transmissive transparent heat dissipation layer disposed on the first surface of the phosphor layer that dissipates heat from the phosphor layer.
US10333262B2
The present disclosure provides a socket for cooperating with a magnetically conductive prong to provide a power supply connection. The socket includes: an electrically conductive contact member for receiving the magnetically conductive prong; a spring sheet body, a first end of the spring sheet body being fixed, and a second end of the spring sheet body being provided with a magnetic component at a position corresponding to the electrically conductive contact member; a power supply connecting portion for connecting with a power supply; and a first electrically conductive portion being arranged on the spring sheet body and located at a position corresponding to the power supply connecting portion, the first electrically conductive portion being located between the first end of the spring sheet body and the second end of the spring sheet body, and the first electrically conductive portion and the power supply connecting portion being connected through an electrically conductive connecting wire.
US10333260B2
A device includes an interface configured to couple a power source to the device. The interface includes a plurality of contacts including at least one first contact configured to couple a voltage bus of the power source to a voltage bus of the device, and at least one second contact configured to couple the voltage bus of the power source to a secondary bus of the device. The device further includes a detector configured to determine a contact resistance of the at least one first contact based on a first current associated with the voltage bus and a second current associated with the secondary bus.
US10333255B2
An electrical connector includes an insulative housing enclosed within a metallic shell wherein the housing forms a mating cavity and the shell includes a first shell and a second shell assembled together. The first shell includes a main body abutting against the housing, and a folded plate abutting against the main body and having a plurality of first spring tangs for engagement with the case in which the connector is position. The folded plate forms a securing tab and the housing includes a retention slot receiving the securing tab therein so as to prevent outward movement of the folded plate in the vertical direction.
US10333252B1
A central shaft power connector for lighted ornaments is disclosed. A central support pole, such as for a Christmas tree is made in two parts joinable with an electrical and mechanical connector which joins the pole parts and simultaneously connects power or other circuits from one part to the other. The connector has two engaging sections and an outrigger platform which locates a connector off to the side of the poles but in alignment. Final alignment is obtained by a key and keyway in the connector parts.
US10333239B2
A connector is mateable with a mating connector having two mating lock portions along an upper-lower direction. The connector comprises a housing and two additional members held by the housing. The housing has a projecting wall projecting upward in the upper-lower direction, an outer wall surrounding the projecting wall in a horizontal plane perpendicular to the upper-lower direction and a receiving portion which is a space formed between the outer wall and the projecting wall and partially receives the mating connector under a mated state of the connector with the mating connector. Each of the additional members has a lock portion. The two lock portions are located at opposite sides of the projecting wall, respectively, in a horizontal direction perpendicular to the upper-lower direction and face the receiving portion. Under the mated state, the lock portions lock the locked portions, respectively, to maintain the mated state.
US10333238B2
A surface mount contact (100) for coupling to an electronic device (200, 300), comprising: a conductive pin (10) having an elongated pin body (12), the pin body (12) comprising a first end (122) and a second end (124) opposing to the first end (122); and a heat re-flowable bonding member (20) coupled to the first end (122); wherein the pin body (12) is integrally provided with a support portion (14) in a region of the pin body (12) adjacent to the heat re-flowable bonding member (20). The cost and time of manufacture is reduced.
US10333234B2
An electrical grounding assembly includes an electrically conductive metal grounding plate, and a corrosion-protective jacket enclosing the grounding plate. The jacket is electrically conductive and water impermeable. The electrical grounding assembly further includes an electrically conductive line having a first end in electrical contact with the grounding plate and enclosed in the jacket, and an opposed second end outside of the jacket for connection to a structure to be electrically grounded.
US10333231B2
A clamping assembly for attaching a grounding conductor to a pipe having a protective coating includes an elongate conductive strap and a clamp. The conductive strap is sufficiently long to circumferentially surround the pipe and has longitudinally spaced sharp projections that are sufficient to penetrate the protective coating around the pipe to make an electrical coupling between the strap and a conductive part of the pipe beneath the protective coating. The clamp is coupled to the grounding conductor and clamps the conductive strap to the pipe at a tension sufficient to maintain an electrical connection between the conductive part of the pipe and the grounding conductor without the need for any welding of the grounding conductor to the pipe and without the need for any stripping of the protective coating from the pipe.
US10333230B2
A radiating element for a phased array antenna that includes a base portion, a first member projecting from the base portion comprising a first stem and a first impedance matching portion, wherein the first impedance matching portion comprises at least one projecting portion projecting from a first side of the first impedance matching portion, and a second member projecting from the base portion and spaced apart from the first member, the second member comprising a second stem and a second impedance matching portion, wherein the second impedance matching portion comprises at least one other projecting portion projecting toward the first side of the first impedance matching portion.
US10333229B2
A modular housing arrangement for antennae comprises at least one antenna housing. The at least one antenna housing comprises a front face on the cover side, a front face on the base side and a peripheral side wall between the front face on the cover side and the front face on the base side that comprises a plurality of lateral surfaces, as a result which a receiving space is defined. At least one antenna is or can be arranged in the receiving space. At least one male and one female part of a positive and/or non-positive connection are arranged on the peripheral side wall. The at least one male part and the at least one female part are designed to establish a detachable positive and/or non-positive connection to a corresponding female or male part, respectively, of at least one further antenna housing and/or at least one connection element.
US10333228B2
A 2×2 MIMO array antenna is provided which includes two separate radiating elements mounted to an antenna reflector. Each element is linear polarized with two orthogonal polarizations, one polarization excited by a transmit port and the other polarization receiving radiated signals destined for a receive port. The two elements are aligned that the polarizations excited by the transmit ports of the two elements are along a common axis, or the polarizations received by the receive ports of the two elements are along a common axis.
US10333225B1
The embodiments herein provide a multiband reconfigurable filtenna comprising a monopole antenna coupled to a center split transmission line and a reconfigurable microstrip filter replacing a feed-in end of the center split transmission line to provide resonance to the monopole antenna at a plurality of frequency bands. The reconfigurable microstrip filter includes a C-shaped resonator (CSR), a meandered loop resonator (MLR), an Inverted Pulse Shaped Resonator (IPSR) and an Open Circuited Stub (OCS). Further, a plurality of switches is coupled to the reconfigurable microstrip filter to switch coupling of the monopole antenna between the CSR, the MLR, the IPSR and the OCS for operating the monopole antenna, at one of the plurality of frequency bands.
US10333220B2
Embodiments of the present invention disclose an interleaved polarized multi-beam antenna, including: at least one dual-polarized antenna element, where the dual-polarized antenna element includes a +45-degree-polarized first antenna element and a −45-degree-polarized second antenna element; and a first Butler matrix and a second Butler matrix, where the first Butler matrix is connected to the first antenna element so that the first antenna element transmits a first target beam, and the second Butler matrix is connected to the second antenna element so that the second antenna element transmits a second target beam. The first target beam and the second target beam in the embodiments are alternately arranged, and any two adjacent first target beam and second target beam have different polarization characteristics; therefore, complexity, a loss, and costs of implementation of a Butler matrix can be effectively reduced, and interference between adjacent multiplexed beams can be effectively decreased.
US10333207B2
Provided is a vehicle including: an antenna configured to receive at least two external signals from an external device and to output an integrated signal by integrating the at least two external signals; a single feeder cable electrically connected to the antenna and configured to transfer the integrated signal; and a controller electrically connected to the single feeder cable, and separating the integrated signal into at least two signals, and transferring the at least two signals to each module corresponding to each of the at least two signals.
US10333206B2
Vehicles, systems, and methods are provided electronic communication in a vehicle. A vehicle includes a vehicle body, a first antenna cluster, and a second antenna cluster. The vehicle body defines a boundary between an inside of the vehicle and an outside of the vehicle. The first antenna cluster is mounted on the outside of the vehicle and is configured to operate at coverage band cellular telephone frequencies using coverage band signals. A second antenna cluster is disposed in the inside of the vehicle and is configured to operate at capacity band cellular telephone frequencies using capacity band signals.
US10333194B2
An electronic device includes a high-frequency transmission line member and a housing. The high-frequency transmission line member includes a flexible substrate, a signal conductor, and a ground conductor along the signal conductor. The housing is defined by a member separate from the high-frequency transmission line member and located at one principal surface side of the high-frequency transmission line member. The high-frequency transmission line member includes a first portion along the housing to face the housing, and a second portion spaced apart from the housing more than the first portion. The ground conductor is not provided at one principal surface side of the signal conductor in the first portion and is provided at least in the second portion.
US10333178B2
The invention relates to an electrolyte composition containing (i) at least one aprotic polar organic solvent having a flash point above 80° C. and a dielectric constant above 10 at 25° C.; (ii) at least one flame retardant and/or non-flammable solvent; (iii) at least one compound of formula (I) R1—O(O)C—(CH2)n—C(O)O—R2 (I) wherein R1 and R2 are independently from each other selected from C1-C6 alkyl and n is 1, 2 or 3; (iv) at least one conducting salt; (v) at least one aprotic organic solvent having a dynamic viscosity below 1 mPa s at 25° C.; and (vi) optionally one or more additives.
US10333172B2
A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. The non-aqueous liquid electrolyte of the battery contains carbonate having unsaturated bond and/or halogen and and an anhydride compound.
US10333170B2
An object of the present invention is to provide a sulfide solid electrolyte material with favorable ion conductivity. In the present invention, the above object is achieved by providing a sulfide solid electrolyte material comprising a composition of LixSiyPzS1-x-y-z-wXw (0.37≤x≤0.40, 0.054≤y≤0.078, 0.05≤z≤0.07, 0≤w≤0.05, and X is at least one of F, Cl, Br, and I), characterized in that the sulfide solid electrolyte material has a crystal phase A having a peak at a position of 2θ=29.58°±1.00° in X-ray diffraction measurement using a CuKα ray, the sulfide solid electrolyte material does not have a crystal phase B having a peak at a position of 2θ=30.12°±1.00° in X-ray diffraction measurement using a CuKα ray, or slightly has the crystal phase B.
US10333162B2
Systems and methods for testing a fuel cell stack include a vacuum source, a test head including at least one isolated vacuum plenum configured to be positioned in fluid communication with a first portion of the fuel cell stack, the isolated vacuum plenum in fluid communication with the vacuum source, and a detector in fluid communication with the at least one isolated vacuum plenum for detecting the presence of a particular constituent of a fluid provided in a second portion of the fuel cell stack, where the second portion of the fuel cell stack is separated from the first portion of the fuel cell stack by at least one of an electrolyte and a fuel cell seal.
US10333150B2
A method for manufacturing a substrate for a lead acid battery includes manufacturing a powder mixture by mixing lead powder and carbon powder and manufacturing a substrate by compress-molding the powder mixture. 85 wt % to 95 wt % of the lead powder and 5 wt % to 15 wt % of the carbon powder are mixed, based on 100 wt % of the powder mixture.
US10333148B2
Density modulated thin film electrodes, methods of making the same, and applications of the same. The density modulated thin film electrode includes a substrate formed of a current collecting material, and a thin film formed of an electrode material on the substrate. The thin film has a first surface and an opposite, second surface, and a density that is changed with a distance defined from the first surface to a plane in the thin film, the plane being parallel to the first surface. The method includes depositing the electrode material on the substrate to form the thin film, where, during deposition of the electrode material, a pressure of an operating gas is controlled and changed to a predetermined pressure value according to a deposited thickness of the electrode material, so as to make the density of the thin film changed with the distance.
US10333147B2
A cathode electrode material and a lithium sulfur battery are disclosed. The cathode electrode material includes the cathode binder. The cathode binder includes a polymer obtained by polymerizing a dianhydride monomer with a diamine monomer. At least one of the dianhydride monomer and the diamine monomer includes a silicon-containing monomer. The lithium sulfur battery includes an anode electrode, an electrolyte, and the cathode electrode, the cathode electrode includes a sulfur containing cathode active material, a conducting agent, and the cathode binder.
US10333143B2
Liquid flow in a reaction processing vessel 10 is set to a spiral flow, a liquid A and B as an additional liquid containing an inorganic substance to be added is injected at a center-side position with respect to an inner surface of the reaction processing vessel 10 in a reaction field of the reaction processing vessel 10 so as to perform reaction processing.
US10333140B2
A layered lithium metal oxide powder for a cathode material used in a rechargeable battery, with the general formula (1−x)[Lia-bAb]3a[CO1-cMc]3b[O2-d-eN′e]6c.xLi3PO4, with 0.0001≤x≤0.05, 0.90≤a≤1.10, 0
US10333138B2
The present disclosure relates to a cathode additive for a rechargeable sodium battery, to mixtures of the additive and a cathode active material, to cathodes containing the additive, to electrochemical cells with cathodes containing the additive, and to rechargeable batteries with cathodes containing the additive.
US10333137B2
A battery electrode composition is provided comprising composite particles, with each composite particle comprising active material and a scaffolding matrix. The active material is provided to store and release ions during battery operation. For certain active materials of interest, the storing and releasing of the ions causes a substantial change in volume of the active material. The scaffolding matrix is provided as a porous, electrically-conductive scaffolding matrix within which the active material is disposed. In this way, the scaffolding matrix structurally supports the active material, electrically interconnects the active material, and accommodates the changes in volume of the active material.
US10333134B2
An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer. The first protective layer may have a low mean peak to valley surface roughness and/or may be thin. In some embodiments, an interface between the first protective layer and the first electroactive material layer has a low mean peak to valley surface roughness.
US10333133B2
A cap assembly for a secondary battery includes: a cap plate; a current interrupt device (CID); a middle plate; and an insulator. The CID includes: a vent plate under the cap plate and including a vent portion protruding downward; and a sub-plate under the vent plate and connected to the vent portion. The middle plate is between the vent plate and the sub-plate and is electrically connected to the vent plate via the sub-plate. The insulator is between the vent plate and the middle plate, and the insulator includes a crosslinked polymer.
US10333130B2
A secondary battery is provided including an electrode assembly including a first electrode plate, a second electrode plate, and a separator; a case containing the electrode assembly; a first current collector electrically connected to the first electrode plate; a first terminal electrically connected to the first current collector; a second current collector electrically connected to the second electrode plate; and a second terminal electrically connected to the second current collector, wherein a plating is on a portion of at least one of the first terminal or the first current collector at which the first terminal contacts the first current collector.
US10333126B2
The present invention relates to a composite separation membrane for a lithium secondary battery having excellent lifetime and safety improvement effects, and a preparation method therefor and, more specifically, to a composite separation membrane for a lithium secondary battery, including: a porous base layer; a heat resistant layer formed on one surface or both surfaces of the porous base layer; and a fusion layer formed on the outermost layer. Inorganic particles in the heat resistant layer are connected and fixed by a binder polymer, and the fusion layer is prepared by comprising amorphous polymer particles having a glass transition temperature of 30 to 90° C. and a difference between a fusion temperature and the glass transition temperature of 60° C. or lower.
US10333123B2
A high capacity solid state composite cathode contains an active cathode material dispersed in an amorphous inorganic ionically conductive metal oxide, such as lithium lanthanum zirconium oxide and/or lithium carbon lanthanum zirconium oxide. A solid state composite separator contains an electronically insulating inorganic powder dispersed in an amorphous, inorganic, ionically conductive metal oxide. Methods for preparing the composite cathode and composite separator are provided.
US10333107B2
An electroluminescent display device includes a substrate; a first electrode on the substrate; a hole auxiliary layer on the first electrode; a light emitting material layer on the hole auxiliary layer; an electron auxiliary layer on the light emitting material layer; a second electrode on the electron auxiliary layer; and insulation layers between the hole auxiliary layer and the light emitting material layer and between the electron auxiliary layer and the light emitting material layer, wherein a refractive index of the insulation layers is smaller than a refractive index of the light emitting material layer.
US10333105B2
An OLED packaging method and an OLED package structure are disclosed. The OLED packaging method combines a dam packaging technology and a thin film encapsulation technology. A dam is used to coffer an organic layer and limit a size thereof to ensure that each organic layer is completely covered an inorganic layer disposed thereon to improve a packaging effect. One mask can be used to produce multiple inorganic layers so an amount of masks is decreased to save costs. The OLED packaging structure combines a dam packaging structure and a thin film encapsulation structure. A dam is used to coffer an organic layer and limit a size thereof to ensure that each organic layer is completely covered an inorganic layer disposed thereon to improve a packaging effect. One mask can be used to produce multiple inorganic layers so an amount of masks is decreased to save costs.
US10333103B2
In an organic EL display device that includes a TFT substrate (substrate) and an organic EL element (electroluminescent element) provided on the TFT substrate, a sealing film is provided that seals the organic EL element.The sealing film includes one or more layers of inorganic film. The thickness of a peripheral portion of at least one layer of inorganic film among the one or more layers of inorganic film is made thick.Further, a liquid repellent layer is provided covering the sealing film.
US10333102B2
A display device includes a substrate including a display area in which a plurality of pixels is disposed, and a non-display area near the display area; an insulating layer disposed on the substrate; a metal wiring disposed on the substrate; and a plurality of dummy patterns disposed in the non-display area of the substrate. The plurality of dummy patterns includes a plurality of first patterns including an insulating material and a plurality of second patterns including a metal material.
US10333101B2
A display apparatus includes a first substrate corresponding to an active area, and a sealing area surrounding the active area, a second substrate facing the first substrate, a display portion in the active area, a sealing member in the sealing area between the first substrate and the second substrate, and a guide mark on one surface of the second substrate in an area where the sealing member and the second substrate overlap each other.
US10333100B2
An organic electroluminescent device comprising: a transparent support substrate having flexibility; a light emitting element disposed on the transparent support substrate and including a pair of electrodes and a luminescent layer disposed between the pair of electrodes; a sealing material layer disposed on the transparent support substrate so as to cover and seal the light emitting element; and a sealing substrate disposed on the sealing material layer, wherein based on an arithmetic average of roughness profile defined in JIS B 0601-1994, the surface roughness of a surface of the sealing substrate beside the sealing material layer has a smaller value than the surface roughness of the other surface of the sealing substrate, and the arithmetic average of roughness profile of the surface of the sealing substrate beside the sealing material layer and a thickness of the sealing material layer satisfy a requirement represented by the following formula (I): 0.002<(Ra/t)<0.2 (I) [in the formula (I), Ra denotes the arithmetic average of roughness profile of JIS B 0601-1994 of the surface of the sealing substrate beside the sealing material layer, and t denotes the thickness of the sealing material layer].
US10333093B2
The present invention provides an OLED substrate and a manufacture method thereof. In the manufacture method of the OLED substrate of the present invention, by utilizing the inorganic material to manufacture the pixel definition layer, it can reduce the risk that pixel definition layer is wrong stripped in the photoresist stripping process, and meanwhile, reduce the risk that the fine metal mask is polluted in the evaporation process to raise the usage efficiency of the fine metal mask. The OLED substrate of the present invention is manufactured by the aforesaid manufacture method of the OLED substrate. The structure of the pixel definition layer is complete, and can effectively protect the anodes and the substrate thereunder, and the element performance is good.
US10333088B1
The subject embodiments relate to carbon nanotube (CNT) transistors with carrier blocking using thin dielectric under the drain or source and drain contacts. According to an embodiment, a transistor is provided that comprises a CNT channel layer, a metal source contact formed on the carbon nanotube channel layer, and a metal drain contact formed on the carbon nanotube channel layer. The transistor structure further comprises a drain dielectric layer formed adjacent to and between a lower surface of the metal drain contact and an upper surface of the carbon nanotube channel layer. In one or more implementations, the drain dielectric layer comprises a material that suppresses injection of a first type of carrier into the CNT channel layer and facilitates the injection of a second type of carrier into the CNT channel layer.
US10333056B2
A method of forming a 3D Hall effect sensor and the resulting device are provided. Embodiments include forming a p-type well in a substrate; forming a first n-type well in a first region surrounded by the p-type well in top view; forming a second n-type well in a second region surrounding the p-type well; providing n-type dopant in the first and second n-type wells; and providing p-type dopant in the p-type well and the first n-type well.
US10333053B2
A crystal resonator includes: a crystal resonator plate; a first sealing member that covers a first excitation electrode of the crystal resonator plate; and a second sealing member that covers a second excitation electrode of the crystal resonator plate and includes a first external electrode terminal and a second external electrode terminal to be bonded to a circuit board using a flowable conductive bonding material. The second sealing member includes a second through hole and a third through hole that pass through between a first main surface and a second main surface on which the first external electrode terminal and the second external electrode terminal are formed. The second through hole and the third through hole include: respective through electrodes for conduction between electrodes formed on the first main surface and the second main surface; and respective through parts.
US10333052B2
A vibrating device includes a vibration plate that vibrates at a harmonic of a contour vibration and on which plural vibration members to are disposed. Moreover, support members are provided having first ends connected to the vibration plate and second ends connected to a frame base that surrounds the vibration plate. Cavities extending in a direction that intersects a direction in which the support members extend are formed in the base with flexure-vibration members formed therebetween. Both ends of the flexure-vibration members are joined to the base to serve as stationary ends. Moreover, a length between ends of the flexure-vibration members and a connected portion where each of the flexure-vibration member is connected to the corresponding support members is λ/4, where λ is a wave length of a flexural vibration corresponding to a frequency of a natural vibration in the vibration plate.
US10333049B1
A superconducting quantum interference devices (SQUID) comprises a superconducting inductive loop with at least two Josephson junction, whereby a magnetic flux coupled into the inductive loop produces a modulated response up through radio frequencies. Series and parallel arrays of SQUIDs can increase the dynamic range, output, and linearity, while maintaining bandwidth. Several approaches to achieving a linear triangle-wave transfer function are presented, including harmonic superposition of SQUID cells, differential serial arrays with magnetic frustration, and a novel bi-SQUID cell comprised of a nonlinear Josephson inductance shunting the linear coupling inductance. Total harmonic distortion of less than −120 dB can be achieved in optimum cases.
US10333047B2
Electrical, mechanical, computing, and/or other devices that include components formed of extremely low resistance (ELR) materials, including, but not limited to, modified ELR materials, layered ELR materials, and new ELR materials, are described.
US10333033B2
A light emitting device according to an embodiment includes a body having a recess; a light emitting chip disposed in the recess; and a first dampproof layer sealing the light emitting chip and extended from a surface of the light emitting chip to a bottom of the recess, wherein the light emitting chip includes a wavelength range of 100 nm to 280 nm, and the first dampproof layer includes a fluororesin-based material.
US10333025B1
An ultraviolet light emitting device including a first conductivity-type AlGaN semiconductor layer; an active layer disposed on the first conductivity-type AlGaN semiconductor layer and having an AlGaN semiconductor; a second conductivity-type AlGaN semiconductor layer disposed on the active layer and having an upper surface divided into a first region and a second region; second conductivity-type nitride patterns disposed on the first region of the second conductivity-type AlGaN semiconductor layer and having an energy band gap that is smaller than an energy band gap of the second conductivity-type AlGaN semiconductor layer; a transparent electrode layer covering the second conductivity-type nitride patterns and the second region of the second conductivity-type AlGaN semiconductor layer; a light-transmissive dielectric layer disposed on the transparent electrode layer between the second conductivity-type nitride patterns; and a metal electrode disposed on the transparent electrode layer overlying the second conductivity type nitride patterns and on the light-transmissive dielectric layer.
US10333019B2
A package structure and a method for manufacturing the same are disclosed. The package structure includes a first plastic body which covers a first light sensor and a light emitter, and a second plastic body which is made of infrared cutoff materials and fills inner pins of a lead frame or is formed below the lead frame. A trench is formed in the first plastic body so that a light-blocking layer is located on a side surface of the first plastic body. The second plastic body and the light-blocking layer are used to avoid influence of infrared light on a first light sensor.
US10333017B2
Thin-film photovoltaic devices and methods of their use and manufacture are disclosed. More particularly, polycrystalline CuIn(1-x)GaxSe2 (CIGS) based thin-film photovoltaic devices having independently tunable sublayers are disclosed. Also provided are methods of producing an n-doped graphene.
US10333015B2
The present invention relates to a solar cell assembly, comprising a solar cell attached to a bonding pad and a cooling substrate and wherein the bonding pad and the cooling substrate are joined to each other in a planar and flush manner such that the bonding pad and the cooling substrate are connected to each other in the form of a solid state connection. The invention further relates to a solar cell assembly that includes a solar cell attached to a bonding pad and a cooling substrate and wherein the bonding pad is attached on a surface of the cooling substrate such that the bonding pad and the cooling substrate are connected to each other in the form of a solid state connection. Also, a method for manufacture of such solar cell assemblies is provided.
US10333002B2
Provided are a thin film transistor and manufacturing method thereof, array substrate and manufacturing method thereof, and display device. The thin film transistor comprises: an active layer, an etch stop layer disposed on the active layer, an overcoating layer disposed on the etch stop layer, and a source electrode and a drain electrode disposed on the overcoating layer, wherein the overcoating layer comprises at least one of a conductive material layer, a non-transparent insulation layer and a non-transparent semiconductor layer, and the source electrode and the drain electrode are electrically connected with the active layer.
US10332997B2
There is provided a semiconductor device that improves reliability. The impurity concentrations of a p++ source region and a p++ drain region are 5×1020 cm−3 or more. The channel-region-side end portion of a first insulating film is disposed on a p+ source region. The end portion has an inclined surface where the first insulating film thickness is reduced from the p+ source region toward a channel region. The channel-region-side end portion of a second insulating film is disposed on a p+ drain region. The end portion has an inclined surface where the second insulating film thickness is reduced from the p+ drain region toward the channel region. A gate electrode is disposed on the channel region, the p+ source region, the p+ drain region, and the inclined surfaces of the first and the second insulating films through a gate insulating film including an aluminum oxide film.
US10332995B2
Semiconductor devices and methods of forming the same include forming semiconductor fins on a semiconductor substrate. A bottom source/drain region is formed in the semiconductor substrate. First charged dielectric spacers are formed on sidewalls of the semiconductor fins. A gate stack is formed over the bottom source/drain region. Second charged dielectric spacers are formed on sidewalls of the fin above the gate stack. The fins are recessed to a height below a top level of the second charged dielectric spacers. A top source/drain region is grown from the recessed fins.
US10332992B1
A semiconductor device according to one or more embodiments may include: a drain region; a drift region positioned above the drain region; a base region positioned on the drift region; a trench positioned to abut the base region and the drift region; an insulating in the trench; a counter electrode embedded in the insulating film; a gate electrode positioned above the counter electrode and that is embedded in the insulating film; and a source region that abuts the base region and the trench, wherein a thickness of the insulating film between the gate electrode and an interface between the drift region and the base region is larger than a thickness of the insulating film between the gate electrode and an interface between the source region and the base region.
US10332988B2
The invention provides a BCE TFT substrate and manufacturing method thereof. The method uses low deposition power and low oxygen content to deposit first silicon oxide thin film; then increases deposition power with low oxygen content to deposit second silicon oxide thin film. The first and second silicon oxide thin films form a passivation layer; the second silicon oxide film is implanted with oxygen to form a superficial layer so that the Si:O atomic ratio in the superficial layer is close to or same as Si:O atomic ratio of SiO2, to ensure the passivation layer in contact with the air side is strongly hydrophobic to prevent outside water vapor into the back-channel, while ensuring the side of passivation layer contacting IGZO active layer has a lower oxygen content to reduce the probability of forming unbalanced O-ions at the interface between passivation layer and IGZO active layer.
US10332981B1
A method for fabricating semiconductor device includes the steps of: forming a first gate structure on a substrate; performing a first etching process to form a recess adjacent to the first gate structure; performing an ion implantation process to form an amorphous layer directly under the recess; performing a second etching process to remove the amorphous layer; and forming an epitaxial layer in the recess.
US10332980B2
A method for manufacturing a semiconductor device includes providing a substrate structure including a semiconductor fin on a substrate, and a trench isolation structure surrounding the fin and having an upper surface flush with an upper surface of the fin and including first and second trench isolation portions on opposite sides of the fin along the fin longitudinal direction, and third and fourth trench isolation portions on distal ends of the fin along a second direction intersecting the longitudinal direction; forming a patterned first hardmask layer having an opening exposing an upper surface of the third and fourth trench isolation portions; and forming a first insulator layer filling the opening to form an insulating portion including a portion of the first insulator layer in the opening and a portion of the trench isolation structure below the portion of the first insulator layer in the opening.
US10332972B2
A vertical, single column compound semiconductor bipolar junction transistor device includes an all-around extrinsic base. Homojunction and heterojunction devices are formed using III-V compound semiconductor materials with appropriate bandgaps. Fabrication of the transistor device includes epitaxially growing a III-V compound semiconductor base region on a heavily doped III-V compound semiconductor bottom layer. A polycrystalline emitter/collector layer and the all-around extrinsic base are grown on the base region.
US10332971B2
A method of forming a semiconductor structure includes depositing a gate dielectric layer lining a recess of a gate structure formed on a substrate with a first portion of the gate dielectric layer covering sidewalls of the recess and a second portion of the gate dielectric layer covering a bottom of the recess. A protective layer is deposited above the gate dielectric layer and then recessed selectively to the gate dielectric layer so that a top surface of the protective layer is below of the recess. The first portion of the gate dielectric layer is recessed until a top of the first portion of the gate dielectric layer is approximately coplanar with the top surface of the protective layer. The protective layer is removed and a conductive barrier is deposited above the recessed first portion of the gate dielectric layer to cut a diffusion path to the gate dielectric layer.
US10332969B2
A semiconductor device includes a gate electrode structure that is positioned adjacent to a channel region of a transistor element. The gate electrode structure includes a floating gate electrode portion, a negative capacitor portion, and a ferroelectric material capacitively coupling the floating gate electrode portion to the negative capacitor portion. A first conductive material is positioned between the floating gate electrode portion and the ferroelectric material, wherein a first portion of the first conductive material is embedded in and laterally surrounded by the floating gate electrode portion, and a second conductive material is positioned between the first portion of the first conductive material and the ferroelectric material, wherein the second conductive material is embedded in and laterally surrounded by a second portion of the first conductive material.
US10332962B2
A method for fabricating a semiconductor structure includes forming a nanosheet stack on a base. The nanosheet stack comprises one or more first nanosheet layers each comprised of a first material and one or more second nanosheet layers each comprised of a second material different from the first material. The nanosheet stack is recessed. Inner spacers comprising a third material are formed. Forming the inner spacers includes converting the first material corresponding to outer portions of each of the one or more first nanosheet layers into the third material.
US10332960B2
A digitally controlled varactor device comprising: a set of bulk nMOS field effect transistors bulk tied to a ground, the set bulk nMOS field effect transistors having: a first transistor including: a source coupled to a DC voltage source; and a gate coupled to a digitally controlled oscillator; a second transistor including: a source coupled to the DC voltage source; and a gate coupled to the digitally controlled oscillator; and a third transistor including: a source coupled to a drain of the first transistor; and a drain coupled to a drain of the second transistor. The transistors in the digitally controlled varactor may be FDSOI nMOS devices with backgate coupled to a DC voltage source.
US10332958B2
A supporting substrate for a composite substrate comprises a ceramic and has a polished surface for use in bonding. An orientation degree of the ceramic forming the supporting substrate at the polished surface is 50% or higher, and an aspect ratio of each crystal grain included in the supporting substrate is 5.0 or less.
US10332954B2
A semiconductor device and a manufacturing method thereof, the semiconductor device including an insulation layer; a metal resistance pattern on the insulation layer; a spacer on a side wall of the metal resistance pattern; and a gate contact spaced apart from the spacer, the gate contact extending into the insulation layer, wherein the insulation layer includes a projection projecting therefrom, the projection contacting the gate contact.
US10332946B2
An organic light emitting display panel and manufacturing method thereof and a display device, which can reduce the critical dimension bias of the pixel defining layer and improve the display uniformity is disclosed. The organic light emitting display panel includes a pixel defining layer, which is provided with a plurality of light emitting material filling areas, a metal layer provided on the pixel defining layer; the metal layer is provided with openings corresponding to the light emitting material filling areas respectively. The display effect of the organic light emitting display device is thereby improved.
US10332937B2
A semiconductor device includes: a printed substrate having a through hole from an upper face to a lower face thereof; a first semiconductor element mounted on the printed substrate; an interposer mounted on the upper face of the printed substrate; a second semiconductor element adjacent to the interposer and arranged to overlap with the through hole; and a bonding wire coupling a first pad to a second pad, the first pad being on an upper face of the interposer and being positioned on the second semiconductor element side, the second pad being on an upper face of the second semiconductor element and being positioned on the interposer side, wherein the interposer has an edge face protruding with respect to a wall face of the through hole of the printed substrate toward the second semiconductor element, and the edge face faces with an edge face of the second semiconductor element.
US10332930B2
A device includes an array of single photon avalanche diodes (SPADs) and a plurality of pulse shapers. Each of the SPADs are electrically coupled to a respective SPAD quench circuit. Each of the pulse shapers have an input electrically coupled to an output of a respective SPAD quench circuit.
US10332925B2
An image sensor includes a substrate including a plurality of pixel regions and one or more pairs of dummy pixel regions; a pixel separation structure between two adjacent pixel regions among the plurality of pixel regions and including a first conductive layer; a dummy pixel separation structure between the one or more pairs of dummy pixel regions, electrically connected to the pixel separation structure, and including a second conductive layer; and a pixel separation contact disposed on the dummy pixel separation structure.
US10332924B2
Provided is a semiconductor device including: a multilayer substrate including an optical element; a light-transmitting plate provided on the substrate to cover the optical element; and a lens of an inorganic material provided between the substrate and the light-transmitting plate. A structure having a same strength as a strength per unit area of the lens is provided at a portion outside an effective photosensitive region where the optical element is formed, when the substrate is viewed in plan.
US10332918B2
A pixel structure including a first pixel unit, a second pixel unit, a first insulating layer, and a common electrode is provided. The first and second pixel units are disposed on a substrate, and includes a first drain and a first pixel electrode, and a second drain and a second pixel electrode, respectively. The first insulating layer covers the first and second drains. The first and second pixel electrodes are disposed on the first insulating layer, and the first insulating layer has first and second contact holes uncovering the first and second drains, respectively. The common electrode is disposed on the first insulating layer, and is electrically insulated from the first and second pixel electrodes, and has a common opening. When projected onto the substrate, the first and second contact holes are disposed within a region of the common opening.
US10332916B2
A metal line includes a conductive layer containing aluminum (Al) or an aluminum alloy, a first capping layer on the conductive layer, the first capping layer containing titanium nitride (TiNx), and a second capping layer on the first capping layer, the second capping layer containing titanium (Ti).
US10332905B2
A semiconductor memory device includes a conductive layer; a plurality of electrode layers stacked on the conductive layer; a semiconductor pillar extending through the electrode layers in a stacking direction and electrically connected to the conductive layer; and an insulating layer positioned between the semiconductor pillar and the electrode layers and extending along the semiconductor pillar. The semiconductor pillar has a channel portion extending through the electrode layers and a high impurity concentration portion positioned at a bottom end on a side of the conductive layer. The high impurity concentration portion includes an impurity of a higher concentration than an impurity concentration in the channel portion. The insulating layer has an end portion extending toward a center of the bottom end of the semiconductor pillar, and a boundary of the channel portion and the high impurity concentration portion is positioned above the end portion of the insulating layer.
US10332895B2
A semiconductor device includes a base substrate including an NMOS region and a PMOS region. The PMOS region includes a first P-type region and a second P-type region. The semiconductor device also includes an interlayer dielectric layer, a gate structure formed through the interlayer dielectric layer and including an N-type region gate structure formed in the NMOS region, a first gate structure formed in the first P-type region and connected to the N-type region gate structure, and a second gate structure formed in the second P-type region and connected to the first gate structure. The direction from the N-type region gate structure to the second gate structure is an extending direction of the gate structure, and along a direction perpendicular to the extending direction of the gate structure, the width of the first gate structure is larger than the width of the second gate structure.
US10332889B2
A method of manufacturing a semiconductor device is provided, which includes the steps of providing a capacitor structure, forming a conductive layer on the capacitor structure, performing a hydrogen doping process to the conductive layer, forming a metal layer on the conductive layer after the hydrogen doping process, and patterning the metal layer and the conductive layer to forma top electrode plate.
US10332887B2
A method for fabricating a buried word line (BWL) of a dynamic random access memory (DRAM) includes the steps of: forming a first doped region in a substrate; removing part of the first doped region to form a trench in the substrate; forming a gate structure in the trench; and forming a barrier structure between the gate structure and the first doped region.
US10332885B1
A capacitor includes a cell array including a plurality of cells and a fine tuning cell electrically coupled to the cell array by a first bus and a second bus. Each cell of the cell array includes a first number of fingers electrically coupled to the first and second bus, and a second number of fingers electrically coupled to the first and second bus. The fine tuning cell includes a third number of fingers electrically coupled to the first and second bus, and a fourth number of fingers electrically coupled to the first and second bus. The directional alignment of the first and second number of fingers is generally perpendicular, the directional alignment of the third and fourth number of fingers is generally perpendicular, and the second number of fingers is different than the fourth number of fingers.
US10332883B2
A semiconductor device comprises a first semiconductor fin arranged on a substrate, the first semiconductor fin having a first channel region, and a second semiconductor fin arranged on the substrate, the second semiconductor fin having a second channel region. A first gate stack is arranged on the first channel region. The first gate stack comprises a first metal layer arranged on the first channel region, a work function metal layer arranged on the first metal layer, and a work function metal arranged on the work function metal layer. A second gate stack is arranged on the second channel region, the second gate stack comprising a work function metal arranged on the second channel region.
US10332879B2
A fin-type field effect transistor comprising a substrate, at least one gate structure, spacers and source and drain regions is described. The substrate has a plurality of fins and a plurality of insulators disposed between the fins. The source and drain regions are disposed on two opposite sides of the at least one gate structure. The gate structure is disposed over the plurality of fins and disposed on the plurality of insulators. The gate structure includes a stacked strip disposed on the substrate and a gate electrode stack disposed on the stacked strip. The spacers are disposed on opposite sidewalls of the gate structure, and the gate electrode stack contacts sidewalls of the opposite spacers.
US10332877B2
A manufacturing method of a semiconductor device includes the following steps. A semiconductor substrate including at least one fin structure is provided. A gate material layer is formed on the semiconductor substrate, and the fin structure is covered by the gate material layer. A trench is formed partly in the gate material layer and partly in the fin structure. An isolation structure is formed partly in the trench and partly outside the trench. At least one gate structure is formed straddling the fin structure by patterning the gate material layer after the step of forming the isolation structure. A top surface of the isolation structure is higher than a top surface of the gate structure in a vertical direction for enhancing the isolation performance of the isolation structure. A sidewall spacer is formed on sidewalls of the isolation structure, and there is no gate structure formed on the isolation structure.
US10332867B2
An illumination assembly includes a substrate, a wiring structure, a reflecting layer and a plurality of light-emitting diodes. The wiring structure is formed on a part of the substrate, and includes a catalyst layer covering the part of the substrate, and a conducting layer formed on the catalyst layer. The reflecting layer is formed on another part of the substrate that is exposed from the wiring structure. The light-emitting diodes are disposed on the wiring structure and are electrically connected to the wiring structure.
US10332857B2
Systems and methods described herein may include a first semiconductor layer with a first lattice constant, a rare earth pnictide buffer epitaxially grown over the first semiconductor, wherein a first region of the rare earth pnictide buffer adjacent to the first semiconductor has a net strain that is less than 1%, a second semiconductor layer epitaxially grown over the rare earth pnictide buffer, wherein a second region of the rare earth pnictide buffer adjacent to the second semiconductor has a net strain that is a desired strain, and wherein the rare earth pnictide buffer may comprise one or more rare earth elements and one or more Group V elements. In some examples, the desired strain is approximately zero.
US10332852B2
A semiconductor device may include a semiconductor substrate, a first bonding pad provided on an upper surface of the semiconductor substrate and constituted of a metal including aluminum, a second bonding pad provided on the upper surface of the semiconductor substrate, and a first protrusion protruding from an upper surface of the first bonding pad. The first protrusion may be provided on the upper surface of the first bonding pad only at a position adjacent to a peripheral edge of the first bonding pad, the peripheral edge of the first bonding pad may be opposed to the second bonding pad.
US10332849B2
A semiconductor package device includes: (1) a substrate having a first surface; (2) a permeable element including a first portion disposed on the first surface of the substrate, a second portion protruding from the first portion, and a third portion disposed on the second portion and contacting the second portion of the permeable element; (3) a first electrical element disposed on the substrate and surrounded by the second portion of the permeable element; and (4) a coil disposed on the substrate and surrounding the second portion of the permeable element.
US10332836B2
An integrated circuit structure includes a first low-k dielectric layer having a first k value, and a second low-k dielectric layer having a second k value lower than the first k value. The second low-k dielectric layer is overlying the first low-k dielectric layer. A dual damascene structure includes a via with a portion in the first low-k dielectric layer, and a metal line over and joined to the via. The metal line includes a portion in the second low-k dielectric layer.
US10332830B2
A semiconductor package assembly having a first semiconductor package, with a first redistribution layer (RDL) structure, a first semiconductor die having through silicon via (TSV) interconnects formed passing therethrough coupled to the first RDL structure, and a second semiconductor package stacked on the first semiconductor package with a second redistribution layer (RDL) structure. The assembly further includes a second semiconductor die without through silicon via (TSV) interconnects formed passing therethrough, coupled to the second RDL structure, and a third semiconductor package stacked on the second semiconductor package, having a third redistribution layer (RDL) structure, a third semiconductor die without through silicon via (TSV) interconnects formed passing therethrough coupled to the third RDL structure. the third semiconductor package is coupled to the second RDL structure by second vias passing through a second molding compound between the third semiconductor package and the second RDL structure.
US10332827B2
Various applications of interconnect substrates in power management systems are described.
US10332826B2
A semiconductor device including a plurality of solder balls on a surface the semiconductor device, and a retaining body associated with a first solder ball of the plurality of solder balls, separating the first solder ball from at least a second solder ball of the plurality of solder balls. The retaining body includes a conductive portion and an insulating portion configured to cover the conductive portion. Also, a method of manufacturing a semiconductor device, including acts of forming a plurality of retaining bodies on a surface of a wiring substrate, each retaining body comprising a conductive portion and an insulating portion covering the conductive portion, each retaining body forming an opening section, and forming a solder ball in the opening section formed by each of the retaining bodies.
US10332806B2
Provided is a semiconductor device including a substrate having a P-type conductivity, a buried layer having an N-type conductivity, an NPN bipolar junction transistor (BJT), and a first well region having the P-type conductivity. The buried layer is located on the substrate. The NPN BJT is located on the buried layer. The first well region is located between the buried layer and the NPN BJT. The NPN BJT is separated from the buried layer by the first well region.
US10332805B2
A transistor module includes a substrate; a transistor on the substrate; a dielectric layer disposed over the transistor and the substrate; a metal layer disposed over the dielectric layer and the transistor, the metal layer contacting a portion of the transistor; a metal pillar disposed over the metal layer; and a dielectric cushion disposed between the metal layer and the metal pillar over the transistor. The dielectric cushion includes dielectric material that is softer than the metal pillar, for reducing strain on semiconductor junctions when at least one of tensile or compressive stress is exerted on the metal pillar with respect to the substrate. The transistor module may further include at least one buttress formed between the metal layer and the substrate, adjacent to the transistor, for further reducing strain on the semiconductor junctions by providing at least one corresponding alternative stress path that substantially bypasses the transistor.
US10332802B2
Integrated chips include a first device and a second device. The first device includes a stack of vertically arranged sheets of a first channel material, a source and drain region having a first dopant type, and a first work function metal layer formed from a first work function metal. The second device includes a stack of vertically arranged sheets of a second channel material, a source and drain region having a second dopant type, and a second work function metal layer formed from a second work function metal.
US10332798B2
A method of manufacturing a semiconductor device includes configuring a layout pattern; and forming conductive lines corresponding to the layout pattern on a substrate, wherein configuring the layout pattern includes: arranging pre-conductive patterns and post-conductive patterns for a first logic cell, a second logic cell, and a third logic cell; rearranging the pre-conductive patterns and the post-conductive patterns so that two conductive patterns that are adjacent to a boundary between two adjacent logic cells from among the first logic cell, the second logic cell, and the third logic cell are formed by different photolithography processes; and arranging conductive patterns for a dummy cell arranged between the second logic cell and the third logic cell.
US10332792B1
A method of forming conductive traces comprises forming a seed material over a surface of a substrate, forming a patterned mask material over the seed material to define trenches leaving portions of the seed material within the trenches exposed, and depositing a conductive material over the exposed seed material in the trenches to form conductive traces. At least a portion of the patterned mask material is removed, a barrier formed over side surfaces and upper surfaces of the conductive traces, and exposed portions of the seed material are removed. Conductive traces and structures incorporating conductive traces are also disclosed.
US10332790B2
A semiconductor device structure and method for forming the same are provided. The semiconductor device structure includes a first metal layer formed over a substrate and a dielectric layer formed over the first metal layer. The semiconductor device structure further includes an adhesion layer formed in the dielectric layer and over the first metal layer and a second metal layer formed in the dielectric layer. The second metal layer is electrically connected to the first metal layer, and a portion of the adhesion layer is formed between the second metal layer and the dielectric layer. The adhesion layer includes a first portion lining with a top portion of the second metal layer, and the first portion has an extending portion along a vertical direction.
US10332789B2
The present disclosure relates generally to techniques for forming a continuous adhesion layer for a contact plug. A method includes forming an opening through a dielectric layer to an active area on a substrate. The method includes performing a first plasma treatment along a sidewall of the opening. The method includes performing an atomic layer deposition (ALD) process to form a metal nitride layer along the sidewall of the opening. The ALD process includes a plurality of cycles. Each cycle includes flowing a precursor to form a metal monolayer along the sidewall and performing a second plasma treatment to treat the metal monolayer with nitrogen. The method includes depositing a conductive material on the metal nitride layer in the opening to form a conductive feature.
US10332785B2
A semiconductor device includes a substrate including a memory cell region and a contact region, a string structure including conductive layers and first interlayer insulating layers alternately stacked over the substrate and protruded toward a lower layer from the memory cell region toward the contact region, barrier rib patterns spaced apart from one another over the conductive layers in the contact region and configured to open the layers of the conductive layers in the contact region through the spaced spaces, and first contact plugs filled into the space between barrier rib patterns adjacent to each other and coupled to the conductive layers in the contact region.
US10332784B2
Formulations for stripping titanium nitride hard mask and removing titanium nitride etch residue comprise an amine salt buffer, a non-ambient oxidizer, and the remaining being liquid carrier includes water and non-water liquid carrier selected from the group consisting of dimethyl sulfone, lactic acid, glycol, and a polar aprotic solvent including but not limited to sulfolanes, sulfoxides, nitriles, formamides and pyrrolidones. The formulations have a pH <4, preferably <3, more preferably <2.5. The aqueous formulations having water as liquid carrier and semi-aqueous formulation having water and non-polar aprotic solvent(s) further contain acidic fluoride. The formulations offer high titanium nitride etch rates while provide excellent compatibility towards W, AlN, AlO, and low k dielectric materials. The formulations may comprise weakly coordinating anions, corrosion inhibitors, and surfactants. Systems and processes use the formulations for stripping titanium nitride hard mask and removing titanium nitride etch residue.
US10332781B2
Systems and methods for processing semiconductor structures are provided. The methods generally include determining a desired removal map profile for a device layer of a semiconductor structure, determining a set of process parameters for use in an epitaxial smoothing process based on the desired removal map profile, and selectively removing material from the device layer by performing an epitaxial smoothing process on an outer surface of the device layer.
US10332779B2
A method of fabricating a semiconductor device may include forming trenches in a substrate to define a fin structure extending in a direction, forming a device isolation layer to fill the trenches, and removing an upper portion of the device isolation layer to expose an upper side surface of the fin structure. The exposing of the upper side surface of the fin structure may include repeatedly performing an etching cycle including a first step and a second step, and an etching rate of the device isolation layer to the fin structure may be higher in the second step than in the first step.
US10332767B2
A substrate transport device includes a shaft, a first moving part for moving the shaft in a vertical direction and in a rotational direction, at least one rotation arm attached to the shaft, and a supporting part having an upper surface waved as seen front view, wherein the rotation arm includes a contact rotation arm which directly or indirectly contacts the upper surface of the supporting part.
US10332765B1
A wafer shipping device includes a box body having a first slot, a cover body having a second slot, and a sensing circuit module having a first sensor, a second sensor, an indication circuit and a warning device. The first slot and the second slot are used to collaboratively hold a semiconductor wafer. The first sensor and the first sensor are located in the box body for independently sensing whether the semiconductor wafer is inserted in the first slot and the second slot respectively. The indication circuit is electrically connected to the first sensor, the second sensor and the warning device, and correspondingly issued one of types of indication signals to the warning device in response to sensing results obtained from the first sensor and the second sensor respectively.
US10332763B2
Embodiments of the present disclosure relate to a lamp driver for lamps used as a source of heat radiation in a thermal processing chamber. The lamp driver includes a power source, at least two DC/DC converters, each DC/DC converter connected with the power source in series, a direct connection between the at least two DC/DC converters, and a line that is attached to the direct connection and attachable to a reference voltage. A plurality of the lamp drivers may be utilized to power a plurality of lamps positioned in a grounded lamphead assembly. The electrical potential between the lamps and the grounded lamphead assembly is reduced, which reduces the risk of arcing between the lamps and the lamphead assembly.
US10332761B2
A supply flow passage branches into a plurality of upstream flow passages. The plurality of upstream flow passages include a branching upstream flow passage that branches into a plurality of downstream flow passages. A plurality of discharge ports are respectively disposed at a plurality of positions differing in distance from a rotational axis and discharge processing liquids, supplied via the plurality of upstream flow passages, toward an upper surface of a substrate held by a substrate holding unit.
US10332754B2
There is provided a method of manufacturing a nitride semiconductor device. The method of manufacturing the nitride semiconductor device comprises: a first film forming process that forms a first film on a nitride semiconductor layer; an ion implantation process that implants a P-type impurity into the nitride semiconductor layer through the first film by ion implantation; a second film forming process that forms a second film on the first film, after the ion implantation process; and a heat treatment process that processes the nitride semiconductor layer by heat treatment after the second film forming process. This suppresses the surface of the nitride semiconductor layer from being roughened.
US10332752B2
A substrate includes a support layer, a column-shaped first bump, and a second bump. The support layer has a main surface. The first bump is filled with a first conductive metal and also has a first upper surface and a side surface. The second bump includes a plurality of fine particles formed of a second conductive metal and also has a third portion configured to cover the first upper surface and a fourth portion configured to cover a part of the side surface. The first bump is disposed on the main surface, or the first bump is connected to an electrode disposed on the main surface. The second bump has a convex second upper surface. A height of the fourth portion in a direction perpendicular to the first upper surface is smaller than that of the first bump.
US10332749B2
A method includes forming a plurality of first core features and one frame feature encircling the first core features. The first core features extend along a first direction and are arranged along a second direction perpendicular to the first direction, and each of the first core features is spaced apart from the frame feature by a first gap along the first direction. The method also includes forming a spacer layer filling the first gaps and forming a plurality of individual recesses entirely separated from each other. The method also includes forming a plurality of second core features in the individual recesses, wherein the second core features are entirely separated from each other and are spaced apart from the frame feature by the spacer layer. The method then removes the spacer layer to form a plurality of openings between the first core features, the second core features and the frame feature.
US10332747B1
In an exemplary method, a dielectric layer is deposited on a substrate. A masking layer is formed over a first region and a second region of the dielectric layer. The masking layer is made of an oxide of lanthanum. The masking layer is removed from the second region of the dielectric layer. A work function layer is formed directly on only the second region of the dielectric layer. The work function layer is made of titanium nitride that is formed by using a combination of titanium tetrachloride and ammonia (TiCl4/NH3).
US10332746B1
Embodiments disclosed herein relate generally to forming a gate layer in high aspect ratio trenches using a cyclic deposition-etch process. In an embodiment, a method for semiconductor processing is provided. The method includes performing a first deposition process to form a conformal film over a bottom surface and along sidewall surfaces of a feature on a substrate. The method includes performing an etch process to remove a portion of the conformal film. The method includes repeating the first deposition process and the etch process to fill the feature with the conformal film. The method includes exposing the conformal film to ultraviolet light.
US10332742B2
A method of synthesizing catalyst doped ZnS nanostructures including preparing a silicon substrate by vacuum depositing a metal catalyst nanostructure on an ultrathin silicon oxide layer, doping a zinc sulfide (ZnS) nanostructure with a catalyst of the metal catalyst nanostructure including at least one of gold (Au), manganese (Mn), and tin (Sn), and modulating ZnS intrinsic defects by the concentration of the catalyst and the size of the ZnS and metal catalyst nanostructures, in which the catalyst is dissolved in a nanowire of the ZnS nanostructure during growth, the concentration of the catalyst in the nanowire is dependent on the size of the catalyst, and the doping is tuned by growth conditions.
US10332741B2
A method for post chemical mechanical polishing clean is provided in the present invention, which include the steps of providing a substrate, performing a chemical mechanical polishing process, and performing a plurality of cleaning processes sequentially substrate using solutions of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) with different ratios and at different temperatures.
US10332737B2
A device for installing and removing lightbulbs comprises a removable gripping element including fingers configured for gripping a lightbulb, a telescopic cylinder coupled to the gripping element, wherein the telescopic cylinder is adjustable to different lengths, and a base housing, comprising: an electric motor located within the housing, a battery, a coupler for coupling the motor to the telescopic cylinder, the coupler comprising a tubular element, wherein the rotating shaft of the electric motor is inserted into an orifice in the first end, and wherein the second end is inserted into the proximal end of the telescopic cylinder, a cylindrical element that surrounds at least a portion of the tubular element, and at least one flange that connects the cylindrical element to the tubular element. The base housing also includes a switch on an exterior surface, the switch for activating power to the electric motor, wherein upon activation of power to the electric motor, the electric motor rotates the shaft, resulting in rotation of the coupler, the telescopic cylinder and the gripping element, thereby rotating a lightbulb to which the gripping element is attached.
US10332728B2
In a plasma processing apparatus, a heating element 50 provided in a susceptor 12 is electrically connected to a heater power supply 58 disposed at an outside of a chamber 10 via an internal conductor 51 provided through the susceptor 12, a power feed conductor 52 provided across a space SP, a filter unit 54 and an electric cable 56. A casing 110 of the filter unit 54 is vertically fastened, from a bottom of the chamber 10, to an opening 114 formed in a bottom wall (base) 10a of the chamber 10 to be adjacent to a cylindrical conductive cover 42 that surrounds a power feed rod 40. The casing 110 is physically or electrically coupled to the bottom wall 10a of the chamber 10.
US10332726B2
Methods and systems include supplying pulsed microwave radiation through a waveguide, where the microwave radiation propagates in a direction along the waveguide. A pressure within the waveguide is at least 0.1 atmosphere. A supply gas is provided at a first location along a length of the waveguide, a majority of the supply gas flowing in the direction of the microwave radiation propagation. A plasma is generated in the supply gas, and a process gas is added into the waveguide at a second location downstream from the first location. A majority of the process gas flows in the direction of the microwave propagation at a rate greater than 5 slm. An average energy of the plasma is controlled to convert the process gas into separated components, by controlling at least one of a pulsing frequency of the pulsed microwave radiation, and a duty cycle of the pulsed microwave radiation.
US10332724B2
In an embodiment of the invention there is a cyclotronic actuator. The actuator is defined by having a high-voltage plasma driver connected to a first electrode. The first electrode is surrounded by a dielectric material. A second electrode is grounded and placed away from the first electrode, such that a plasma arc is formed between the pair of electrodes when the high-voltage plasma driver is activated. A ring magnet surrounding the second electrode is configured to introduce a magnetic field locally to the plasma arc. The plasma arc will then discharge in a radial direction. The magnet creates a local magnetic field oriented vertically in a direction parallel to the axisymmetric orientation of the first and second electrodes to create a Lorentz Force. The force causes the plasma arc to move in a tangential direction and causes the plasma arc to discharge out in a circular pattern.
US10332723B1
Apparatus include a plurality of electrode arrangements spaced apart from each other opposite an ion propagation axis and defining an ion transfer channel that extends along the ion propagation axis that tapers between an input end that is situated to receive ions and an output end that is situated to couple the received ions to an input end of an ion guide. Methods include positioning a plurality of electrode arrangements at oblique angles opposite an ion propagation axis so as to form a ion transfer channel that tapers between an input end and an output end, and coupling the output end of the ion transfer channel to an input end of an ion optical element so as to direct ions in the ion transfer channel into the ion optical element. Related systems are also disclosed.
US10332720B2
There is provided a charged particle system (100) that has: illumination optics (104) for illuminating a sample with charged particles; an imaging deflector system (112) disposed behind an objective lens (110); a detector (116) having a detection surface (115), imaging optics (114) disposed behind the imaging deflector system (112) and operative to focus the charged particles as diffraction discs (2) onto the detection surface (115); a storage unit (120) for storing intensity information detected by the detector (116); and a controller (130) for controlling the imaging deflector system (112). The controller (130) controls the imaging deflector system (112) to cause the charged particles passing through a given position of particle impingement on the sample to be deflected under successively different sets of deflection conditions and to bring the diffraction discs (2) into focus onto successively different regions of the detection surface (115).
US10332719B2
A device which computes an angular range of illumination of an electron beam in which aberrations in an optical system can be measured efficiently by a tableau method. The device (100) includes an aberration coefficient information acquisition portion (112) for obtaining information about aberration coefficients of the optical system, a phase distribution computing portion (114) for finding a distribution of phases in the electron beam passed through the optical system on the basis of the information about the aberration coefficients, and an angular range computing portion (116) for finding the angular range of illumination on the basis of the distribution of phases found by the phase distribution computing portion (114).
US10332714B2
Provided is a trip mechanism for DC molded case circuit breaker, in which the insulating distance between the poles increases without any increase in whole product size, thereby reliably providing a trigger output against an over current and a fault current instantaneous breaking required. The trip mechanism includes a trip mechanism part including an instantaneous trip mechanism, the instantaneous trip mechanism including a movable member to operate according to a fault current instantaneous breaking required, and a thermal trip mechanism including a bimetal to operate according to an over current, the trip mechanism part being provided for one of two adjacent poles; a crossbar that is rotatable by contacting and pressing of the movable member of the instantaneous trip mechanism or the bimetal of the thermal trip mechanism; and a shooter that is provided to be rotatable by contacting of the crossbar rotating.
US10332711B2
An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator and two movable contacts. The switch further including one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
US10332693B2
A supercapacitor electrode comprising a mixture of graphene sheets and humic acid, wherein humic acid occupies 0.1% to 99% by weight of the mixture and the graphene sheets are selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 5% by weight of non-carbon elements wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, chemically functionalized graphene, or a combination thereof; and wherein said mixture has a specific surface area greater than 500 m2/g.
US10332690B2
The present invention provides a method of producing a composite photocatalyst having a remarkable water splitting activity, which is capable of efficiently loading a co-catalyst having a small particle size in a highly dispersed manner on a surface of an optical semiconductor. According to the present invention, the method of producing a composite photocatalyst from a plurality types of optical semiconductors includes a step of heating a solid-liquid mixture containing a solvent, a co-catalyst or a co-catalyst source, and a plurality of types of optical semiconductors by irradiating the solid-liquid mixture with microwave.
US10332685B2
A multilayer ceramic capacitor includes a ceramic body, an active layer, dielectric layers being interposed between first internal electrodes and second internal electrodes, an upper cover layer, a lower cover layer, a first external electrode and a second external electrode covering first and second ends of the ceramic body, and the multilayer ceramic capacitor comprising a plurality of internal electrodes disposed within the lower cover layer, when a distance of a longitudinal margin portion from a boundary of a ceramic body of the plurality of internal electrodes disposed in the lower cover layer to an overlapping area is indicated as G, and widths of an upper band portion and a lower band portion of an external electrode disposed in an upper surface and a lower surface at the boundary of the ceramic body are indicated as E1 and E2, G is greater than E1 and G is greater than E2.
US10332672B2
Provided is a heat radiation unit for radiating heat generated during operation of a wireless power transmitting or receiving device and includes a plurality of thermally conductive metal layers stacked in two or more layers and an adhesive layer for attaching the thermally conductive metal layers, to prevent lowering of the charging efficiency and improve the heat radiation performance.
US10332668B2
A copper winding structure includes a first copper sheet having a first body, a first extending part and a second extending part located at two ends of the first body, respectively; and a second copper sheet having a second body, a third extending part and a fourth extending part located at two ends of the second body, respectively, the third extending part intersects with the fourth extending part such that the second body is partially overlapped; after the first copper sheet is stacked with the second copper sheet, the second extending part aligns with the third extending part, and the first extending part and the fourth extending part are located on the same side with respect to the second extending part and the third extending part.
US10332662B2
An apparatus for, and a method of controlling magnetic anisotropy in a magnetic material comprises directing a layer of powdered metal material to a heat conducting substrate. Electromagnetic energy is applied to the powdered material sufficient to melt the powdered material which is subsequently cooled to create a solid layer on the substrate. An external magnetic field is applied to the material during at least the cooling step so as to imprint the solid magnetic material layer with magnetic anisotropy. Various novel magnetic structures can be fabricated using the technique.
US10332661B2
The invention provides rare earth-free permanent magnetic materials and methods of making them. The materials can be used to produce magnetic structures for use in a wide variety of commercial applications, such as motors, generators, and other electromechanical and electronic devices. Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply. The invention provides two different types of magnetic materials. The first type is based on an iron-nickel alloy that is doped with one or more doping elements to promote the formation of L10 crystal structure. The second type is a nanocomposite particle containing magnetically hard and soft phases that interact to form an exchange spring magnetic material. The hard phase contains Fe or FeCo, and the soft phase contains AlMnC.
US10332657B2
A method for forming gold nanowires on a substrate is provided. The method includes a) attaching noble metal nanoparticles onto the substrate; and b) contacting the noble metal nanoparticles with an aqueous solution comprising a ligand, gold ions and a reducing agent, wherein the ligand is an organic compound having a thiol group. Gold nanowires formed by a method according to the method, and an electronic device comprising the gold nanowires are also provided.
US10332653B2
A wireline system includes a control system, a downhole tool, and a wireline cable coupling the downhole tool and the control system. The wireline cable includes a plurality of conductors, which includes a core conductor and a concentric conductor disposed around the core conductor, wherein two of the plurality of conductors form a conductor pair, and wherein each of the plurality of conductors is configured to transmit power, data, or both, between the control system and the downhole tool. The wireline cable further includes one or more insulative layers, wherein at least one insulative layer is disposed between any two conductors.
US10332650B2
The present invention relates to a carbon-metal composite and a method for preparing carbon-metal composite, and more particularly to a method for preparing carbon-metal composite, which: is capable of reducing graphene oxide; which is capable of decreasing the steps and the time for hybridization of graphene which is obtained from the reduction, graphene or carbon nanotube, with metal; which is done under mild condition and; also which is capable of lowering resistivity of the carbon-metal composite. The method for preparing the carbon-metal composite comprises the steps of: reacting a composition containing a carbon compound selected from a group consisting of graphene, graphene oxide and carbon nanotube, a metallic precursor, a reducing agent and a solvent; and removing solvent partially or wholly from the composition reaction-completed. Wherein the reducing agent is selected from a group consisting of ethylene glycol, diethylene glycol, 1,2-propylene glycol, triethylene glycol, tetraethylene glycol, 1,3-propylene glycol, glycerol, and mixtures thereof.
US10332647B2
Provided is a light source device for a collimator capable of improving an illuminance ratio in an inside of a visible light's radiation field to an outside thereof. The light source device for a collimator includes an LED with a light emitting portion that irradiates visible light and a visible light guide member. The visible light guide member may have a main body, a spacer, and a base. In the main body, a through-hole of a truncated conical shape is formed. The through-hole of a truncated cone shape forms a first opening at a first surface of the main body on a side of the LED and a second opening a second surface of the main body opposite to the first surface. The first opening may be smaller than the second opening. The conical surface of the through-hole having the truncated conical shape is formed as a mirror surface which reflects the visible light irradiated from the LED with high reflectance.
US10332640B2
A toroidal field coil for generating a toroidal magnetic field in a nuclear fusion reactor includes a toroidal plasma chamber having a central column. The toroidal field coil has a plurality of windings configured to pass through the central column and around the outside of the plasma chamber. Each winding includes a cable having a plurality of stacked high temperature superconductor (HTS) tapes, each HTS tape including one or more layers of a high temperature superconductor material. With the toroidal field coil in place in the reactor, a face of each HTS tape is substantially perpendicular to a direction of maximal neutron flux during reactor operation as the cable passes through the center column.
US10332637B2
Symptoms and methods for predicting the incidence of a disease or disorder are disclosed. A system for predicting the incidence of a disease or disorder includes a web-based symptom checker for producing a structured dataset, a data analysis component for producing a multivariate dataset from the structured dataset, and a feature construction component for producing a linear combination of orthogonal symbols representative of a disease or disorder. A method for predicting the incidence of a disease or disorder includes producing a multivariate dataset representing patient symptom counts, performing feature construction analysis on the multivariate dataset, creating a time series model using weekly illness incidence data, and applying the time series model to new illness incidence data to predict the incidence of a disease or disorder in the future.
US10332629B2
A method for displaying medical data includes receiving physiological data from a first medical monitoring device. The physiological data is obtained on a continuous basis. Physiological data is received from a second medical monitoring device. The physiological data from the second medical monitoring device is obtained on a non-continuous basis. The physiological data received from the first medical monitoring device and the physiological data received from the second medical monitoring device are displayed on a central display station. The central display station is located centrally within a care unit of a caregiving facility.
US10332628B2
A method comprises receiving by a control system a sequence of symbols, translating the received sequence of symbols into a batch of commands parsable by an electronic controller of the electromechanical medical device, sending the batch of commands from the control system to the electromechanical device, and causing by the electronic controller the electromechanical medical device to execute the batch of commands on the electromechanical medical device.
US10332627B1
A server, a method, and non-transitory computer readable medium are provided. The method includes receiving at least one message from a corresponding number of gateways, wherein each received message includes a first identification parameter associated with each gateway, and a second identification parameter associated with a beacon. The method also includes identifying locations of the beacon as the beacon moves throughout an environment. The method further includes deriving a time duration that the beacon is located in each of the identified locations. The method additionally includes determining a value associated with the beacon at each of the identified locations, the value is based on each location and the time duration that the beacon is located in each of the identified locations, each location is associated with a predetermined value.
US10332624B2
An intelligent care provider medical practice system which learns the care provider's preferences and historical diagnosis for predicting and treating patients based on provided information. The system makes use of one or more medical knowledge bases and utilizes artificial intelligence and reasoning to learn the provider's preferences and tendencies. The system also automatically generates the provider's notes, treatment plans, and other medical practice actions for treating, billing, and processing the patient after an exam or visit.
US10332623B2
A computer-implemented method includes establishing a communications link, via a short-range wireless protocol, between a mobile computing device and a medicament delivery device. A user input selecting a motion profile of the medicament delivery device is then received in response to an input prompt. A wireless signal is received from the medicament delivery device, the wireless signal associated with an actual motion profile of the medicament delivery device. A notification is produced to indicate a motion difference between the actual motion profile and the target motion profile. In some embodiments, the method optionally includes modifying the target motion profile based on the motion profile over a time period of at least one week, the notification indicating a motion difference between the motion profile and the modified target motion profile.
US10332618B2
The inventive subject matter provides apparatus, systems, and methods that improve on the pace of discovering new practical information based on large amounts of datasets collected. In most cases, anomalies from the datasets are automatically identified, flagged, and validated by a cross-validation engine. Only validated anomalies are then associated with a subject matter expert who is qualified to take action on the anomaly. In other words, the inventive subject matter bridges the gap between the overwhelming amount of scientific data which can now be harvested and the comparatively limited amount analytical resources available to extract practical information from the data. Practical information can be in the form of trends, patterns, maps, hypotheses, or predictions, for example, and such practical information has implications in medicine, in environmental sciences, entertainment, travel, shopping, social interactions, or other areas.
US10332615B2
A method, system and computer readable medium for tracking changes in average glycemia in diabetes is based on a conceptually new approach to the retrieval of SMBG data. Using the understanding of HbA1c fluctuation as the measurable effect of the action of an underlying dynamical system, SMBG provides occasional glimpses at the state of this system and, using these measurements, the hidden underlying system trajectory can be reconstructed for individual diabetes patients. Using compartmental modeling a new two-step algorithm is provided that includes: (i) real-time estimate of HbA1c from fasting glucose readings, updated with any new incoming fasting SMBG data point(s), and (ii) initialization and calibration of the estimated HbA1c trace with daily SMBG profiles obtained periodically. The estimation of these profiles includes a factorial model capturing daily BG variability within two latent factors.
US10332606B2
A method of operating a memory controller includes classifying a plurality of memory cells in an erase state into a plurality of groups, based on erase state information about the plurality of memory cells in the erase state; setting at least one target program state for at least some memory cells from among memory cells included in at least one of the plurality of groups; and programming the at least some memory cells for which the at least one target program state has been set, to a program state other than the at least one target program state from among the plurality of program states.
US10332605B2
Methods of operating a memory device include comparing input data to data stored in memory cells coupled to a data line, comparing a representation of a level of current in the data line to a reference, and determining that the input data potentially matches the data stored in the memory cells when the representation of the level of current in the data line is less than the reference. Methods of operating a memory device further include comparing input data to first data and to second data stored in memory cells coupled to a first data line or to a second data line, respectively, comparing representations of the levels of current in the first data line and in the second data line to a first reference and to a different second reference, and deeming one to be a closer match to the input data in response to results of the comparisons.
US10332602B2
Provided is a method of operating a nonvolatile memory device including a memory cell array connected to a plurality of lines. The method may include performing a first loop including a first recovery section having a first operation time period, on a first line of the plurality of lines by applying a first voltage for a time period, wherein the first voltage is discharged with a first slope, and performing a second loop after the first loop including a second recovery section having a second operation time period that is different from the first operation time period, on the first line by applying a second voltage for a time period, wherein the second voltage is discharged with a second slope less than the first slope.
US10332588B2
In an aspect of the disclosed technology, a SRAM device includes a first stack of transistors and a second stack of transistors arranged on a substrate. Each of the first and second stacks includes a pull-up transistor, a pull-down transistor and a pass transistor, where each of the transistors includes a horizontally extending channel. In each of the first and second stacks, the pull-up transistor and the pull-down transistor have a common gate electrode extending vertically therebetween, and the pass transistor has a gate electrode separated from the common gate electrode. A source/drain of each of the pull-up transistor and the pull-down transistor and a source/drain of the pass transistor included in one of the first stack and the second stack are electrically interconnected with the common gate electrode of the pull-up transistor and the pull-down transistor included in the other of the first stack and the second stack.
US10332586B1
Systems, apparatuses, and methods related to subrow addressing for electronic memory and/or storage are described. Independent subrow addressing may enable energy consumed by performance of an operation on a particular subset of data values stored by a row to more closely correspond to the size of the particular subset of data values relative to energy consumed by addressing and activating the complete row. For instance, one such apparatus includes a plurality of subrows within a row of memory cells and a controller configured to selectably address and manage an activation state of each subrow of the plurality of subrows. The apparatus further includes subrow driver circuitry coupled to the controller. The subrow driver circuitry is configured to maintain one or more subrows of the plurality in the activation state based at least in part on signaling from the controller.
US10332585B2
A semiconductor memory apparatus includes a driving voltage providing circuit suitable for selectively providing a first driving voltage, a second driving voltage, a third driving voltage, a ground voltage, and a precharge voltage to a first driving line and a second driving line in response to an active signal, a cell characteristic information signal, and a precharge signal. The semiconductor memory apparatus also includes a sense amplifier suitable for operating by being applied with voltages provided from the first and second driving lines.
US10332584B2
The present invention is provided with; subword drivers SWD for driving subword lines SWL, a selection circuit for supplying either negative potential VKK1 or VKK2 to the subword drivers SWD, and memory cells MC that are selected in the case when the subword line SWL is set to an active potential VPP and are not selected in the case when the subword line SWL is either a negative potential VKK1 or VKK2.
US10332575B2
Methods and systems that may employ adjustments to the latencies in the input circuitry to reduce the latency during initialization period and to prevent undesired effects from metastability are provided. Disclosed systems may employ adjustable delays during a signal training process to cause adjustments in the timing of the host that will reduce latencies during write cycles. Certain systems may further reduce latencies by employing input logic circuitry that produces a valid, consistent signal from the bidirectional connection, such as a gate, and preventing metastability in input circuitry altogether. Such circuitry allows bypassing of initialization periods to stabilize the input, and allows further reduction of the initialization.
US10332574B2
An embedded memory includes a memory interface circuit, a cell array, and a peripheral circuit. The memory interface circuit receives at least a clock signal, a non-clock signal, and a setup-hold time control setting, and includes a programmable path delay circuit that is used to set a path delay of at least one of a clock path and a non-clock path according to the setup-hold time control setting. The clock path is used to deliver the clock signal, and the non-clock path is used to deliver the non-clock signal. The peripheral circuit is used to access the cell array according to at least the clock signal provided from the clock path and the non-clock signal.
US10332572B2
Provided is a memory device including a substrate, isolation structures, conductive pillars, and bit-line structures. The substrate includes active areas. The active areas are arranged as a first array. The isolation structures are located in the substrate and extending along a Y direction. Each of the isolation structures is arranged between the active areas in adjacent two columns. The conductive pillars are located on the substrate and arranged as a second array. The conductive pillars in adjacent two rows are in contact with the active areas arranged as the same column, to form a first contact region and a second contact region. The bit-line structures are arranged on the substrate in parallel along a X direction. Each of the bit-line structures is in contact with the active areas arranged as the same column, to form a third contact region between the first and second regions.
US10332564B1
Devices, systems and methods are disclosed for generating video tags associated with previously captured video data. During a recording mode, video data may be captured and uploaded to a server. In response to a command, video may be tagged and selected, for example for inclusion in a video summary. During a standby mode, video data may be captured and temporarily stored in a buffer. In response to the command, video data stored in the buffer prior to the command may be selected. The video data may be selected for further processing and/or uploaded to the server.
US10332558B2
There is provided an editing apparatus, including a route information generation section which generates route information from an imaging start point up to an imaging end point of a moving image, and a control information generation section which generates control information for controlling a reproduction speed of the moving image based on the route information.
US10332555B1
An actuator pivot shaft assembly for a multi-actuator data storage device may include one or more annular grooves extending radially inward from an outer surface of the pivot shaft, thereby desirably weakening or structurally decoupling the shaft between the actuators, to assist with inhibiting transmission of vibration between the actuators during operation. The shaft assembly may further include an elastomeric damper positioned within the annular groove(s), to damp transmission of vibrational forces between the actuators through the shared shaft.
US10332552B2
A suspension baseplate is stamped at its distal end to which the load beam is mounted. The stamping operation smoothes out roughness in the edge of the baseplate and lowers its height slightly so that, along the line on the baseplate which last contacts the load beam as the load beam is leaving the baseplate, that line on the baseplate is smooth and free of burrs and similar defects. By eliminating burrs on the surface to which the load beam is mounted, variations in the pitch and twist of the load beam are reduced.
US10332548B2
A magnetic recording medium processing device may include a magnetic recording medium insertion slot; a medium pathway connected to the magnetic recording medium insertion slot; a magnetic head arranged to face the medium pathway; and an interference magnetic field generating device structured to generate interference magnetic fields outside the magnetic recording medium insertion slot. The interference magnetic field generating device may include a coil, a capacitor, a first power line, a second power line to which a voltage different from that to the first power line is applied, multiple switches structured to switch the connections between the first power line and the second power line of the coil and the capacitor, and a switch control unit structured to control the multiple switches.
US10332544B2
A microphone apparatus including a MEMS transducer, an acoustic activity detector, a local oscillator, and an external-device interface standardized for compatibility with devices from different manufacturers is disclosed. The microphone apparatus has a first mode of operation during which the apparatus is clocked by the internal clock signal when the acoustic activity detector processes digital data for acoustic activity, and a second mode of operation during which the microphone apparatus is clocked by an external clock signal received at the external-device interface after voice activity is detected by the acoustic activity detector.
US10332541B2
A method for estimating and minimizing a noise power level difference (NPLD) between a primary channel and a reference channel of an audio device, includes receiving, by a primary channel, an audio signal that has a speech signal level and a noise signal level; receiving, by a reference channel, the audio signal with another speech signal level and another noise signal level; using the reference channel to estimate the noise signal level in the primary channel by reducing the another speech signal level; and compensating for a difference between the noise signal level and the another noise signal level to minimize a noise power level difference NPLD between the primary channel and the reference channel.
US10332540B2
Example embodiments disclosed herein relate to filter coefficient updating in time domain filtering. A method of processing an audio signal is disclosed. The method includes obtaining a predetermined number of target gains for a first portion of the audio signal by analyzing the first portion of the audio signal. Each of the target gains is corresponding to a linear subband of the audio signal. The method also includes determining a filter coefficients for time domain filtering the first portion of the audio signal so as to approximate a frequency response given by the target gains. The filter coefficients are determined by iteratively selecting at least one target gain from the target gains and updating the filter coefficient based on the selected at least one target gain. Corresponding system and computer program product for processing an audio signal are also disclosed.
US10332534B2
An audio stream is encoded for transmission to a receiving device via a communications channel. The to-be transmitted audio stream is received at an audio encoder executed on a processor. The processor has an amount of available processing resources. An available bandwidth of the communications channel is determined. Based on the determined bandwidth, a portion of the available processing resources is allocated to the audio encoder. The allocated portion is greater if the determined bandwidth is below a bandwidth threshold. The audio encoder encodes the audio stream using the allocated portion of processing resources, and transmits the encoded audio stream to the receiving device via the communications channel.
US10332528B2
In accordance with an example embodiment of the present invention, disclosed is a method and an apparatus thereof for controlling a concealment method for a lost audio frame of a received audio signal. A method for a decoder of concealing a lost audio frame comprises detecting in a property of the previously received and reconstructed audio signal, or in a statistical property of observed frame losses, a condition for which the substitution of a lost frame provides relatively reduced quality. In case such a condition is detected, the concealment method is modified by selectively adjusting a phase or a spectrum magnitude of a substitution frame spectrum.
US10332527B2
Provided are an apparatus and a method for encoding and decoding audio signals, in which when determining a masking threshold according to a psychoacoustic model, accurate results may be obtained for a short window-based audio signal as well as for a long window-based audio signal. The apparatus for encoding audio signals according to the present invention comprises a masking threshold determining unit configured to determine, on the basis of a frame length of a first window having a divided audio signal, a masking threshold for a second window that has a different frame length from that of the first window.
US10332521B2
A method may include obtaining information from multiple local devices. The information may indicate a configuration of each of the multiple of local devices with respect to a capability to: receive and broadcast remote audio and display transcriptions of the remote audio. The method may also include establishing a communication session with a remote device and after establishing the communication session with the remote device, obtaining the remote audio from the remote device. The method may further include directing the remote audio to a first local device of the multiple local devices based on the first local device being configured to receive and broadcast remote audio. The method may also include directing transcript data that includes a transcription of the remote audio to a second local device of the multiple local devices based on the second local device being configured to display transcriptions of the remote device audio.
US10332508B1
An automatic speech recognition (ASR) system uses recurrent neural network (RNN) encoding to create a feature vector corresponding to a word sequence ASR result where the feature vector incorporates data from different hierarchies (i.e., frame level, phone level, etc.) of the ASR processing. The feature vector may be used with a trained classifier to confirm that the ASR result was correct, or to otherwise assign a confidence score to the ASR results.
US10332506B2
Disclosed are systems and methods for improving interactions with and between computers in content searching, generating, hosting and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The systems interact to identify and retrieve data within or across platforms, which can be used to improve the quality of data used in processing interactions between or among processors in such systems. The disclosed systems and methods provide systems and methods for automatic creation of a formatted, readable transcript of multimedia content, which is derived, extracted, determined, or otherwise identified from the multimedia content. The formatted, readable transcript can be utilized to increase accuracy and efficiency in search engine optimization, as well as identification of relevant digital content available for communication to a user.
US10332495B1
Disclosed in improved in vehicle karaoke that receives a request from a user in a vehicle to play a karaoke song and displaying, to at least the user, an interface showing text of the selected song. In vehicle karaoke can record, with a microphone in the interior of the vehicle, audio of a performance of the song by the user and overlay the recording with the selected song over a speaker interior of the vehicle.
US10332487B2
An information display system comprising a tag including a signal receiver, a data code, and an image-memory-type display medium that displays an image based on an image display signal; and a reader/writer including a contact electrode unit that contacts the signal receiver, an information recognition unit that recognizes the data code and the display image, a memory that stores image display information corresponding to information included in the data code and information of a data code, and a writing unit that transmits an image display signal based on the image display information through the electrode unit. The recognition unit reads and compares the information included in the read data code with the information of the stored data code, and when identical, the writing unit transmits the image display signal through the electrode unit to display the image on the display medium, which is checked by the recognition unit.
US10332484B2
A terminal provided in the present disclosure, acquires values of one or more monitoring parameters. The terminal sets, according to the monitoring parameter, a blue light output value of a to-be-adjusted pixel displayed on a screen of the terminal when a value of at least one of the monitoring parameters meets a preset rule corresponding to the monitoring parameter, where the blue light output value is less than an original blue light output value of the to-be-adjusted pixel. The screen of the terminal displays the to-be-adjusted pixel according to the blue light output value such that the terminal can set, according to the monitoring parameter, the blue light output value of the to-be-adjusted pixel displayed on the screen of the terminal, and therefore the blue light can be adjusted intelligently, and an objective of vision protection without affecting user experience is achieved.
US10332482B2
A medical device, such as a peritoneal dialysis machine, includes a sensor for sensing motion and/or user proximity in the vicinity of the medical device for the purpose of automated dimming a display of the medical device. In the event of a lack of user-activity on a machine interface and a lack of movement detected by the proximity sensor, the machine display is automatically dimmed to minimize power-consumption and provide an enhanced medical device for night therapies in a home or clinic environment. The machine display may be dimmed in the event of an alarm-free machine condition, where no machine activity is detected and/or where no movement is detected by the sensor over one or more time periods. When machine activity is detected, when movement is detected by the proximity sensor, and/or in the event of a machine alarm or warning, the machine display may be automatically undimmed.
US10332478B2
System and method for displaying digital content on a display device, including a display screen, a structural assembly, secured to the rear face of the display screen, and a processing controller within the structural assembly, including a memory, display processor, and power distribution and adaptation module. An external power assembly configured to connect to an external power supply, a connector cord configured to connect the power assembly and the power distribution and adaptation module, and a case for the display device, configured to couple to the display screen to provide structural rigidity during shipping, are also presented. An application is provided, configured to run on a computer with memory, processor, and user input device, and configured to communicate via the internet with the processing controller of the display device and a service cloud including a server, memory, and processor, to control the display of digital content on the display screen.
US10332477B2
A display device includes a display array and a driving circuit. The display array includes at least one scan line. The driving circuit drives the display array and includes a timing controller and a gate driver. The timing controller controls a refresh rate of the display array at a first frequency or a second frequency, where the first frequency is higher substantially than the second frequency. The gate driver switches between supplying an enable voltage signal and a disable voltage signal to the scan line. Under the first or frequency, a corresponding first or second voltage difference exists between the enable voltage signal and the disable voltage signal. The first voltage difference is substantially greater than the second voltage difference, and the enable voltage signal has a same enable period.
US10332475B2
Disclosed is a gate voltage driving device of a liquid crystal display device. The gate voltage driving device includes a voltage input module, a control module, and a voltage output module. Further disclosed are a gate voltage driving method, a driving circuit, and a liquid crystal display panel. A scanning signal is enabled to have different chamfers by improving a structure of a gate driving circuit, and only two control terminals are needed. Control logic is simple, and improvement costs are relatively low.
US10332472B2
A display device includes a display panel including a plurality of pixels, a power supply which supplies a common voltage and a distribution voltage to the display panel, and a timing controller which outputs a selection signal corresponding to image data input from the outside where the power supply supplies the distribution voltage having a value corresponding to the selection signal to the display panel.
US10332471B2
Embodiments of the present disclosure provide a pulse generation device, an array substrate, a drive circuit and a driving method. The pulse generation device includes: a reset module making a pulse output end output low level, in response to a low level of a first input end or in response to a low level of a second input end and a low level of a third input end; a pulse generation module making the pulse output end output a high level, in response to a high level of the first input end, a high level of the second input end and a low level of the third input end or in response to a high level of the first input end, a low level of the second input end and a high level of the third input end.
US10332468B2
Disclosed is a gate driving circuit and a driving method thereof. The circuit includes: a pull-up control module; a pull-up module; a pull-down module, used to pull down level of an output terminal of the pull-up control module and level of a scanning signal of a current-stage gate driving circuit, under the control of a clock signal of a second-succeeding-stage gate driving circuit; and a pull-down maintaining module, used to maintain level of the output terminal of the pull-up control module and level of the scanning signal of the current-stage gate driving circuit both at a predetermined low level, under the control of the level of the output terminal of the pull-up control module and an external signal.
US10332467B2
Present invention relates to a display device and a driving method thereof. In particular, the present invention is to provide a display device and a driving method thereof, which block at least one of scan signals output from gate lines according to an enable signal.
US10332464B2
An array substrate includes a base substrate, rows of gate lines on the base substrate, columns of data lines on the base substrate, and an array of sub-pixels defined by the gate lines and the data lines. The sub-pixels include first monochrome sub-pixels, second monochrome sub-pixels, third monochrome sub-pixels and white sub-pixels. Monochromatic lights from the first monochrome sub-pixels, the second monochrome sub-pixels and the third monochrome sub-pixels are capable of being mixed into white light. The gate lines are divided into a first kind of gate lines and a second kind of gate lines depending on whether an ordinal number of each of the rows of gate lines is an odd number or an even number. The monochrome sub-pixels are driven by the first kind of gate lines, and the white sub-pixels are driven by the second kind of gate lines.
US10332461B2
It is provided a grayscale voltage debugging method for debugging a display device including a white subpixel, including a first step of, in a state where the white subpixel is disenabled and subpixels in other colors are enabled, adjusting a respective to-be-adjusted grayscale voltage applied to each of the subpixels in other colors, so that a first actually-measured Gamma curve corresponding to the respective adjusted grayscale voltage is located within an acceptable range of a standard Gamma curve, and a second step of, in a state where the white subpixel and the subpixels in other colors are all enabled, acquiring a second actually-measured Gamma curve and in the case that the second actually-measured Gamma curve is not located within the acceptable range, changing the respective adjusted grayscale voltage to obtain a new respective to-be-adjusted grayscale voltage, and returning to the first step.
US10332459B2
The present application discloses a display device and a driving method. The display device comprises: a power reset circuit and a source drive chip for driving a display panel to display. An input terminal of the power reset circuit is connected with a power signal output terminal, a control terminal of the power reset circuit is connected with a reset signal terminal, an output terminal of the power reset circuit is connected with a power signal input terminal of the source drive chip. The power reset circuit is used for resetting a power signal synchronously when receiving a reset signal, and inputting the reset power signal into the power signal input terminal of the source drive chip.
US10332457B2
A display apparatus includes a backlight unit including a first light source emitting a first light having at least two peak wavelengths and a second light source emitting a second light having a peak wavelength different from the two peak wavelengths, and a display panel receiving the first and second lights to display an image corresponding to an input image data, and a light source driver which analyzes a color information of predetermined dimming areas on the basis of the input image data and controls a contribution of the first and second light sources with respect to a target brightness of each of the predetermined dimming areas in accordance of the color information.
US10332454B2
Provided is a pixel drive circuit including: a first transistor, configured to transmit a signal of a first power source voltage end to a first node in response to an enable signal of a light-emitting signal control end; a first drive transistor, configured to generate a drive current on a conduction path from the first node to a third node according to an enable signal of a second node, the first drive transistor being an N-type transistor; a second drive transistor, configured to generate a drive current on the conduction path from the first node to the third node according to an enable signal of the second node, the second drive transistor being a P-type transistor; and a second transistor, configured to transmit a signal of a polarity switching signal end to the second node in response to an enable signal of a first scan signal end.
US10332450B2
An electro-optical device includes a first data transfer line that intersects a scan line, a second data transfer line, a first transistor that controls coupling between the first data transfer line and the second transfer line. The two or more second data transfer lines are respectively coupled to the first data transfer line via first capacitors, and when a collection of pixel circuits that are coupled to the same first data transfer line via the second data transfer lines is referred to as a pixel string, the second data transfer lines are provided to pixel circuits less than the pixel circuits included in the pixel string.
US10332440B2
A display device includes a display unit having a non-rectangular shape. A plurality of data lines and a plurality of gate lines intersect each other in the display unit. A plurality of gate in panel (GIP) circuits are arranged in a non-display region of the display device that has a shape corresponding to the shape of the display unit, and each of the GIP circuits is connected to a respective gate line. A plurality of GIP lines are connected to the GIP circuits. The GIP lines transmit respective gate control signals to the GIP circuits, and the GIP circuits apply gate signals to the gate lines based on the gate control signals. Source lines are arranged in the non-display region, and transmit respective data signals to the plurality of data lines. At least one data line is arranged parallel to the gate lines in the non-display region.
US10332439B2
In a display device, an image may be three-dimensionally output by modifying a display area corresponding to an area selected based on a visual attribute of the image to be output on a display unit of the display device. The display device may include a display unit configured such that at least one portion of the display unit is modified, and a controller configured to display an output target image on the display unit and control to modify the display unit based on a visual attribute of a portion of the output target image. The controller may be configured to determine a modification target area in the output target image based on the visual attribute of components included in the output target image, and modify a display area of the display unit corresponding to the determined modification target area.
US10332433B2
A display device is disclosed. In one aspect, the device includes a substrate including a display area and a non-display area surrounding the display area and a plurality of pixels formed in the display area. The device also includes a plurality of signal lines formed over the substrate and electrically connected to the pixels and an encapsulation layer formed over the substrate, wherein the signal lines include. The device further includes a plurality of gate lines and a plurality of data lines formed over the substrate and a first crack sensing line electrically connected to a first one of the data lines and overlapping the encapsulation layer in the depth dimension of the display device.
US10332432B2
A display device includes a display panel, a timing controller, and a data driver. The display panel includes a central region and a peripheral region. The timing controller converts image data to converted data so that a maximum luminance of the peripheral region is less than a maximum luminance of the central region. The data driver generates a data signal based on the converted data and to provide the data signal to the display panel.
US10332430B2
A method and apparatus for the self-illumination of various objects designed for use in sports, entertainment, safety, and emergency related activities. The objects are caused to self-illuminate by chemiluminescence to facilitate usage of the objects during non-daylight hours or in areas that are otherwise surrounded by darkness. The self-illuminating objects are configured with a hollow channel that forms diametrically opposed openings in a body portion of the self-illuminating objects, the hollow channel being formed to accept fishing line.
US10332427B2
Embodiments of the present application relate to a method, apparatus, and system for operating an account. The method includes receiving a selection of a plurality of payment tools from a terminal, determining a plurality of payment servers corresponding to respective ones of the plurality of payment tools based on the received selection, sending one or more funds deduction commands to the plurality of payment servers associated with corresponding ones of the selected payment tools, receiving one or more notifications of successful funds deduction from any of the plurality of payment servers associated with the selected payment tools, and in response to receiving the one or more notifications of successful funds deduction, updating funds data in a third party payment account.
US10332423B2
A hands-free cardiopulmonary resuscitation (CPR) guidance method (40) for a system including a head-mountable computing device (100) comprising a processor (110) and at least one display module (106, 106′) arranged to be viewed by the wearer (20) of the head-mountable computing device when wearing the device is disclosed that allows a rescuer to receive CPR guidance without losing sight of the victim. The method comprises receiving (420), on said processor, a first signal conveying vital signs information from at least one sensor (200, 210) for monitoring vital signs of a patient (10), wherein a sensor (210) of the at least one sensor is integrated in the head-mountable computing device (100); processing said first signal on said processor to obtain the vital signs information; and displaying (422) CPR guidance on said at least one display module in response to the processed vital signs information. A computer program product and a CPR guidance system are also disclosed. The system may be created in situ using ubiquitous devices, e.g. smart devices including usable sensors, thus facilitating rapid response to an SCA event, which improves the chances of survival of a SCA victim.
US10332412B2
A method of providing a task is presented. The method includes receiving, from a task administrator, multiple subjects to be presented in the task and presenting the task in response to a condition being satisfied. The method also include adaptively adjusting a difficulty level of a subject of the plurality of subjects based on a spacing interval, a speed of completing the task, and/or performance of a previous subject level.
US10332411B2
Systems and methods are provided for selecting a proposed test item for inclusion in an examination where a non-multiple choice response to the proposed test item will be automatically scored. A proposed test item is analyzed to generate a proposed test item metric, where the proposed test item is a non-multiple choice test item. The proposed test item metric is provided to a proposed test item scoring model, where the proposed test item scoring model outputs a likelihood score indicative of a likelihood that automated scoring of a response to the proposed test item would be at or above a quality level. The proposed test item is selected for inclusion in the examination based on the likelihood score.
US10332401B2
A running vehicle alerting system, comprising one or more forwardly directed optical sensors mounted on a same vehicle which are configured to capture road related images; an image processing unit configured to analyze the captured road-related images in real time and to determine, based on the analyzed images, whether the vehicle on which the one or more optical sensors are mounted is to be considered as a running vehicle that is spaced from a traffic light or a traffic sign by a distance shorter than a threshold safe braking distance and that is liable to endanger other vehicles; and an alert signal generating unit responsive to the determination of the vehicle as a running vehicle, for generating a collision avoiding alert signal.
US10332399B2
An object detection apparatus is arranged to detect the distance to the object and includes: a transceiver repeatedly transmitting a wave as an ultrasonic wave and receives a reflection wave of the transmission wave; a transmission controller controlling the transceiver to transmit the transmission wave; a distance calculator calculating a distance to the object, based on a time interval from a moment when the transceiver transmits the wave to a moment when the reflection wave is received; and a transmission timing controller controlling timing at which the transmission controller controls the transmission wave to be transmitted. Moreover, the transmission timing controller inserts at least one type of temporary waiting time between a transmission/reception period in which the transceiver transmits the transmission wave and receives the reflection wave and a next transmission/reception period, when a predetermined crosstalk identification condition is established based on the distance to the object.
US10332397B2
Systems and methods are provided for designing a preferred route for a vehicle. The route designing system receives a request from the vehicle for a preferred route from a first geographical point to a second geographical point. The route designing system analyzes the request and obtains driving scores associated with drivers of other vehicles. The route designing unit may identify a set of preferred and non-preferred vehicles based on the driving scores. The route designing system then determines a preferred route based, at least in part, on the driving scores associated with drivers of the other vehicles. The preferred route is designed to minimize the likelihood of proximity to non-preferred vehicles and maximize the likelihood of proximity to preferred vehicles.
US10332383B1
A computer-implemented method includes receiving a disarm code, comparing, the received disarm code to a stored disarm code, determining that the received disarm code matches the stored disarm code, determining a property access pattern that corresponds to the stored disarm code, that identifies a first group of doors at the property that should be opened, and that identifies a second group of doors at the property that should be closed, providing to each door hinge device on a respective door of the first group, a first instruction to open, providing to each door hinge device on each of the doors of the second group, a second instruction to close, and disarming the monitoring system.